
Semantic P2P Overlay for Dynamic Context Lookup

Shubhabrata Sen, Hung Keng Pung,Wai Choong

Wong

School of Computing, Department of Electrical and

Computer Engineering

National University of Singapore, Singapore

{shubhabrata.sen, dcsphk, elewwcl}@nus.edu.sg

Wenwei Xue

Nokia Research Center

Beijing, China

wayne.xue@nokia.com

Abstract— Context-aware applications generally need to

retrieve various kinds of dynamic context data from a large

number of context sources. A middleware managing context

sources must provide an efficient context lookup mechanism to

ease application development. In this paper, we categorize the

context sources as operating spaces and propose semantic peer-

to-peer overlays over these spaces to accelerate dynamic

context lookup in a context-aware middleware. Our proposed

overlay structure is specially designed to deal with dynamic

sensory context such as a person’s location and temperature

that are frequently changing and difficult to be promptly

retrieved using traditional peer-to-peer protocols. Our overlay

and indexing method has a low maintenance overhead.

Measurement results show that the proposed overlay achieves

a good response time and accuracy for context lookup as well

as requires low maintenance overhead.

Keywords-context-awareness; context-aware middleware;

operating spaces; semantic peer-to-peer overlays

I. INTRODUCTION

The recent advances in pervasive computing have lead to
an increased research focus on the development of
sophisticated context-aware applications. Initially restricted
to user location, context [7] is generally defined as any data
that can be used to characterize the situation of an entity
involved in the user-application interaction. We call such an
entity a context source.
 Context-aware middleware systems [2][14] have been

explored to provide effective support for the development of

context-aware applications by providing mechanisms to

efficiently manage various data retrieved from context

sources. We define an operating space as a person, object or

place in the physical or virtual world having a software

module hosted in a computing device through which the

affiliated context sources in the space can communicate with

and provide data to external consumers. Example classes of

operating spaces include persons, homes, offices and shops.
We define a context attribute as a kind of context data

provided by an operating space. The context attributes can be
static or dynamic. Dynamic attributes refer to sensory data
that change asynchronously and frequently, such as the
location of a person and the temperature in an office. Static
attributes, in contrast, refer to data that seldom changes, such
as the name of a person and the location of a shop. Most
attributes involved in context-aware applications are dynamic

and continuously changing over, as the main focus of these
applications is to ensure that they can adapt to the context
changes in an unattended fashion.

An important component of a context-aware middleware
system is the context lookup mechanism. Context lookup is
defined as the process of searching and identifying the
operating spaces that an application that have the required
context data, as well as the actual operation of obtaining the
data from each of these spaces. The context lookup process
is quite challenging since it requires dealing with dynamic
attributes and it is important to ensure that the data being
retrieved is up to date. For example, a healthcare application
monitoring a patient‟s heartbeat by data from body sensors
triggers an alarm upon any abnormality. The application
needs to ensure that it always reads the most recent data
because stale data might lead to a severe consequence.

In this paper, we propose to overcome the limitations of
traditional database methods for dynamic data management
by using a semantic peer-to-peer (P2P) overlay [18] as a
dynamic context lookup mechanism over operating spaces.
The intuition is that by classifying the operating spaces into
different semantic domains and having a distributed index
for context data enables an efficient context lookup over
these spaces. The main reason for us to use a P2P technology
for context lookup is to utilize the dynamic leaving and
joining facilities in P2P to cope with the dynamic changes in
context data. We have implemented and evaluated this
overlay structure in a research prototype of context-aware
middleware infrastructure named Coalition [5] under
ongoing development in our project.

The remainder of the paper is organized as follows. We
discuss the related work in Section II. We provide an
overview of our Coalition system and explain its various
components in Section III. Section IV describes our detailed
design of the semantic peer-to-peer overlay and the
maintenance operations associated with the overlay. We
present our current experimental results over the proposed
overlay structure in Section V. Section VI concludes the
paper with future research directions.

II. RELATED WORK

Traditional database indexes suffer from heavy update cost
when data values associated with an index are dynamic and
frequently change as in context-aware computing. We need
the design of specialized distributed “sparse” index

464

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

structures that focus on minimizing index maintenance
overhead upon the continuously arriving new data values.

