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Abstract—In this paper, we propose an automatic modulation 
classification scheme for digitally modulated signals, such as 
MSK, GMSK, BPSK, QPSK, 8-PSK, 16-QAM, 32-QAM, and 
64-QAM. As features which characterize the modulation type, 
higher order cyclic cumulants up to eighth order of the signal 
are used. For feature classification, a Gaussian mixture model 
based algorithm is used. Simulation results are demonstrated 
to evaluate the performance of the proposed scheme under 
AWGN channels. 

Keywords- automatic modulation classification; Gaussian 
mixture model; cyclostationary; higher order cyclic cumulants.  

I.  INTRODUCTION 

Automatic modulation classification (AMC) is a 
technique to identify the modulation type of the detected 
signal as well as to estimate the signal parameters such as 
carrier frequency and symbol rate, etc [1]. It is widely tried 
to apply in the field of military and civilian for electronic 
warfare, spectrum monitoring, surveillance, and cognitive 
and software defined radios.  

There have been many studies on AMC for last two 
decades. AMC schemes are normally classified into two 
major categories which are likelihood-based approach [2] 
and feature-based approach [3]-[10]. The likelihood-based 
method shows optimal performance in the sense that it 
maximizes the probability of correct classification. However, 
it has higher computational complexity for likelihood 
computation. In addition, it is highly sensitive to modeling 
mismatch such as timing, phase and frequency offsets, and 
noise variance. 

The feature-based approach attempts to extract a set of 
features from the received signal. Because the features 
represent a distinct pattern in a feature space, various pattern 
recognition algorithms can be applied for classification. 
Although this approach may not show optimal performance, 
it is easy to implement and shows nearly optimal 
performance when appropriate features and a classifier are 
combined.  

In [3], higher order statistics up to sixth order are used to 
discriminate binary phase-shift keying (BPSK), quadrature 
phase-shift keying (QPSK), 16-ary quadrature-amplitude 
modulation (16-QAM), and 64-QAM. As a classifier, a 
genetic programming combined with the K-nearest neighbor 

(KNN) algorithm is used. It shows good performance even in 
the presence of noise and frequency offset. In [4]-[6], 
cyclostationary statistics such as spectral correlation density 
[4] and cyclic cumulants (CCs) [5, 6] of the signal are used 
as features. These methods use a simple decision tree [4], the 
minimum distance metric [5], and the Mahalanobis distance 
metric [6] for classification. The classification performance 
is insensitive to model mismatch and independent of any a 
priori knowledge of signal parameters. In [7], a Gaussian 
mixture model (GMM) is used for classification of 
instantaneous amplitudes and phases of binary amplitude-
shift keying (BASK), binary frequency-shift keying (BFSK), 
QPSK, 16-QAM, and 64-QAM signals and it shows better 
performance compared to [5, 6].  

In this paper, we propose a feature-based AMC scheme 
which uses CCs as features and the GMM for feature 
classification. We deal with both linear and nonlinear 
modulations, such as minimum-shift keying (MSK), 
Gaussian MSK (GMSK), BPSK, QPSK, 8-PSK, 16-QAM, 
32-QAM, and 64-QAM.  

This paper is organized as follows. In section II, we 
explain the signal model and entire framework of the 
proposed scheme. Brief review about CCs used for features 
is given in section III. The proposed AMC adopting GMM is 
explained in section IV. Simulation results are demonstrated 
in section V to evaluate the performance. Finally, the paper 
concludes in Section VI. 

