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Abstract—Ubiquitous devices demand autonomous and
adaptive data mining. Despite some advances, the problem of
calculating the cost associated to the execution of data mining
algorithms is still a challenge. Thus, in this paper we provide a
method for predicting the cost in terms of efficacy and efficiency
associated to a mining algorithm, the resulting cost model as
shown in our previous work can be exploited by a mechanism
for predicting the best configuration of a mining algorithm
according to context and resources. Recent work presents how
a cost model not associated to any dataset can provide reliable
estimations on efficiency and efficacy, here we present how we
can improve the accuracy of such estimations by particularizing
cost model to a predefined dataset. We provide the guidelines of
the method and then we present a particularized cost model for
C4.5 algorithm associated to a specific dataset (Parkinson’s tele-
monitoring). Experimental results show how the particularized
cost model achieves significant better estimations than the
general cost model.
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I. INTRODUCTION

The dissemination of ubiquitous devices has become a
reality, nowadays such devices are able to execute almost any
kind of application and collect considerable amount of data.
To endow the devices with data mining services in order to
exploit such amounts of data is a requirement. Applications
in many domains require embedded intelligence to achieve
their goals [7] [10], but their intelligence is not always
personalized or adaptable. In [6] the authors provide a review
of mobile care system which support the patient according
to predefined mining models or to a server communica-
tion. An example on how to provide mobile devices with
intelligence is in [1], an application of a neural network
approach for the development of a system for knowledge
classification in diabetes management. In the domain of
intelligent transportation systems there are many situations
in which an intelligent component is needed because internet
connectivity in order to communicate with a server is
not possible. In [8], the authors present a novel context-
aware framework integrating intelligence for transportation
systems. The system is able to: (1) learn patterns collisions
by monitoring, (2) learn to recognize potential hazards in
intersections and (3) warn particular threatened vehicles.
Nevertheless, also in this domain the data mining framework

has not been fully explored and developed. It is clear then
how the integration of the mining technique directly into the
devices can considerably increase the utility of ubiquitous
applications, personalizing, assuring privacy and adapting to
the changing world.

Data mining in ubiquitous devices has at least two re-
quirements, to lead the process in an autonomous way and
to adapt the process to the changing world. Some works in
literature [3] and [2] provide approaches to adapt stream
mining algorithms according to context information and
available resources, but solutions for adaptable algorithms
for the static case are still lacking. Further the methods
applied for stream scenarios cannot be applied to batch
scenarios, in fact in batch algorithms it is not possible
to control the execution while the process is running, the
initial algorithm configuration cannot be modified. In [4],
some works providing methods for seeking the optimum
neural networks algorithm configuration are presented. The
main drawbacks concern the resource consumption of the
methods to find the optimum and the fact they do not take
into consideration external factors as context and internal
resources, but only the dataset to be mined.

In [13], a mechanism able to select the best configuration
for a C4.5 algorithm according to resources and context was
presented. The mechanism is based on the EE-Model, which
is able to estimate the efficiency and the efficacy of the
C4.5 algorithm in terms of memory, CPU cycles, battery and
accuracy, given the metadata of the dataset to be mined and
the algorithm configuration. The model is calculated on the
past behavior of the algorithm, which has been executed with
different configurations and datasets. The main advantage
of the model presented is the generality as it can be used
to predict the efficiency and efficacy of that algorithm in
any circumstances and with any dataset, but this is also its
main drawback as it is not particularized. Normally in a
particular device the dataset features will not vary and this
is our main motivation to present a particularization of the
EE-Model for a given dataset. As experiments will show, the
particularization of the EE-Model for C4.5 algorithm makes
it possible to get more accurate prediction on memory and
CPU cycles.

The rest of the paper has been organized as follows: in

79

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-100-7



Section 2 we focus the paper on the requirements of a cost
model associated to a data mining algorithm, Section 3 sets
the problems for calculating the cost model. In Section 4
we describe the guidelines in order to build a P-EE-Model
and then we present a P-EE-Model for C4.5 associated to a
Parkinson’s tele-monitoring dataset. In Section 5 we show
experimental results on the customized cost model. The
Section 6 presents the conclusions and the future research.

II. PRELIMINARIES

In [13], a mechanism to select the best algorithm config-
uration to execute a mining algorithm, taking into account
information regarding the situation is presented. What they
call situation is defined by the external factors, and it is
divided into two main groups:

• Factors describing resources: memory, battery, CPU;
• Factors describing context information: information

that can be sensed from sensors (location, temperature,
time, etc).

