
Formal Modeling For Pervasive Design of Human-Computer Interfaces

Ines Riahi, Faouzi Moussa
National School of Computer Sciences, Cristal Laboratory

University of Manouba, Tunisia
Emails: {ines.riahi@yahoo.fr, faouzimoussa@gmail.com}

Abstract—The advent of mobile interfaces induces an evolution
on the Human Computer Interaction (HCI) field. We observe
the emergence of several mobile devices and sensors that gave
birth to the ubiquitous environments. In our research, we focus
on: (i) how to adapt the interface to its environment,
specifically in its context of use and (ii) what relationship has
the context with the users’ task. This paper will propose a
formal approach for specifying user interfaces adapted to the
context of use. We will focus on the strength of formal
approach to context and user’s modeling and how to infer
users’ requirements through the model of the task for critical
domains. Our approach will be illustrated by a case study on
the monitoring of diabetic patients.

Keywords-pervasive user interfaces; ubiquitous computing;
formal modeling; critical domains.

I. INTRODUCTION
Ubiquitous environment is a physical space in which

technology is seamlessly integrated in order to assist the user
in performing tasks to reach its goals more conveniently.

Ubiquitous environments are often considered highly
dynamic environments and the contextual information can
change at runtime. User interfaces should provide the right
information for the right person at the right time [1]. In order
to cope with such a complexity, new methods need to be
developed. The research field of HCI has introduced many
techniques for interaction design that are partially suitable
for ubiquitous environment. However, it has an enormous
rate of environmental information and the user’s task
becomes difficult to identify.

The specification of user interface adapted to the context
of use presents several problems. The consideration of the
user’s task represents an important criterion in an
environment where the context has a direct impact on the
user’s task. The users’ interface must change according to
the context and task at a specific moment.

Modeling ubiquitous environment and user’s task poses
several issues. In fact, pervasive environments are extremely
dynamic and hold a vast amount of information. In critical
domains, such as health, nuclear and transport systems,
modeling pervasive system must be rigorous with minimal
percentage of error risk. If the user’s interface shows wrong
information, it will have a disastrous impact on the user’s
task. So, the use of formal approach in such domains is
required to guarantee a valid interface since the modeling
stage. To tackle these problems, we study, in the second
section, different related works in the literature of context-
aware systems. In the third section, we study the state of the

art of modeling context and user’s task based on Petri Nets
(PN). Then, we introduce, in the fourth section, our formal
approach for specification of adapted user interface to the
context of use. We will focus on the advantage of the formal
model by representing the relation between the context’s
model and the user’s task and illustrating how to deduce the
users’ requirements from the task models. This approach will
be illustrated, in the fifth section by a critical case study on
the monitoring of diabetic patients in a smart hospital.

II. RELATED WORK
Researchers in the context adaptation area have not

introduced a generic and pragmatic definition of the notion
of context. Following the study of the main definitions, we
have concluded that the majority agrees on the definition
proposed by Dey. For our research work, we will consider
the definitions of Dey [2] and Calvary [3], which define the
context as the triplet of <user, platform, environment>.
These definitions help to clarify the notion of context in
Human-Computer Systems (HCS).

Over the years, a large number of context-aware systems
have been developed for different domains. Based on
different context models, these applications are able to
gather, manage, evaluate and disseminate context
information [4]. Among these approaches, we mention the
SOCAM (Service-Oriented Context-Aware Middleware)
architecture that was especially proposed to convert the
physical spaces; thus, contextual information can be
converted into a semantic space and can be shared between
the context-aware services [5]. Moreover, the key component
in the CoBrA (Context Broker Architecture) architecture is
responsible for managing and processing the contextual
information while maintaining the contextual model [6]. The
SECAS (Simple Environment for Context-aware Systems
[7]) architecture is based on three components: context
management, adaptation layer and the application core.
Context management is composed by the context provider,
the context interpreter, the broker and the context repository.
The adaptation layer considers three type of adaptation:
content, behavior and user interface adaptation. The Context
Toolkit, proposed by Dey [8], provides a toolkit for the
development of context-aware applications. It has a layered
architecture that permits the separation of context
acquisition, representation and the adaptation process. This
architecture is based on: (i) Widget: a software component
that provides applications with access to context information
from their operating environment; (ii) Interpreter: used to
interpret low-level context information and convert it into

35Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

mailto:ines.riahi@yahoo.fr

higher level information; (iii) Server: a connection between
the applications and the widgets.