Indexing moving objects: A recent research focus in
database community is the data management and indexing
techniques for moving objects. This is an enabling
technology mainly for location-aware applications. The R-
tree style index structures [13][16][19][21] designed for
moving objects seek to minimize the index update overhead
by minimizing the number of update operations that actually
need to be applied to an index. This is realized by
representing the motion of a moving object as a function and
updating the index when the parameters of the function
change or by utilizing physical properties of moving objects
like trajectories to make indexing decisions. Trajectory
information can be used to predict the motion path of
objects.

Indexing dynamic web documents: Inverted index
structures are often used to index web documents that
provide a mapping between words and their positions in the
document. Inverted indexes designed for web documents that
change frequently [15][17] seek to minimize the index update

overhead by reducing the number of memory operations that
occur during an index update. This is achieved by selective
rebuilding of the index and by reducing the information to be
updated via forward indexing techniques.

The indexing techniques for moving object environments
or dynamic web documents are not generic in nature since
they are designed for a particular application class and
largely take special properties of that application class into
account when designing the index. Moreover, they utilize
centralized indexing strategies, which could prove to be a
very critical bottleneck for a context-aware middleware
operating at the Internet scale.

Indexes for P2P systems: The indexes built for P2P
systems are generally distributed in structure. Since the P2P
systems are intended for information sharing, the indexes are
built on the file metadata information like names and sizes
[3] which are relatively static. P2P index structures like the
routing index [6] attempt to minimize the number of peers to
be looked up for a query by associating the routing
information with links and do selective forwarding based on
the usefulness of neighboring peers. These index structures
are same as those designed for working with static data as
they focus on the nature of the data content rather than the
actual content itself.

Distributed hash table (DHT) based data lookup
techniques for P2P was described in Chord [20] and a few
other systems like CAN, Pastry and Tapestry. DHT uses
hash functions to assign data to nodes as well as to perform
the lookup operation. Since a change in data will change the
associated hash value, static data is used as the key value.
DHT based techniques are first designed to support point
queries while later there are DHT variants [10] that work
with range queries as well, but neither case explicitly handles
data items frequently change in nature and might result in a
large update overhead if used with dynamic data.

Indexes for sensor networks: Another area where the
problem of dynamic data management is encountered is
sensor networks [8][9][12]. Sensor networks require

distributed index structures that can efficiently manage
dynamic sensor data while ensuring that the data
management procedure is energy-efficient. Sensor network
indexes are query-driven and operate in a proactive or
reactive mode based on the query nature and frequency.

A different approach to managing sensor network data is
taken by visualizing the sensor network as a database. This
involves processing each query issued to the sensor network
similar to a database query and directing the query to specific
sensors as determined by the query plan. Since the index
structures are constructed based on the query issued, the data
management aspect does not address the concern of indexing
the actual dynamic sensor data. The scope of these index
structures is generally limited to a single sensor network.

III. SYSTEM OVERVIEW

The overall architecture of our Coalition [5][24] context-
aware middleware is illustrated in Figure 1. The operating
spaces in Coalition are categorized and clustered into
multiple domain classes such as persons and shops. Each
class is called a context domain and all spaces in a domain
provide a similar set of context attributes [24]. The system
introduces the concept of an operating space gateway
(OSG), which is a software program that provides a single
point of interaction between an operating space and the
“outside” applications or other operating spaces. The OSGs
of all operating spaces having a common attribute in a
domain are organized into a P2P network. This P2P network
having OSG peers is termed as a semantic cluster. The
semantic clusters for different attributes in a domain are
connected with a ring topology to form an overall semantic
P2P overlay.

Figure 1. Overview of Coalition System Architecture.

465

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

The context data at all operating spaces is modeled using
a simple key-value model to make the design generic and
extensible. The clustering process of operating spaces into
different context domains is automatic. There exist a set of
global context schemas at the system server, each of which
corresponds to one of the context domains and is
incrementally updated from the local schemas submitted by
individual operating spaces during registration. The
integration of local space schemas into global domain
schemas is handled by a context schema matcher that we
developed. The technical details of the schema matcher are
beyond the scope of this paper and available in our prior
paper on schema matching [23].

The context domain manager at the system server
manages the data structures of individual context domains
and the “pointers” to their corresponding semantic P2P
overlays: each overlay of a domain is associated with a
context domain gateway (CSG) that acts as the single entry
of query injection from the server into the overlay. The
overlay for the SHOP context domain is amplified in Figure
1 as a first-hand example. More details of the overlay
structure and operations are presented in Section IV.