Consequently, the authors divide the issue to decide the
best configuration of the mining algorithm into two sub-
problems, on one hand how the external factors influence
the requirements of the mining process in terms of efficacy,
efficiency and semantics (meaning of the results), and on the
other hand how the algorithm behaves when altering input
data and input parameters. The main assumption under the
division into two subproblem is that no matter the external
factors, the algorithm inputs determine the quality of the
model and performance that can be obtained. By efficiency
they understand the resource consumption of the execution.
On the other hand, the efficacy in a classification algorithm
can be defined as accuracy (i.e., percentage of corrected
classified items).

The method behind the cost model (EE-Model) presented
in [13] relies on historical analysis of past execution of a
particular algorithm to calculate the influence of inputs on
the cost and results of the model. This is to say, information
on the cost of past executions of the algorithm on different
configurations and with different datasets are analyzed and
knowledge discovery process is applied to extract rules that
can be used to predict the bahaviour of the algorithm in new
cases. As the experimental results show, the model presented
there (EE-Model) provides estimations which are closer to
the real efficacy and efficiency, nevertheless it presents the
following drawback: it has been defined for general datasets,
this is to say, historical executions analyzed consider dif-
ferent datasets. The features of a particular dataset can
influence the behavior of the algorithm differently and this
has motivated the present research in which we propose to
particularize the cost-model depending on the features of a
particular dataset.

Consequently it would be good to have a particularized
cost model built on a determined dataset that could lead to
more accurate prediction of the behavior of the algorithm

both in terms of efficiency and efficacy. The underlying
drawback behind is the lack of flexibility as the EE-Model
customized this way would only be valid for that particular
dataset. Nevertheless in real cases the dataset of a particular
domain or application will change only in terms of number
of records, size and distribution, all factors which our
particularized cost model can adapt to. As experiments will
show the particularized model can provide significantly more
accurate estimations. In what follows we first present the
problem and later we present the particularized EE-model.

III. SETTING THE PROBLEM

The same mining algorithm can lead to different resource
consumption and different accuracy of the model depending
on many factors, but which are the factors altering such
behavior? And how do they alter such behavior? As it is
depicted in Figure 1, the mining algorithm efficiency and
efficacy depends on:

1) The input data;
2) The configuration.
We describe in depth these features in the next subsections

to see how they affect the algorithm behavior to take advan-
tage of these features to better predict algorithm resource
consumption and performance. Note that the analysis of the
semantics is out of scope in this paper.

Figure 1. Mining algorithm inputs and outputs

A. Input dataset

The input dataset is the main input to the mining process.
Depending on the data quality so there will be the results.
Consequently we analyze in what follows how the data
quality can impact the process. The quality of the data is
related to:

• The number of records;
• The number of attributes;
• The type of each attribute;
• The values and distribution.
The dataset features will influence both the efficiency

and the efficacy of the algorithm, in this sense for example
a bad quality dataset in terms of data distribution can lead
to a not precise model. Note that for example the number
of columns could affect the efficiency, although it could
also affect the quality of the model, increasing the number
of columns leads to high dimensional problems that can
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be a significant obstacle to achieve high quality models.
Also increasing the size of the dataset will probably result
in a lower efficiency, but then the efficacy has to be explored.

B. Algorithm configuration

Setting the configuration of the algorithm means to assign
values to the algorithm parameters for an execution. The
configuration also determines the resource consumption and
the accuracy of the results. In [5], a number of algorithms
are tested with the same dataset in order to analyze their
performance, the authors show the resource consumption and
the accuracy achieved by testing them with different con-
figurations. Such relations between configuration and result
have to be known. Binary split option of a C4.5 algorithm for
example can increase the efficiency of the algorithm because
building a more branched tree, nevertheless the option can be
suitable for certain types of dataset and increase the efficacy.

IV. APPROACH

In [13], a mechanism able to select the best configuration
to execute the C4.5 algorithm according to external factors
is presented. Figure 2 shows how the various phases of the
process, the mechanism has a central role, it can access
dataset information, configuration metadata and external
factors, and it gives as result the best configuration for
the mining algorithm. The EE-Model supports the mech-
anism by providing estimations on efficacy and efficiency
of the mining algorithm execution. This solution has many
advantages, first of all the system can have an estimation
of the resources needed for the execution, in some cases
the system can avoid executions that cannot be terminated
(for battery low for example). It is also possible to avoid
out of memory problems and CPU bottlenecks. In fact, for
ubiquitous devices, resource aware is an important process
requirement. In this paper our goal now is to: check that the
EE-Model can get better results when built for a particular
dataset. In Section IV-A we present how to obtain the
particularized EE-Model.