Recent researches take into account context-awareness
and complex dynamic system in which context variables
change over time, such as GECAF (Generic and Extensible
Context Aware Framework) [9], which uses a generic
framework that supports all elements found in existing
systems. Also, the conceptual architecture for Adaptive
Human-Computer Interface of a PT Operation Platform
(AHCI of PT platform [10]) based on context-awareness
improves usability, simplifies the operation process, reduces
operation complexity, provides needed information timely
and properly and supports user needs diversification.

Having analyzed related work, it then becomes necessary
to define comparison criteria to work out the advantages and
disadvantages of each architecture. The main criteria in our
research are: (i) the model of context: the use of any
inappropriate model for context representation could lead to
incorrect interpretation of contextual information. This could
compromise the entire functioning of the architecture and
provide the user with inadequate adaptations. Using a
simplistic model could result in conflicts in the interpretation
and the description of the current context of use. (ii) User
interface validation: in critical domains, the generation of the
user interface must be validate. The interface will guide the
user to accomplish his task. Any errors in the interface can
lead to a critical situation. Notwithstanding its obvious
importance, this factor is not seriously treated in the majority
of research work studied. For the first criterion, the SOCAM
and CoBra architecture use ontologies for modeling context.
SECAS utilize XML for context description. Furthermore,
the Context Toolkit applies the Key/Value model for the
specification of context. In our research, we focus on
graphical modeling approach.

III. CONTEXT AND USER’S TASK MODELING BASED ON
PETRI NETS

Several graphical modeling approaches to context-aware
systems have been proposed, such as Unified Modeling
Language (UML) [11], Object Role Modeling (ORM) [12]
and Petri Nets (PN) [13]. In this section, we will focus on
PN. PN, proposed by Carl Adam Petri in 1962, is a
mathematically-based formalism dedicated to the modeling
of parallelism and synchronization in discrete systems [13].
Recently, many context-aware systems modeling approaches
based on PN have been proposed. They have been
recognized as promising for the representation of context
[14].

Context modeling approaches using PN differ depending
on the purpose. Some authors are mainly interested in
modeling the behavior of context-aware application; others
try to solve the problem of time and resources in
applications. There are several extensions of PN, such as: (i)
Synchronized PN: Reignier introduces an approach to the
representation of the context and the behavior of the
application [15]. (ii) Colored PN (CPN): Silva proposes to
combine 3D modeling tools with CPN for modeling 3D
environments. In this model, the place is used to indicate the
current state of the user and the transition is used to deduce

the movement of the user and the behavior of the
components [16].

The approach of modeling context must verify several
requirements of pervasive environments, such as partial
validation, formal language and formal verification. The last
two requirements are essential in our research:

• Partial validation: It is preferable to be able to
partially validate contextual information because of
the complexity of contextual interrelationships,
which may be responsible for any modeling error.

• Formal language: The chosen modeling method
should have formal semantics. Formal methods
comprise formal specification using mathematics to
specify the desired properties of the pervasive
system.

• Formal verification: the model must be verified
through rules or mathematical property. This can be
helpful in proving the accuracy of pervasive
systems; this ensures the validation of user interfaces
before they are implemented.

The PN-based methods have all the required
characteristics. Indeed, the use of PN for modeling paves the
way for formal verification and validation of the interfaces.
These criteria are very important in our research work. The
modeling of pervasive systems in a critical domain requires a
rigorous validation of the interface in order to present the
best solution to face an urgent situation.

This saves considerable time in the development cycle,
particularly during the validation phase. Moreover, PN have
a formal definition; they are highly capable of expressing
aspects such as parallelism, timing, concurrency, etc. They
possess many techniques for an automatic verification of
properties. They provide, in addition, an unconstrained
graphic representation.

We use “small granularity” PN ensuring the accuracy of
our model and the partial validation. In fact, the context
model is decomposed in small granularity and can be done
through a simple validation based on partiality.