II. SYSTEM MODEL 

The proposed modulation classification scheme consists 
of two parts of a feature extraction block and a GMM 
classifier as shown in Fig. 1. Two signals, ( )y n and ( )r n  are 

entered to the first block. The received baseband signal ( )y n  
at time n is represented as 

(2 )( ) ( ) ( ) ( )s cj fnT
s s

l

y n a l p nT lT e w nT 


 


   

where ( )a l  is the l-th transmitted symbol and assumed to be 
independent and identically distributed (IID), which 
generally holds in digital communications, with unit 
variance. sT  and T  denote the sampling period and symbol 
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duration, respectively. And f  is the residual carrier 

frequency offset and c  the residual carrier phase. The 

oversampling  ratio is defined by /sT T  . The pulse 

( )p t  reflects the channel effects and ( )w t  is zero-mean 
additive white Gaussian noise (AWGN).  
 

 
Figure 1.  The structure of the proposed modulation classification scheme. 

 
The input ( )r n  is the signal to generate the reference 

data for GMM, which has the same modulation type as ( )y n  
with AWGN. The signal is required only for the learning 
process. 

At feature extraction stage, we extract the feature vector 
ˆ

yF  and the reference data matrix M̂  from ( )y n  and ( )r n , 

respectively. Then, the GMM classifier is used to predict the 
modulation type sH  corresponding to the received signal. 

III. CYCLIC CUMULANTS (CCS) 

Most communication signals made by human represent 
cyclostationary characteristic, i.e., statistical properties of the 
signal are varying periodically with respect to time. Up to 
now, the CCs are widely used for AMC among many 
cyclostationary statistics of the signal. 

The k-th order with q-conjugate (k, q) CCs of ( )y n are 
defined as Fourier coefficients of time-varying k-th order 
cumulants [8] as follows 

2
, ,( , ) ( , ) j n

y k q y k qC C n e pbb -τ τ 

where     means sample average,   is the cycle 

frequency, and 1[ , , ]T
n τ   is the vector of time lags. 

Let 1{ }p
j jP v   be a set of partitions jv  for the index set 

{1, 2,..., }n , and p  is the number of elements in the set. For 

example, there are five different sets of P  for 3k  , i.e., 
{(1, 2, 3)}, {(1), (2, 3)}, {(2), (1, 3)}, {(3), (1, 3)}, and {(1), 
(2), (3)}, and p  is 1, 2, 2, 2, and 3, in order. Then, (2) can be 
further expressed in terms of cyclic moments according to 
the relation between moments and cumulants [8] as  

,

1
,

1

( , )

( 1) ( 1)! ( , )
j j j

T
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where [ ]1, ,
T

mα a a=   is the vector composed of cycle 

frequencies, I  is the m-dimensional vector whose all m 
elements are ones, and ,( , )

j j jy j v k qM  τ  is the ( ,  )j jk q  

cyclic moment of ( )y n  at cycle frequency j  and delay 

vector 1[ , , ]
j j

T
v k τ  . Then ( ,  )j jk q  cyclic moment is 

denoted by 

2*
,

1 1

( , ) ( ) ( ) 
j j

j

j j j

j

q k
j n

y j v k q
q

M y n y n e


 
 

   

  
   τ 

where *  means complex conjugate. 
Since the CCs are just Fourier series coefficients of the 

cumulants as shown in (2), we can notice that the properties 
of the CCs follow those of the cumulants. Therefore, it is 
worth examining the properties of the cumulants. Some 
important properties of the cumulants are as follows [9]:  
 

 If ( )y n  is Gaussian random process, its cumulants 
higher than second order are zero.  

 The cumulants of the sum of the independent 
random processes are equal to the sums of their 
cumulants.  

 All odd-order cumulants are equal to zero when the 
distribution is symmetric. 

 
Cumulants higher than second order are called higher 

order cumulants. They characterize statistical amplitude 
features such as the shape of a signal regardless of Gaussian 
noise. Digitally modulated signal has its own distinctive 
pulse shape and amplitude distribution, therefore it shows 
different higher order CCs. On the other hand, the odd-order 
CCs are zero due its symmetric amplitude distribution. In 
this paper, we use higher even-order CCs such as fourth, 
sixth, and eighth order CCs as features to identify the 
modulation type. This is why the computational complexity 
greatly increases as the order of CC becomes higher.  