Coalition supports an SQL-based declarative interface
[24] for context-aware applications to acquire data from

operating spaces or to subscribe to the events of interest that
occur in these spaces. The context query engine identifies the
proper context domains involved in a query and forwards the
query to be executed onto OSG peers in the desirable
semantic clusters of the domain‟s P2P overlay. Because a
semantic cluster may contain numerous OSGs, context
lookup in a cluster can generate large overhead if a simple

flooding protocol is used to route the query throughout the P2P

network wherein no distributed indexing is implemented for
acceleration. The semantic overlay based lookup mechanism
we propose in this paper aims to address this inefficiency
issue by reducing the query routing cost via the introduction
of attribute value-based sub-clustering and ordering of OSGs
within a semantic cluster.

IV. SEMANTIC PEER-TO-PEER OVERLAY

A. Overall Overlay Structure

The structure of our proposed semantic P2P overlay for

dynamic context lookup is exemplified in Figure 2.
As we have discussed earlier, the global schema

maintained by the Coalition system is integrated from all the
local schemas of operating spaces in the domain. The global
schema of a domain is then mapped into a semantic P2P
overlay with all attributes in the schema mapped to the
semantic clusters of P2P networks in the overlay.

A semantic cluster groups gateways for operating spaces
that have a common attribute. For example, all OSGs of the
shops providing attribute temperature will join as peers in the
semantic cluster “temperature”, as shown in Figure 2. In
order to facilitate a better context lookup operation, a
semantic cluster is further partitioned into a number of
disjoint range clusters. Each range cluster corresponds to a
specific range of values for the attribute (See Figure 2). Each
range cluster forms a sub-cluster of smaller P2P network that

is contained in the overall P2P network of a semantic cluster.
The peer membership of operating spaces in a semantic
overlay is flexibly maintained in a distributed manner.

Figure 2. Illustration of the Overlay Structure.

An operating space joins a semantic cluster when it
provides the attribute of the cluster, and it leaves the cluster
when it no longer provides the attribute. An operating space
joins a range cluster of a semantic cluster when its current
attribute value falls into the particular value range of the
cluster, and it leaves the cluster when its attribute value falls
outside the range.

B. Context Lookup in semantic and range clusters

The notion of semantic cluster is introduced in our
system to accelerate the context lookup process by grouping
operating spaces according to the context data semantics they
provide. A semantic cluster for an attribute of a domain is
created when the first operating space registers the attribute
to Coalition. This „on-demand‟ approach bypasses the need
to create the semantic clusters beforehand. A semantic
cluster is removed when there is no space left in the cluster
due to the OSG de-registrations.

An OSG providing an attribute of a domain must be
assigned to a proper range cluster in the corresponding
semantic cluster of the domain‟s P2P overlay. The
assignment is based on the real-time value of the attribute at
the OSG when it registers. Later, each OSG must monitor its
attribute value periodically and move itself to a new range
cluster when the new attribute value moves out of the bounds
of the current range. The operations of an OSG joining a
range cluster and switching to a different one upon attribute
value change are shown in Figure 3.

Each range cluster maintains a range of numeric values in
our approach. Attributes having symbolic string values are
handled by hashing the strings to a numeric representation
using a hash function. We set two system-defined parameters
to restrict the maximum and minimum numbers of OSGs that
a range cluster can contain. These values are used to ensure
that a cluster is not too heavily or lightly loaded.

The context lookup in Coalition is carried out by an
application issuing a query that specifies the required data
acquisition from operating spaces satisfying certain range-

466

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

search conditions. In the absence of range clusters, the query
must be flooded to all OSGs in a semantic cluster and is not
scalable with large cluster size. The usage of range clusters
addresses this problem by minimizing the search space. The
query processing operation is depicted in detail in Figure 4.

Figure 3. Joining and leaving of range clusters for OSG.

Figure 4. Query processing with range clusters.

Since the query is only flooded in the relevant range
clusters rather than the whole semantic cluster now, the
context lookup process is more efficient than the flooding
based approach.

C. Maintenance of range clusters

The basic operations required for the range clusters
include the provision for allowing an OSG to join/leave a
particular range cluster. Moreover, in order to ensure that the
load on a range cluster is not too heavy or too light, a range
cluster can either be merged with a neighboring cluster or
split into two clusters.