Modeling the user’s task has a tough impact on the
design of the user interface. In recent years, there have been
different approaches to the specification of the task and how
it relates to the area of application. Several notations have
been proposed (ConcurTaskTrees CTT [17], Collaborative
Task Modeling Language CTML [18], and PN [19]). The
tasks are organized hierarchically to represent the task’s
decomposition, which is executed to meet a particular
purpose. The process of task decomposition is ceased once
the atomic task ’action’ is obtained.

The PN are continuously expanding and they are a
suitable tool for modeling the HCS. Initially, they were only
used to describe tasks that were to be computerized. But
later, especially with the emergence of High Level PN, they
were used to model the HCI.

In the next section, we present our formal approach for
specification of pervasive user interfaces.

36Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

IV. APPROACH FOR FORMAL SPECIFICATION AND
GENERATION OF USER INERFACES ADAPTED TO THE CONTEXT

The overall objective of our research is to generate in real-
time a user interface adapted to the current context of use in
critical situations. The specifications of the HCS must
consider the context modeling. As we mentioned in the third
section, the captured context data will be modeled using PN.
As the context is defined by the triplet <user, platform,
environment>, each element will have its own PN: (i) The
User’s PN describes the different users of the application; (ii)
The Platform’s PN presents the different platforms that host
our application; (iii) The Environment’s PN describes the
different information of the environment (i.e., geographical
location, time, etc.).

Since each component of the context is modeled by its
own PN, the marking of all these networks determines, at
any given time, the current state of the context. Indeed, the
marked places in the three networks determine the values of
the triplet <user, platform, environment> and characterize
the current context. Furthermore, according to the context in
which the user operates, the user’s task may vary. Indeed,
each user task is specific to a given context. Thus, a set of
pairs (context, task) will compose, among others, the model
of the HCS. The user’s task will also be modeled using PN.
Each task will be decomposed into elementary tasks to be
modeled using elementary structure of PN.

A. Elementary structure of PN
The modeling of an elementary structure is illustrated by

Figure 1.

Figure 1. Structure of an elementary action

The validation of the condition i (transition T1) models
the fact that the user will start the execution of the action
relative to that condition. After the event, the "end action"
(transition T2) expresses the fact that the user action was
performed and ended. The place P2 represents a waiting state
for the end of the action's execution, while the places P1 and
P3 model the state of the user before and after the execution
of his action. For example, P1 models the user’s mental
intention in order to act. The place P3 expresses his state at
the end of the action‘s execution.

All the user’s actions and components context behavior
(elementary or composed) are arranged according to typical
compositions: sequential, parallel, alternative, choice,
iterative or of-closure. We present below the principle of
parallel and alternative composition:

- The parallel composition expresses the possibility of
simultaneous execution. The parallelism is ensured
thanks to an input synchronization place. This place
activates at the same time all the places of
initialization of the parallel actions to be executed.
Note that the effective parallelism can only be done
if the actions to be executed do not use the same
resources. Otherwise, a partial or complete
sequencing would be necessary. Obviously, the
number of places Pn must be equal to the number of
parallel actions Ai. Thus, to ensure the parallel
composition of actions, it is necessary to synchronize
the places of entry and those of exit of those actions
(Figure 2).

Figure 2. Parallel composition

- The alternative composition of n actions reflected a
performance always exclusive of these actions. To
avoid an actual conflict, conditions are associated
with transitions to unambiguously determine which
action should be executed. The alternative
composition of n networks is realized by composing
them sequentially with an ALT structure and
merging all the end places of these networks. ALT
structure allows the validation of a single condition
at a time. ALT structure comprises a set of
transitions equal to the number of networks to be
composed alternately. These transitions are from the
same input place P0. They allow, through the
conditions associated with them, without ambiguity
to initialize a single PN from the n modeled, which
guarantees the absence of actual conflict (Figure 3).
More details are presented in [20].

Figure 3. Alternative composition

37Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

The elementary structures represent our Meta-model. All
these structures are defined manually and stored in a
database.