Fig. 2 represents the magnitudes of the various ( , )k q  
CCs with the eight modulation signals. These values are 
calculated from (3) with 10 trials per each modulation type. 
In this figure, BPSK signal is omitted because its CC values 
are much greater than others. We notice that each 
modulation type has distinct values with different kinds of 
( , )k q  CCs. In the case of high level modulation signal (e.g., 
QPSK and 8-PSK), the overlapping of fourth and sixth order 
CCs become to split in eighth order CCs. And, except (8, 0) 
and (8, 4) CCs, all CCs are nearly constant over SNR 
variation.  
 

276Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies



 
Figure 2.  The magnitudes of the k-th order with q-conjugate (k, q) cyclic cumulants for eight modulation signals with various SNR. 

IV. PROPOSED MODULATION CLASSIFICATION SCHEME 

A. Feature extraction 

From the results of Figure 2, we choose the three 
magnitudes of (4, 2), (6, 3), (8, 0) CCs as the features. With 
the number of elements 3FN  , the feature vector 

FNÎF   of CC magnitudes at zero-time lag is given by  

4,2 6,3 8,0[ | ( , ) |, | ( , ) |, | ( , ) | ] T
y y yC C C  F 0 0 0 

We estimate the CCs from (3) using the magnitude of the 
maximum value of cyclic moments which are obtained by 
FFT operation of (4). We select the number of FFT points as 
follows 

2log ( )2 N
FFTN    

where x    means the smallest integer not less than x and N  

is the number of symbols.  
In order to setup reference data, we generate baseband 

modulation signal ( )r n  by increasing SNR with snrN  steps.  

Then, estimate the feature vector trialN  times for each 
modulation type. As a result, the total number of training 
samples is 

total snr mod trialN N N N= 

where modN  is the number of candidate modulation signals 
to be identified.  

The feature matrix for the reference data obtained from 
( )r n  is constructed as follows 

mod1
ˆ ˆ ˆ, , F totalN N

NM m m ´é ù= Îê úë û  (8)

where ( )ˆ F trial snrN N N
i

 m   corresponds to the i-th 
modulation type, and is given by  

1 2

1 1 1
1 2

ˆ ˆ ˆˆ [ , ,

ˆ ˆ ˆ ]

iter

snr snr snr

iter

i N

N N N
N

  

       

m F F F

F F F

 


(9) 

where the superscript of the feature vector means SNR of g  

to 1snrN   .  
Fig. 3 represents the feature distribution of the reference 

data in a 3-dimensional feature space spanned by (4, 2), (6, 
3), (8, 0) CCs. We observe that there are modN  different 
feature clusters corresponding to different modulation types 
and they are not overlapped each other. Since we utilize 
noisy signals for the reference data, each feature cluster 
reveals a probability distribution with mean as its center.  

Therefore, by using the probability distribution of the 
reference data, we can improve the performance of 
modulation classification. 

 

 
Figure 3.  Reference data in a 3-dimentional feature space for the eight 
modulation signals with SNR of 3 to 10 dB.  

B. GMM-based classifier 

The modulation classification can be regarded as to find 

the cluster to which the feature vector F̂y  of the received 

signal belongs. For classification, we use a GMM-based 
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method which considers probability distribution of the 
reference data.  