A. The particularized EE-Model

The dataset features of a particular dataset can influence
the behavior of the algorithm, consequently it would be good
to have a particularized model for certain datasets in those
domains or applications where we know the dataset features
will not dramatically change. The underlying drawback
behind is the lack of flexibility as the EE-Model cannot
be valid for any type of dataset, but on the other hand
a cost model suitable for certain purposes would improve
the accuracy of the estimations. Here we will focus on
the guidelines for the particularization of the EE-Model
predicting C4.5 classification algorithm.

In order to build the EE-Model the steps are the following:

Figure 2. Approach

1) Define the set of variables to describe the executions
of the algorithm:

• Define the condition variables that describe the
algorithm inputs as parameter settings (i.e. type of
pruning) and dataset metadata. The dataset meta-
data in [13] is defined as number of attributes, type
of attributes and so on, are not needed as they are
not changing for a particular dataset, nevertheless
we include richer and ad hoc information that
describe that dataset. In fact the metadata has to
include information such as of number of records
and dataset size, class distribution and attributes
distribution, in general any feature of the dataset
that might change over time.

• Define the decision variables that describe the set
of executions information as memory and battery
to name a few, or any measure is needed to predict
with the model.

2) Execute a representative number of times the algo-
rithm altering the condition variables;

3) Apply knowledge discovery process to the collected
data relative to the executions in order to build one
model for each decision variable. Most of times the
decision variables will be numeric. According to our
experience, we suggest to apply techniques as linear
regression or regression tree.

In order to build the EE-Model the steps are the following:
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B. Particularized EE-Model for parkinson’s tele-monitoring

After an outline on how to build the model, here we
present the EE-Model we built for a dataset relative to
Parkinson’s tele-monitoring [11]. The dataset is composed of
a range of biomedical voice measurements with early-stage
Parkinson’s disease recruited for remote symptom progres-
sion monitoring, the description of the dataset attributes is
given in Table I.

Table I
DATASET ATTRIBUTES DESCRIPTION

subject Integer that uniquely identifies each subject
age Subject age
sex Subject gender ’0’ - male, ’1’ - female
test-ime Time since recruitment into the trial
Jitter Several measures of variation

in fundamental frequency
Shimmer Several measures of variation in amplitude
NHR,HNR Measures of ratio of noise to tonal

components in the voice
RPDE A nonlinear dynamical complexity measure
DFA Signal fractal scaling exponent
PPE A nonlinear measure of fundamental

frequency variation
total-UPDRS (CLASS) Clinician’s total UPDRS score (discretized)

Following the guidelines of Section IV-A:
1) We define the decision variables as in II, there are two

measures on the efficiency and one on the efficacy
of the algorithm. The accuracy is obtained with an
evaluation of the model with a test set. Then we
defined the condition variables as in Table III. We can
notice that the dataset metadata contains on one hand
information on the size of the dataset, on the attributes
type and in general on the distribution of the attributes
values, on the other hand the metadata associated to
the algorithm parameters (in order to represent all the
possible different configurations).

Table II
ALGORITHM EXECUTION INFORMATION

Memory Memory used Integer
CPU Number of CPU cycles Integer
Accuracy Accuracy of the obtained mining model Real

2) We obtain a dataset of historical data of execution
of the algorithm in a system with 2.16 GHz Core
2 processor and 2.5GB 667 MHz DDR2 SDRAM
memory. The number of execution is an important
point to obtain a dataset able to represent the do-
main, we generated a number of 30023 covering
all parameter configurations (increment of 0.10 for
continuous parameters) related to the same dataset, but
with different number of records and so with different
class and attributes distributions.