B. Proposed approach
At a given moment, the marking of (i) the three PN of the

context <user, platform, environment> and (ii) the PN of the
user task, give the state of the ubiquitous HCS. The values of
these markings are previously identified analyzed and stored

in a database. So, this database will contain pairs of (context,
task). At any time, if the values of the PN marking,
describing the current context, are already included in this
database, then this will be considered as an expected and
well known situation and the user task will be identified,
otherwise it will be considered as an unexpected situation.
Managing unexpected situation will be the subject of our
future research.

Figure 4. Proposed approach

Figure 4 illustrates our approach stating that once the
data is collected from the sensor layer, it will be modeled and
decomposed using PN in a user model, a platform model and
an environment model. The user’s task will be modeled
using PN. This modeling is realized using the database of PN
which contains the elementary structures and the
compositions. All the (context, task) couples will be
identified and stored in the “database Context i; Task i”.
“Context, task” database (Figure 5) is composed by two

tables: context and task, connected by the association
context-task. Figure 6 describes very summarily the logic
diagram of database of PN. The PN is composed by
elementary structures. This diagram will lead to the building
of the associated database schema.

At a specific moment, the marking of the PN modeling
the context will determine its current state Ci. In order to
know the proper task Ti, it is required to browse the database
of “context, task”.

Figure 5. Logic schema of “Context-Task”

38Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Whenever, the detection of the current context is made,
the couple of values are transmitted to the adaptation engine.
If its value is null, the adaptation engine will launch the
script to deal with unexpected situation. Otherwise, it will
trigger scripts to adapt to a “Known” situation. Finally, the

adaptation engine will activate the automatic generation of
the user interface adapted to the current context.

To manage an unexpected situation, the user will be
given prior studied information and will intervene manually
on the system. Actually, this is a very challenging problem
that we will tackle it in our future work.

Figure 6. Logic schema of PN database

Our approach presents several advantages: first, it
includes the five layers of a context-aware system, namely,
context acquisition, interpretation, storage, diffusion and
application layer. It separates the acquisition and modeling
of context from its use. Each component of our architecture
fulfills a particular task. Second, due to the complexity of
context data, we choose to decompose this data into three
models and to consider the user’s task at the stage of
modeling context. The originality of our approach lies in the
proposal of the couple (context task). Indeed, the HCS
became context aware and according to the context in which
the user operates, the user’s task may vary. In fact, each
user’s task is specific to a given context. That is why a set of
pairs (context, task) were defined to compose the model of
the pervasive HCS. Our model describes the behavior of
contextual information. It decomposes the context’s
components into small granularity to ensure the validity of
the model. To do this, we use a set of “well-organized”
elementary PN structures.

Pervasive application presents a high level of dynamism
so that many actions must be done in parallel. In our opinion,
the aspect of parallelism in PN is very important especially
in a critical domain. Certain situation requires the
intervention of two or more users at the same time to meet a
particular circumstance. The use of formal method to
describe the behavior of a context-aware system allows us to
deduct the properties of the system and the users’
requirements in order to generate the appropriate interface at
a given moment.

Context-aware approaches for user interface generation
still have serious difficulties to dynamically and
automatically adapt and generate interfaces, meeting users’
requirements. These approaches are not formal and do not
cover the validation of the user interface. We try to fill these
gaps by proposing elements of solutions for:

Automatic deduction of user requirements: the database
“Context i, Task i” is responsible to identify the appropriate
task meeting the values of context.

Automatic adaptation of user interface to the context:
The context changes are managed automatically by the
“detection of the current situation” component. It can be
considered as a representation of the smart environment.

Validation of the user interface: Thanks to the PN
modeling approach, the modeled system and the generated
interfaces verify the main PN properties as reachability,
boundedness, liveness, etc. This guaranties the validity of the
generated interfaces

Automatic generation of graphical interfaces: The
adaptation engine component assumes the automatic
generation of the user interface by identifying the most
suitable widget to meet the user needs [21].

Comparing to the proposed approaches, seen in the
second section, our architecture is centered on the context
modeling and the generated user interface. The choice of the
used approach for modeling context is very important. The
information of context has a direct impact on the generated
interface especially in the critical domains which justifies the
use of formal methods in our approach.

39Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

The question that arises at this stage is: “how can we
deduce the users’ requirements from the context and the task
model?”