The method is based on the fact that, for the reference 

data  
1

ˆ ˆ totalN

i i
M F , it’s unknown probability distribution can 

be represented by a weighted linear combination of 
multivariate Gaussian density functions, given by [10] 

ˆ ˆ( | ) ( | , )s s s
s S

p p C P


 M Θ M θ (10)

where S = {MSK, GMSK, BPSK, QPSK, 8-PSK, 16-QAM, 
32-QAM, 64-QAM} is the set of eight modulation types, 
and ˆ( | , )s sp CM θ  is the NF-variate Gaussian density 

function of the cluster sC  with unknown parameter sθ , 

which is determined by a mean vector FN
s μ   and a 

covariance matrix F FN N
s

Σ  . sP  is the prior probability 

of the Gaussian density function for modulation s. The 
unknown parameter vectors can be collectively represented 
by 

 , ,s s sPΘ μ Σ 

The NF-variate Gaussian density function is as follows  

/2 1/2

1

1ˆ( | , )
(2 ) | |

1 ˆ ˆexp ( ) ( )
2

F
s s N

s

T
s s s

p CM θ
Σ

M μ Σ M μ

p

-

=

æ ö÷ç⋅ - - - ÷ç ÷çè ø



The unknown parameter vectors can be obtained by the 
expectation-maximization (EM) algorithm which maximizes 
the expectation of the loglikelihood function of the GMM.  

To apply the EM algorithm, the initial estimate (0)Θ  and 
a termination threshold   are required for iteration. We 
estimate the mean vector and covariance matrix from the 
reference data for the initial estimate (0)Θ  and assume equal 
value of prior probabilities for clusters. 

The EM algorithm is summarized as follows: 
 
(1) Expectation step: At iteration  , where ( )θ  is 

available, compute the expected value of the followings: 

1 1

ˆ( ; ( )) ( | ; ( ))

ˆln( ( | ; )

totalN S

s i
i s

i s s s

Q P C

p C P

 
 





 Θ Θ Θ

θ

F

F



(2) Maximization step: Compute the next (λ+1)-th estimate 
of θ by maximizing ( ; ( ))Q Θ Θ , that is, 

( ; ( ))
( 1) ( )  such that  0

Q Θ Θ
Θ Θ

Θ

l
l l

¶
+ = =

¶


After some manipulations, the following general forms of 
parameters are derived as follows 
 
Means: 

1

1

ˆ ˆ( | ; ( ))
( 1)

ˆ( | ; ( ))

total

total

N
s i ii

j N
s ii

P C

P C


 






  


Θ

Θ

F F

F


Covariance Matrices: 

1

1

ˆ ˆ ˆ( | ; ( ))( ( ))( ( ))
( 1)

ˆ( | ; ( ))

total

total

N T
s i i s i si

s N
s ii

P C

P C

  







 
   


Θ

Θ

F F F

F

 



Prior Probabilities: 

1

1 ˆ( 1) ( | ; ( ))
totalN

s s i
itotal

P P C
N

 


   ΘF 

For the i-th reference data and cluster sC , the a posteriori 
probability for Gaussian density function of sC  is given by 

1

ˆ( | ; ( )) ( )ˆ( | ; ( ))
ˆ( | , ( )) ( )

i s s s
s i S

i s s s
s

p C P
p C

P C P

θ
Θ

θ

l l
l

l l
=

=

å

F
F

F



If the following termination condition is not satisfied, the 
iteration (1) and (2) continues. 

|| ( 1) ( ) ||Θ Θl l e+ - < 

Based on the estimated GMM of the reference data, the 
modulation type of the received signal can be determined. 
After computing the a posteriori probability between GMM 

of each cluster and the feature vector ˆ
yF  of the received 

signal, select the cluster representing the maximum value of 
a posteriori probability, and decide the corresponding 
modulation type  as that of the received signal, as follows 

ˆarg max ; )s s y s
s S

H P(C | F
Î

=  

V. SIMULATION RESULTS 

We use eight baseband modulation signals of MSK, 
GMSK, BPSK, QPSK, 8-PSK, 16-QAM, 32-QAM, and 64-
QAM to be classified. That is, the number of candidate 
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modulation signals to be identified is 8modN  . The 

symbol rate and oversampling ratio are 1T   and 11  , 
respectively. A raised-cosine filter with roll-off factor 0.35 is 
used for pulse shaping in generation of M-PSK and M-QAM 
signals. For GMSK, the bandwidth-time product for 
Gaussian filter is 0.5. We assume that the relative carrier 
frequency offset f  is 0 and phase offset qD  is uniformly 

distributed over [ , )  . For the reference data, the 
modulation signal is generated with 3 to 10 dB of SNR, or 

3g =  and 7snrN = . The initial estimate of the GMM 

parameter, (0)Θ , and the termination condition e  are set to 
be as in Table I and 1e-6, respectively. 