The joining and leaving of OSGs in a range cluster can
trigger the splitting and merging of the cluster: if the
operation causes the cluster size to fall above/below our
system-defined values for maximum/minimum cluster sizes,
the cluster is adjusted. The functional pseudo-codes realizing
the joining and leaving of an OSG in a range cluster are
shown Functions 1-2.

The cluster splitting operation requires OSGs in a range
cluster to be redistributed among the two split clusters, as in
Figure 5. The operation is carried out by sorting all OSGs in
the cluster to be split in an ascending order of their current
attribute values. The cluster is then divided into two smaller
clusters. The first half of the sorted list is assigned to the first
cluster and the second half the second cluster. The cluster
bounds of the new clusters are updated accordingly. The
cluster splitting operation only affects the cluster being split
and does not affect other range clusters. The number of range
clusters is increased by one due to this operation.

Figure 5. Splitting of a range cluster

In the range cluster merging operation, the cluster is
merged with its adjacent cluster to form a bigger cluster. The
operation is depicted in Figure 6.

If the cluster to be merged is the first or last range cluster
in the sequence, there is only one option for choosing the
adjacent cluster to be merged. In case a cluster having two
adjacent clusters needs to be merged, the cluster is merged
with the adjacent cluster having the lower size among the
two. Also, in case the merging process creates a new cluster
with a size greater than the maximum cluster size, a

Function 1: Join_Range_Cluster

Begin

 Locate required context domain and semantic cluster

 If no range cluster present
 Create a new range cluster

 Else

 Locate range cluster by comparing attribute value against cluster
bounds

Assign operating space to the range cluster

If (range cluster size > Maximum Cluster Size Threshold)
Split Cluster

End

Function 2: Leave_Range_Cluster

Begin
 Locate range cluster by checking attribute value against cluster

bounds

 Remove the operating space from range cluster
 If (range cluster size < Minimum Cluster Size Threshold)

 Merge the cluster with an adjacent one

 Else if (range cluster size == 0)
 Delete corresponding semantic cluster

End

467

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

subsequent splitting operation is required. The new cluster
bounds are obtained by merging the cluster bounds of the
clusters being merged. This operation decreases the number
of range clusters by one.

Figure 6. Merging of a range cluster

D. Further discussions on range clusters

Our current implementation of range clusters defines the
range bounds of clusters as a numerical value range. Simple
string attributes can also be partitioned using this scheme by
hashing a string to get a hashed numeric value. The range
clusters can then be constructed on these hashed values.
However, such hashing method is only useful for answering
queries that look for exact string matching but not for
wildcard based queries.

To handle composite attributes composed of one or more
sub-attributes (e.g. location composed of city and street), a
simple solution is to hash the composite representation of the
attribute value to a real number and generate the range
clusters based on the hash values. This approach does not
prove to be useful for queries interested in a sub-attribute.
The current range cluster approach needs to be extended to
support more sophisticated queries with regard to string
attributes and composite attributes. The changes to be made
to the range cluster structure to handle different types of
context in practice also need to be studied.

The proposed current range cluster design generates
clusters based on attribute values. Since the values of context
attributes tend to be dynamic, the range cluster bounds need
to be carefully chosen to minimize the number of cluster
update operations. An alternative to this technique would be
using the statistical properties of data, e.g. mean and
variance, to generate the range clusters. This idea has been
explored in [22] where the statistical properties of data are
used to build an R-tree like index structure.

V. EXPERIMENTAL RESULTS

We present our current performance evaluation results of
the proposed semantic P2P overlay in this section.

A. Experimental Setup

We implemented the semantic P2P overlay structure on
top of Gnutella [11] in our Coalition prototype. We used a
desktop PC as the middleware server and other four PCs to
host the OSGs in the experiments. Each PC has an Intel Core
2 Duo 2.83 GHz CPU and runs the Windows XP OS. As our
OSG is a software module, we uniformly installed and ran
multiple OSG instances onto the four PCs to emulate a
number of “operating spaces” in different experimental
rounds. Each value in a figure or table shown in the
following is the average of tens of independent experimental
runs.

B. Query Response Time

We first studied the query response time over the
semantic P2P overlay. The response time of a query is
measured as the time interval between the issuing of a query
from an application and the reception of query result by the
application. In each round of this experiment, a random
percentage of OSGs in a few range clusters of a semantic
cluster had required results for the query. The total number
of OSGs emulated in each run of experiment is the network
size for that run.