C. Deduction of user’s requirements
In a ubiquitous environment, the context model will

trigger the appropriate task model. Indeed, the task depends
on the context, and it is not a fixed model. Furthermore,
according to the values of the context at a given moment, we
can deduce the appropriate user’s task. The proposed PN for
context and user’s task modeling is an Interpreted Petri Net
IPN (Figure 7) defined by the set: < P, T, E, OB, Pre, Post, μ,
Precond, Action, Info-Transition > where:

• P= set of places = {P1, P2,..., Pn},
• T = set of transitions = {T1, T2,..., Tm},
• E = set of events including the event "always

present" <e>,
• OB = set of graphical objects of the interface,
• Pre: P x T → N defines the weight of the bow

joining a place pi of P to a transition tk of T,
• Post: P x T → N defines the weight of the bow

joining a transition tk of T to a place pi of P,
• μ: T → E associates to each transition the

appropriate triggering event,
• Precond: T → Boolean Expression defines the

necessary passing condition for each transition,
• Action: T → A defines the eventual and appropriate

action procedure associated to each transition,
• Info-Transition: T → OB associates to each

transition, the appropriate interface objects [13].
This type of networks introduces the notions of event,

condition and the notion of action. Indeed, a passing
condition (Cj), a trigger event (Evj) and a potential action
(Aj) are associated with each transition Tj of an IPN.

Figure 7. Interpreted Petri nets

Once the behavior of the user in its context of use is
modeled, users’ requirements can be deducted.

For a better management of the situation, the user needs,
instantly, a lot of information. This information will be
transmitted to the user by different interface components
(messages, values, graphics, etc.). Since these objects are
related to the context of the ubiquitous environment, i.e., the
contextual parameters, we must identify the appropriate set
of informational parameters for each state.

Moreover, in order to perform the tasks, the user needs to
adjust some parameters in order to correct an abnormal

situation or abnormal information, and/or to operate in
particular situations or in collaborative tasks. For that, the
interface will present a set of control components through
which the user can monitor the situation; the set of these
control and informational parameters constitutes the user
requirements. Having presented our approach, we
demonstrate its feasibility using a case study in the
monitoring of a diabetic patient.

V. CASE STUDY: MONITORING OF A DIABETIC PATIENT
As a first experiment of our approach, we conducted a

case study of a medical system for monitoring of a diabetic
patient. This example is designed to monitor at real-time the
evolution status of diabetic patients in a smart hospital. This
monitoring is made possible by biological sensors implanted
under the skin of the patient, which periodically control the
patient’s glucose levels. The ubiquitous system must
continuously verify the changing state of each patient, which
provides guidance on any medical interventions, or
otherwise may deem any intervention to be unnecessary.

One of the problems that can arise from such a case study
is to know how to notify the medical team (doctor / nurse)
for an urgent and immediate intervention, and how should
we proceed to carry on. This intervention should take into
account the status of the patient and the location of the
medical team, nurse or doctor.

The ubiquitous system will therefore generate real-time
user interfaces adapted to their preferences, profiles,
activities and geographical location. It will guide the user to
best accomplish his task, while taking into account the
various constraints of the context. In such system, the
intervention of the medical team must be immediate, as the
risk of loss of human life can be high. User interfaces should
be validated and must present relevant and reliable
information. Errors at the interfaces can cause the deaths of
patients.

As a first step of our approach, we must model the
information of the context. We consider the context as the
triplet <user, platform, environment>. Each component of
this triplet is modeled by an independent PN. Those
components are:

• User’s PN (Figure 8.A): it aims to identify the
profile of the user (doctor or nurse). The marking of
the network at a given time defines the type of the
connected user. The doctor can be specialist, resident
or internal.

• Platform’s PN: Figure 8.B describes the different
platforms that can be used by users. User interface
can be hosted on various platforms. For our case
study, we consider that a user can connect using a
tablet, a PC or a mobile phone.