3) This step concerns the application of data mining
techniques in order to discover the relations between

Table III
INPUT INFORMATION

Attribute number Number of attributes Integer
NInstances Number of instances Integer
Size Dataset size in KB Integer
Attribute distinct distinct values of the column X (i.e. Class) Integer
Attribute StdDEV Standard deviation of the column X (i.e. Class) Real
Attribute type Number of columns of type Y (i.e. real) Integer
Pruning Whether pruning is performed. Nominal

(’0’ → no pruning, ’1’ → pruning,
’2’ → Reduced error pruning)

Binary Whether to use binary splits on nominal Boolean
attributes when building the trees

Laplace Whether counts at leaves are Boolean
smoothed based on Laplace

CF The confidence factor used for pruning Real
(smaller values incur more pruning)

Sub Whether to consider the subtree raising Boolean
operation when pruning

MinNumObj The minimum number of instances per leaf Integer
NumFolds Determines the amount of data used for Integer

reduced-error pruning. One fold is used for
pruning, the rest for growing the tree.

Seed The seed used for randomizing the data Integer
when reduced-error pruning is used.

condition variables and decision variables. The algo-
rithm used for memory and CPU cycles is REPTree
[12], for accuracy linear regression [9]. The model
for accuracy has not improved the previous results
achieved, while the results for memory and CPU
cycles are shown in Section V.

V. EXPERIMENTATION

The experimentation is carried out evaluating the effi-
ciency prediction of the presented particularized EE-Model
(P-EE-Model) for Parkinson’s tele-monitoring in comparison
with the general EE-Model in [13]. The estimations of
the two models are compared with the values of the real
executions. Given a configuration and dataset metadata the
EE-Model is able to estimate efficiency and efficacy, so
in order to describe the experiment we first define the
configurations and the dataset metadata we consider for our
analysis. We define the three configurations presented in
Table V, they mainly differ in the type of pruning applied
in the execution. The reason is related to the fact that the
pruning is the main parameter setting altering the efficiency
of the algorithm. We evaluate the P-EE-Model with the
Parkinson’s tele-monitoring dataset we used for building the
model, its description is in Table I, but here we take a sample
of the original dataset having the number of records equal
to 2543, the size to 424KB and different attributes and class
distribution.

Then we evaluate the P-EE-Model comparing the estima-
tions for the three configurations to the real values. Table V
shows the results of the evaluation, the models provide more
reliable for average memory, in fact a mean is supposed to
be more stable.
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Table IV
ALGORITHM CONFIGURATIONS

Config. Prun Bin Lap CF Sub MinOb #Folds S
1 1 Yes Yes 0.25 Yes 3 – –
2 0 Yes No – 0 2 – –
3 2 No No – Yes 5 5 5

Table V
EE-MODEL EVALUATION

Average Memory CPU cycles
Correlation Coeff. 0.95 0.99

Relative absolute error 8.0% 20.0%
Root relative squared error 9.9% 15.3%

Now we compare the performance of the P-EE-Model
with the general EE-Model (G-EE-Model) in [13]. Figure
3 shows the absolute squared error obtained for the three
configurations while considering first the P-EE-Model (sky
blue) and then the G-EE-Model (red). The comparison is
relative to the average memory and denotes a significant
improvement on the accuracy of P-EE-Model estimations.

Figure 3. Comparing average memory

Figure 4 shows the comparison of the absolute squared
error relative to CPU cycles, even in this case the estimations
of the P-EE-Model overcome the general one. In this paper
we argued the hypothesis that an EE-Model build for a
particular dataset could achieve better estimations than
a general one built on many datasets. According to the
results above the hypothesis is verified and the estimations
overcome the general model significantly.

Nevertheless, the drawback of the P-EE-Model concerns
the lack of flexibility, in fact the model is only usable for
the dataset on which it is built. To conclude we carried out
an evaluation of the P-EE-Model which has been built on
the dataset in [11], with another synthetic dataset. As we
argued the estimations of such model are worse than the
one provided by the general EE-Model.

Figure 4. Comparing CPU cycles

VI. CONCLUSION

In this paper, we have presented a cost model to predict
the behavior of a data mining algorithm with a specific
dataset in terms of efficacy and efficiency that overcomes
in accuracy the previous general cost models predicting
the algorithm behavior with any kind of dataset. After
describing the guidelines in order to build a particularized
cost model (P-EE-Model), we present a P-EE-Model for
C4.5 algorithm specific for a Parkinson’s tele-monitoring
dataset. According to our experimental results the E-PP-
Model significantly improve the estimations of CPU cycles
and average memory. Nevertheless the drawback of the P-
EE-Model: less flexibility as it is associated to a specific
dataset, has not to be ignored in domains of applications
where the dataset can change dramatically.
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