We compared the query response time achieved by three
P2P schemes: the original Gnutella flooding implemented
using two different underlying protocols – TCP and UDP, as
well as our proposed overlay structure using UDP. The
results are shown in Figure 7 with the total number of OSGs
in the semantic cluster where the query is routed and
executed inside varying.

Figure 7. Query response time with different network sizes

The results show that the query response time increased
with network size for all three schemes. This is intuitive as
network size increase effectively increases the size of search
space for a query. The increase curve of our semantic
overlay with range clustering (denoted as “Range” in Figure
7) is flatter than the other two schemes. The response time
increase of our approach is almost negligible in the
experiment, because our distributed indexing based on range
clusters largely reduce the search space of query flooding.

We further examined the response time of different
schemes by varying the percentage of OSGs with the
required results for a query in a semantic cluster. The
network size of the semantic cluster was fixed to be of 100
OSGs in this experiment. The results are in Figure 8. Since

468

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

the response time of a query depends on the number of OSGs
reporting a valid answer, the time intuitively increases with
the growing percentage of valid answer sources.

This increase magnitude is quite steep for the original
Gnutella scheme, either using TCP or UDP, compared to our
approach whose increase curve is smooth after the initial
sharp rise. This indicates our semantic overlay could achieve
an overall better response time due to the ordering of OSGs

according to attribute values, which enables the faster
localization of OSGs having valid answers.

Figure 8. Query response time with different number of qualifying OSGs

C. Time breakdown for query processing and maintenance

operations

We next analyzed the time breakdown for query
processing to identify the time taken in different stages of the
operation. Table I shows the breakdown of query response
time in our approach and UDP-based Gnutella flooding. The
dominant operation in the time breakdown is observed to be
the P2P lookup operation since it involves the query flooding
within the underlying P2P network. The results clearly
illustrate that our approach reduces the P2P lookup time
compared to the original UDP version of Gnutella, and
achieves an overall faster query response time. Since our
approach also requires maintenance like splitting and
merging of range clusters, we analyzed the time breakdown
of these maintenance operations in Tables II-III,
respectively. We also measured the time breakdown of an

OSG joining/switching a new range cluster in Table IV.
It is observed that the cluster splitting and merging

operations require a similar maintenance overhead with the
merging requiring slightly more. The regrouping costs of
OSGs in the newly merged/split clusters dominate the total
time taken for these operations, as expected. Unless the
dynamism of the context data and the memberships of OSGs
are high, the frequency of merging/splitting will be low and
hence the latency of the operation will not affect the overall
system performance. The operation of an OSG joining a new
range cluster is comparatively faster than merging or
splitting.

TABLE I. TIME BREAKDOWN FOR QUERY PROCESSING

TABLE II. TIME BREAKDOWN FOR CLUSTER SPLITTING

TABLE III. TIME BREAKDOWN FOR CLUSTER MERGING

TABLE IV. TIME BREAKDOWN FOR JOINING RANGE CLUSTER

VI. CONCLUSION

We have presented a semantic P2P overlay structure to
support dynamic context lookup in a context-aware
middleware. The P2P overlay is created for each context
domain and represents the set of attributes in the domain.
Each semantic cluster of P2P network for an attribute in the
domain is further partitioned into a number of range clusters
to support the efficient lookup of dynamic context data via
simple SQL-based queries. Our simulation results
demonstrate the proposed overlay structure achieves a good
response time for context lookup. The results also suggest
the time required for the range cluster maintenance
operations is reasonably small. Our future work includes
more extensive testing of the range cluster-based semantic
P2P overlay, extending the structure to support symbolic or
composite context attributes and the impact of dynamism of
OSGs on the system performance.

ACKNOWLEDGMENT

This work is partially supported by National Research
Foundation grant NRFIDM-IDM002-069 on "Life Spaces
(POEM)" from the IDM Project Office, Media Development
Authority of Singapore.

469

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

REFERENCES

[1] M. Ali and K. Langendoen, “A case for peer-to-peer network

overlays in sensor networks,” Proc. WWSNA, 2007, pp. 56-61.

[2] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-

aware systems,” International Journal of Ad-Hoc and Ubiquitous

Computing 2 (4) (2007), pp. 263-277.

[3] R. Blanco, N. Ahmed, D. Hadaller, L. Sung, H. Li, and M. Soliman,

“A survey of data management in peer-to-peer systems,” Tech. rep.,
University of Waterloo (2006), pp. 1-51 .