• Environment’s PN: it describes the different values
of our environment. For our example, after the
opening of the session, various sensors intercept in
parallel, the glucose level (GL) of the patient, the
geographical coordinates of the user and the time.
Concerning the geographical data, a user can be in
the hospital, in the cabinet, at home or outside (i.e.,

40Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

in a restaurant or on the road, etc.). Concerning the
time, it can have three different values: morning,
afternoon or evening. Tokens present in different
places, will describe the state of the environment by
specifying the value of time, geographical data and

glucose level (Figure 8.C).The deduction of the
environment’s properties must be done at the same
time. This later is possible through the parallel
composition of PN.

Figure 8. Context model

The environment’s PN must be watchful to any changes
that may happen to the environment. This action is possible
by transitions “changing detection 1 and 2”, which will
monitor the possible changes in the environment. If any
change occurs, then our sensors measuring will catch the
new data. After modeling the different components of the
context, we model the task.

For our example, we consider a critical situation where
several actions must be done at the same time. Here is the
scenario: Let us suppose that the patient is hyperglycemic
(i.e., the Glucose Level >=4mmol) and the relevant doctor is
not in the hospital. This situation is very critical and has to
be treated by several actors. The doctor and the nurse must
be aware of this critical situation at the same time, so they
must perform actions in parallel. Let us notice that the
system must select the most relevant replacing doctor
according to his geo-location, his availability and his profile.

The doctor receives a notification for an urgent and
immediate intervention. In this case, the nurse cannot face
alone such a situation, which requires a doctor’s intervention.
These two users must perform their actions at the same time.
The interfaces will guide the doctor and the nurse each one
according to his profile, by presenting appropriate
information about the patient. The patient, suffering from a
very serious condition of hyperglycemia, is in a coma. The
doctor must inject insulin in him and check patient’s status
and measure its glucose level:

• If the rate of GL <=4 mmol, the doctor must give
food containing sugar, wait 15 minutes and repeat
the measurement of glucose;

• If the rate of GL > 4 mmol, the doctor must repeat
the insulin injection;

• If the status is normal, then the patient’s condition
should be monitored for any possible change.

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

At the same time, the nurse must give plenty of water to
reduce the patient's glucose. Then, she must make a urine
levy. This situation is very critical and must have an
immediate intervention to avoid the risk of patient’s death.

The actions of doctor and nurse, illustrated in Figure 9, must
be done in parallel. PNs are very efficient to do this
modeling.

Figure 9. Task model: critical intervention on hyperglycemic patient

The values of the tokens in the context’s PN trigger the
appropriate Task. Concerning the deduction of user’s
requirements, we consider the PN transition “Begin Action”.
To these transitions, we associate the adequate parameter(s)
of interface, either informational or control, which refer to
the user’s requirements. Thus, at the point of “measuring
glucose level”, the user disposes of the relevant user
requirements in order to adequately perform their action, i.e.,
the Glucose Level (GL). This value comes from the context
model, more precisely from the environment’s PN. For
instance, the informational parameter GL informs the user of
the Patient’s usual level of glucose. At the state “glucose
administration”, the user disposes of the glucose rate and
other information related to the prescription of medicines
(Pr). At the point of “give insulin”, the user will dispose of
an authorized food menu for the patient (AF) to select from.
At the point of “Give plenty of water”; the user disposes of
patient’s glucose rate.

The compositions of elementary structure offer the
possibility to the user to perform multiple tasks
simultaneously. All tasks can be modeled according to the
compositions shown in Section 4. The principle of the
elementary compositions applied in the context modeling is
also applicable to the composition of several tasks.

Once the informational and the control parameters have
been identified, we can deduce the necessary components of
the User interface: (i) We associate an Informational
graphical object to each informational parameter; (ii) We
associate a Control graphical object to each control
parameter. These parameters are very important because they
will lead to the graphics interface components. This interface

will guide each kind of user throughout his intervention. In
critical situations, user interface will play crucial role
especially since the physician is not the patient's treating
doctor. So he does not know the patient information. These
graphic components will adapt depending on the doctor’s
context and profile. If he is a specialist, then no need to
provide all the information and if he is an internal then the
interface must provide the maximum of information to
reduce the risk of errors.