 

TABLE I.  PARAMETER ESTIMATE OF REFERENCE DATA 

 
As a performance measure for AMC, we use the 

probability of correct classification cP . To obtain the 
probability, 300 trials are performed in AWGN channels. 

Fig. 4 shows the performance with respect to the number 
of symbols of the received signal at SNR = 10 dB. The 
performance improves as the number of symbols increases.  
At low SNR, the bad classification performance of M-QAM 
deteriorates the whole performance of the scheme. Clusters 
of M-QAM are closely located in the feature space as shown 
in Fig. 3. Therefore, when the number of symbols is small, 
the variance of the feature vectors is large and results in bad 
classification of M-QAM signal. We observe that the 
probability of correct classification approximates one for the 
number of symbols larger than 3000. Therefore, we 
determine the number of received symbols as 4000 for the 
next experiments. 

Fig. 5 compares the performance of the proposed scheme  

 
Figure 4.  Performance of the proposed scheme with the number of 
symbols of the received signal at SNR = 10 dB.  

 
Figure 5.  Comparison of the performance of the proposed scheme, KNN 
classifier, and the minimum distance classifier [5].  

 
Figure 6.  Performance of the proposed scheme for each modulation signal. 

Mod. Mean Covariance ( 410 )
Prior 
prob. 

MSK 1.25 7.0 2.07 
0 0 4 

0.125 

0 5 -16 
4 -16 956

GMSK 1.20 6.46 1.68 
0 0 2 
0 5 -5 
2 -5 792

BPSK 1.54 10.63 157.35
0 3 56 
3 30 599
56 599 1.19

QPSK 0.77 2.63 19.6 
0 0 -2 
0 2 -9 
-2 -9 809

8-PSK 0.76 2.63 0.7 
0 0 -1 
0 2 -3 
-1 -3 287

16-QAM 0.52 1.34 7.92 
0 1 -2 
1 3 -9 
-2 -9 753

32-QAM 0.52 1.35 0.32 
0 1 1 
1 3 1 
1 1 475

64-QAM 0.47 1.15 6.46 
0 1 1 
1 2 -2 
-1 -2 769
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with the K-nearest neighbor (KNN) classifier and the 
minimum distance classifier of [5]. In [5], the eighth order 
cumulant with even number of conjugates is used as a 
feature. We observed that the performance of the proposed 
scheme is better than others over the entire range of SNR. 
When SNR is higher than 8 dB, the performance of the 
proposed scheme is nearly perfect. 

Fig. 6 shows the performance for the individual 
modulation signal in the same conditions as those of Fig. 5. 
As shown in Fig. 5, the probabilities of correct classification 
for all modulation types become 1 with SNR higher than 6 
dB. At lower SNR than 4 dB, the performance of the M-
QAM degrades abruptly because of the reason mentioned 
above. 

 

VI. CONCLUSION 

In this paper, we proposed an feature-based automatic 
modulation classification scheme for eight digital 
modulation signals of MSK, GMSK, BPSK, QPSK, 8-PSK, 
16-QAM, 32-QAM, and 64-QAM. We use the magnitude of 
fourth, sixth, and eighth order cyclic cumulants as features.  
To approximate the probability distribution of the features, 
the Gaussian mixture model is used. Based on the probability 
distribution, we identify the modulation type of the received 
signal according to the probability of its features. The 
simulation results show that the classification performance is 
much better as compared to the conventional K-nearest 
neighbor classifier and the minimum distance classifier.  
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