[4] G. Chen, M. Li, and D. Kotz, “Data-centric middleware for context-

aware pervasive computing,” Pervasive Mob. Computing. 4 (2) (2008),
pp. 216-253.

[5] Context-Aware Middleware Services and Programming Support for
Sentient Computing,

http://lucan.ddns.comp.nus.edu.sg:8080/PublicNSS

/researchContextAware.aspx (last accessed 03/06/2010)

[6] A. Crespo and H. Garcia-Molina, “Routing indices for peer-to-peer

systems,” Proc. ICDCS, 2002, pp. 23.

[7] A.K. Dey, “Understanding and using context,” Personal and

Ubiquitous Computing 5 (1) (2001), pp. 4-7.

[8] Y. Diao, D. Ganesan, G. Mathur, and P.J. Shenoy, “Rethinking data
management for storage-centric sensor networks,” Proc. CIDR, 2007,

pp. 22-31.

[9] V. Dyo and C. Mascolo, “Adaptive distributed indexing for spatial

queries in sensor networks,” Proc. DEXA, 2005, pp. 1103-1107.

[10] J. Gao and P. Steenkiste, “An adaptive protocol for efficient support
of range queries in DHT-based systems,” Proc. ICNP, 2004, pp. 239-

250.

[11] Gnutella Protocol Development, http://rfc-gnutella.sourceforge.net

(last accessed 10/07/2010)

[12] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and S.

Shgenker, “DIFS: A distributred index for features in sensor

networks,” Ad Hoc Networks 1 (2-3) (2003) , pp. 333-349.

[13] A. Guttman, “R-trees: A dynamic index structure for spatial

searching”, Proc. SIGMOD, 1984, pp. 47-57.

[14] K.E. Kjær, “A survey of context-aware middleware,” Proc. SE, 2007,

pp. 148-155.

[15] N. Lester, J. Zobel, and H. Williams, “Efficient online index

maintenance for contiguous inverted lists”, Information Processing &
Management 42 (4) (2006), pp. 916-933.

[16] W. Liao, G. Tang, N. Jing, and Z. Zhong, “VTPR-tree: An efficient

indexing method for moving objects with frequent updates”, Proc.
CoMoGIS, 2006, pp. 120-129 .

[17] L. Lim, M. Wang, S. Padmanabhan, J. Vitter, and R. Agarwal,
“Efficient update of indexes for dynamically changing web

documents”, World Wide Web 10 (1) (2007), pp. 37-69.

[18] E.K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey
and comparison of peer-to-peer overlay network schemes,” IEEE

Communications Surveys & Tutorials 7 (2) (2004), pp. 72-93.

[19] S. Šaltenis, C.S. Jensen, S.T. Leutenegger, and M.A. Lopez,

“Indexing the positions of continuously moving objects”, Proc.

SIGMOD, 2000, pp. 331-342.

[20] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F.

Dabek, and H. Balakrishnan, “Chord: A scalable peer-to-peer lookup

protocol for internet applications,” IEEE/ACM Transactions on
Networking 11 (1) (2003), pp. 17-32.

[21] Y. Tao, D. Papadias, and J. Sun, “The TPR*-tree: An optimized
spatio-temporal access method for predictive queries”, Proc. VLDB,

2003, pp. 790-801.

[22] Y. Xia, S. Prabhakar, S. Lei, R. Cheng, and R. Shah, “Indexing
continuously changing data with mean-variance tree”, Proc. SAC,

2005, pp. 263-272.

[23] W. Xue, H.K. Pung, P.P. Palmes, and T. Gu, “Schema matching for

context-aware computing,” Proc. Ubicomp, 2008, pp. 292-301.

[24] W. Xue H.K. Pung W.L. Ng, and T. Gu,”Data management for

context-aware computing”, Proc. EUC, 2008, pp. 492-498.

[25] W. Xue, H.K. Pung, W.L. Ng, C.W. Tang, and T. Gu, “Gateways of
physical spaces in context-aware computing,” Proc. ISSNIP, 2008,

pp. 441-446 .

470

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

http://lucan.ddns.comp.nus.edu.sg:8080/PublicNSS/researchContextAware.aspx
http://lucan.ddns.comp.nus.edu.sg:8080/PublicNSS/researchContextAware.aspx
http://rfc-gnutella.sourceforge.net/