For the implementation of our approach, we use a SOA
(Service Oriented Architecture) [22]. First, we transform our
PN model into a PNML representation (Petri Net Markup
Language [23]). PNML is PN XML-based standard. Its main
scope is to facilitate information exchange between PN
models. Each PN is considered as a labeled graph. It
contains a set of objects: places, transitions and arcs. Each
object has a unique identifier and a set of labels
(annotations and attributes) representing the name of a
place, the inscription of a transition, etc. [23]. Algorithms are
written in Java to parse the PNML file of context in order to
detect the location of the tokens and consequently the current
context. Once the triplet of context identified through the
xml code, we browse the Mysql database “context i, Task i”
in order to identify the appropriate task for the current
situation. We use JavaScript Object Notation (JSON) web
service [24] to query the database and to extract the name of
the appropriate task. The monitoring of diabetic patient is
developed using Android.

Our methodology applies to all types of applications. In
fact, pervasive HCS comprises a triplet: system, task and
context. Each component will be modeled using PN. The

42Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

designer has to analyze the system and deduce all relevant
context information. Each component of the context such as
user, environment and platform as well as its behavior, must
be known in advance. All context values are stored in a
database in which we can identify the appropriate user’s task.
The sensor layer will guide us on the value of the context.

VI. CONCLUSION AND FUTURE WORK
This paper presented an approach for context and task

modeling based on Petri nets. We model the pervasive
Human-Computer System using a composing process of
elementary PN in order to verify the relevant properties of
the system before the generation of the interfaces. In this
paper, we have tried to demonstrate the context influence
over the user’s task modeling in a critical domain and the
strength of PN in critical system’s modeling. We also
explained how to deduce the users’ requirements through the
task model. This formal approach is illustrated by a case
study on the monitoring of diabetic patients in a smart
hospital.

In the near future, we plan to address the following
issues: (i) we will explain the running of each component of
our approach namely the implementation of the adaptation
engine and the automatic generation of user interface; (ii) we
will explain how acquisition context layer will supply the
model of context. We are now working on human-centred
evaluations. We create an experimental platform
implementing a realistic scenario that volunteer doctors and
nurses will use in their work.

REFERENCES
[1] M. Wurdel, S. Propp, and P. Forbrig,“HCI-Task Models and

Smart Environments”, Human-Computer Interaction
Symposium IFIP International Federation for Information
Processing, vol. 272, 2008, pp. 21-32.

[2] A.K. Dey, D. Salber, M. Futakawa, and G. D. Abowd,“An
Architecture To Support Context-Aware Applications”, GVU
Technical Reports, 1999.

[3] G. Calvary, A. Demeure, J. Coutaz, and O. Dâassi,
“Adaptation des Interfaces Homme-Machine à leur contexte
d’usage”, Revue d’intelligence artificielle, vol. 18, no. 4,
2004, pp. 577-606.

[4] M. Knappmeyer, S. L. Kiani, E. S. Reetz, N. Baker, and R.
Tonjes, “Survey of Context Provisioning Middleware”, IEEE
Communications Surveys & Tutorials, 2013, vol. 15, no. 3,
pp. 1492–1519.

[5] T. Gu, H. K. Pung, and D. Q. Zhang, “A service-oriented
middleware for building context-aware services”, Network
Computer Application, 2005, vol. 28, no. 1, pp. 1-18.

[6] H. Chen, T. Finin, and A. Joshi, “An Intelligent Broker
Architecture for Context-Aware Systems”, Adjunct Proc. of
Ubicomp, 2003, pp. 183-184.

[7] T. Chaari, F. Laforest, and A. Celentano, “Adaptation in
Context-Aware Pervasive Information Systems: The SECAS
Project”, Int. Journal on Pervasive Computing and
Communications (IJPCC), vol. 3, no. 4, 2007, pp. 400-425.

[8] A. K. Dey, G. D. Abowd, and D. Salber, “A conceptual
framework and a toolkit for supporting the rapid prototyping
of context-aware applications”, Hum.-Comput. Interact, vol.
16, no. 2, 2001, pp. 97-166.

[9] A. Angham, A. Sabagh, and A. Al-Yasiri, “GECAF: a
framework for developing context-aware pervasive systems”,
Computer Science - Research and Development, Springer,
2013, pp. 1-17.

[10] Q. Xue, X. Han, M. Li and M. Liu, “A Conceptual
Architecture for Adaptive Human-Computer Interface of a PT
Operation Platform Based on Context-Awareness”, Discrete
Dynamics in Nature and Society Journal, 2014, pp.1-7.

[11] J. Bauer, “Identification and Modeling of Contexts for
Different Information Scenarios in Air Traffic”,
In: Workshop on Advanced Context Modelling, Reasoning
and Management, UbiComp - The Sixth International
Conference on Ubiquitous Computing, Nottingham/England ,
2004.

[12] K. Henricksen, J. Indulska, and A. Rakotonirainy,
“Generating Context Management Infrastructure from High-
Level Context Models”, In: Industrial Track Proceedings of
the 4th International Conference on Mobile Data Management
(MDM), 2003, pp. 1–6.

[13] M. Moalla, “Reseaux de Petri interpértés et Grafcet”, TSI de
l’AFCET, vol. 4, 1985.

[14] S. Han and H. Y. Youn, “Petri net-based context modeling for
context-aware systems”, Artificial intelligence review, vol.
37, 2011, pp. 43-67.

[15] P. Reignier and O. Brdiczka, “Context-aware environments:
from specification to implementation”, Exp Syst, vol. 24, no.
5, 2007, pp. 305–320.

[16] J. L. Silva, J. C. Campos, and M. D. Harrison, “An
infrastructure for experience centered agile prototyping of
ambient intelligence”, EICS ‘09: Proceedings of the 1st ACM
SIGCHI symposium on engineering interactive computing
systems, 2009, pp. 79–84.

[17] M. Giulio, P. Fabio, and S. Carmen, “Ctte: Support for
developing and analyzing task models for interactive system
design”, IEEE Trans. Softw.Eng, vol. 28, no. 8, 2002, pp.
797–813.

[18] M. Wurdel, S. Propp, and P. Forbrig, “Hci-task models and
smart environments”, in: P. Forbrig, F. Patern, A. Pejtersen
(Eds.), Human-Computer. Interaction Symposium of IFIP
International Federation for Information Processing, Springer
US, vol. 272, 2008, pp. 21–32.

[19] I. Riahi, M. Riahi, and F. Moussa, “Xml in formal
specification, verification and generation of mobile hci”, in: J.
Jacko (Ed.), Human-Computer Interaction. Towards Mobile
and Intelligent Interaction Environments, vol. 6763 of Lecture
Notes in Computer Science, Springer BerlinHeidelberg, 2011,
pp. 92–100.

[20] I. Riahi, F. Moussa, and M. Riahi, “Petri Nets context
modeling for the pervasive Human-Computer Interfaces”,
Eighth International and Interdisciplinary Conference on
Modeling and Using Context (CONTEXT'13), Lecture Notes
in Computer Science, vol. 8175, 2013, pp. 316-329.

[21] F. Moussa, I. Ismail, and M. Jarraya, “Towards a Runtime
Evolutionary Model of User-Adapted Interaction in a
Ubiquitous Environment: The RADEM Formal Model”,
Cognition, Technology & Work, Springer, 2014.

[22] E. Newcomer and G. Lomow, “Understanding SOA with
Web Services (Independent Technology Guides”, Addison-
Wesley Professional, 2004.

[23] L. M. Hillah, E. Kindler, F. Kordon, L. Petrucci, and N.
Trèves, “A primer on the Petri Net Markup Language and
ISO/IEC 15909-2”, Petri Net Newsletter 2009.

[24] C. J. Ihrig, “JavaScript Object Notation”, Pro Node.js for
Developers, 2013, pp. 263-270.

43Copyright (c) IARIA, 2014. ISBN: 978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

http://link.springer.com/book/10.1007/978-0-387-09678-0
http://link.springer.com/book/10.1007/978-0-387-09678-0
http://link.springer.com/bookseries/6102
http://link.springer.com/bookseries/6102
http://link.springer.com/bookseries/6102
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558

	I. Introduction
	II. related work
	III. context and user’s task modeling based on petri nets
	IV. approach for formal specification and generation of user inerfaces adapted to the context
	A. Elementary structure of PN
	B. Proposed approach
	C. Deduction of user’s requirements

	V. case study: monitoring of a diabetic patient
	VI. conclusion and future work
	References

