
Extension of Sikuli Tool to Support Automated Tests to Windows Phone Context-

Aware Applications

Elizângela Santos da Costa
Product Validation

Institute of Technology Development
Manaus-AM, Brazil

email: elizangela.costa@indt.org.br

Rodrigo dos Anjos Cruz Reis
Institute of Computing

Federal University of Amazonas
Manaus-AM, Brazil

email: rdgdosanjos@gmail.com

Arilo Claudio Dias-Neto
Institute of Computing

Federal University of Amazonas
Manaus-AM, Brazil

 email: arilo@icomp.ufam.edu.br

Abstract — The wide diffusion in the use of mobile devices

has brought the need to improve the process of verification and

validation in mobile applications. The usual way of interaction

between these apps and users is through device interface. For

context-aware mobile applications, the number of interactions

that a user can perform is much larger if compared to common

applications. Thus, manual testing execution turns out to be an

exhaustive and error-prone activity. The main contribution of

this work is to propose the creation of new functions in Sikuli

tool to automate tests for context-aware mobile application

developed to the Windows Phone platform in order to develop

reliable applications using an effective test strategy.

Keywords-Context-awareness; Automated Testing; Sikuli;

Mobile Testing.

I. INTRODUCTION

On mobile platforms, the main form of interaction
between users and applications is through Graphical User
Interface (GUI). Thus, since mobile applications
development is increasing greatly, GUI becomes more
complex and more concern is required for its quality.

A method to evaluate the quality of software through its
GUI is by performing a testing technique called GUI Test
[1]. This type of testing must simulate the sequence of events
performed by users. The large number of input possibilities
for this sequence makes the GUI test a complex activity and
requires a lot of manual effort for the testing process.

An important factor to be considered during the
evaluation process of mobile applications is the context-
awareness characteristic [2]. This characteristic aims to
describe different contexts in which applications are subjects,
meaning that they can react differently to changes in their
environments. Different contexts in different applications are
more likely to generate failures and the criteria of coverage
to reach all possibilities should be proposed. An alternative
to reduce the effort in these tests is the adoption of
automated testing.

The rest of this paper is organized as follows. Section II
describes the background. Section III describes the tool
extended in this work. Section IV addresses the proof of
concept performed with the extended tool. Finally,
conclusion and future work are described in Section V.

II. BACKGROUND

Ubiquitous Computing is defined as: “an area of research
that studies the integration of technology to human activities
in a transparent way, when and where needed” [3]. Context-
awareness is a sub domain of Ubiquitous Computing.
Context is defined as any information that can be used to
characterize the situation of an entity [2]. Devices, services
and software components should be aware of their contexts
and automatically adapt to your changes, characterizing the
context-awareness [4].

A concept for mobile application testing and GUI test
can be found in [5][6] respectively. Sikuli is a tool that uses
visual approach to search and automate GUI tests using
screenshots. Through this tool, testers can write visual scripts
that specify the components to interact and what visual
feedback to expect, it has the advantage of being independent
of any platform [7].

III. EXTENDING THE SIKULI TOOL

The work was developed in four steps. First, the context
elements of the device defined to be automated with respect
to screen orientation, phone battery level, internet connection
and location.

Changes in context elements were chosen in the second
step. Thus, screen orientation can be positioned vertically or
horizontally, battery has several levels represented by a
percentage, connection can be enabled or disabled for both
Wi-Fi and 3G or 4G connections, location can be enabled or
disabled. Figure 1 resumes the structure of development. In
the third step, the following automation scripts in Sikuli were
developed:

 UtilWP: Main functions for test automation;

 PC: Script for proof of concept, it calls the
functions created in UtilWP script;

 NivelBateria and NivelBateriaH: They store a
database for existing images of battery levels in
portrait and landscape;

 Scroll: Contains functions that perform the sliding
movement;

 Alfabeto: It stores a database for alphabet letters
helping in function of open app.

18Copyright (c) IARIA, 2015. ISBN: 978-1-61208-418-3

UBICOMM 2015 : The Ninth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 1. Structure of scripts developed.

It used the Windows Phone emulator called Project My

Screen App [8] to project the application screen to be

possible run the scripts. This is the last step.

IV. PROOF OF CONCEPT

To analyze the functions created, three mobile apps were
chosen as shown on Table 1. To validate the reaction of mobile
applications to the contexts, first it was analyzed how they
should behave in cases of certain changes in device contexts.

TABLE I. CONTEXT VARIATION IN THE MOBILE APPS PER ELEMENTS

App
Screen

Orientation

Internet

Connection
Location Battery

Google X X

Waze X

Nível de Bateria

(Battery Level)
 X

After that, the execution of scripts was implemented
using the functions created, as described in Section III. An
example of automation can be seen in Figure 2 that validates
the behavior of Waze app. In short, the script defines the
expected behavior through image (line 2 and 3) for both
location ON and OFF, modifies the status of the location
property of the phone (to ON), opens the app and verifies
whether Waze has adapted to the new context or not.

Figure 2. Test case for Waze.

The final steps were to run the scripts for the remainder
of the apps and compare the results after execution.

As demonstrated, a tester is able to test a context-aware
application once the right screen is defined to each state of
context element. The additional libraries provide an easy
way to write automated tests because the changes in device

were automated before such as basic functions like open a
mobile app. Now that changes in location are automated in
the extended library, any mobile app that is context-aware to
location can be tested with less effort, not only Waze.

In order to avoid errors for whom uses the tool, some care

has been taken, such as treatments for occasional exceptions

images that are not found. The device style pattern should

also be noticed, since it is possible to change themes.

Inserting wait commands with the pictures expected before

checking equality between screens helps in fault occurrence

prevention. Check if the image inserted in the script will be

recognized by matching preview (Sikuli property) provides

the preliminary recognition of faults that can be generated.

V. CONCLUSION AND FUTURE WORK

To provide a better process on validation methodology, it
was proposed to use an existing tool for automating tests,
Sikuli, extending its functions to create new ones that reduce
manual efforts for the testing activity. Improvements of the
implemented functions can be achieved by creating an image
library for common buttons making the scripts cleaner and
easier to maintain.

Some limitations were found throughout this work, and
the most critically noted ones are instability in the Sikuli
tool and operating system restriction, since Windows must
be 8 or greater, to support the functionality of the control
device by emulator.

Despite the existing limitations, the support offered to
reduce the manual testing tasks and proved that it is feasible
to automate context-aware mobile applications observing its
adaptations to changes in addition to offer reduction of
testing execution time and manual effort.

REFERENCES

[1] A. Ruiz and Y. W. Price, “GUI Testing made easy,”. Testing:
Academic & Industrial Conference - Practice and Research
Techniques. IEEE 2008, pp. 99-103, doi:
10.1109/TAIC.PART.2008.11.

[2] D. Amalfitano, A. Fasolino, P. Tramontana, and N. Amatucci,
“Considering context events in event-based testing of mobile
applications”, IEEE Sixty International Conference on Software
Testing, Verification and Validation Workshops (ICSTW),
Luxemburgo, Mar. 2013, pp. 126-133.

[3] M. Weiser, “The Computer for the 21st Century”. Mobile Computing
and Communications Review – Special Issue Dedicated to Mark
Weiser, vol. 3, no. 3, July 1999, pp. 3-11.

[4] J. L. B. Lopes, “Exehda-on: an approach based on ontologies for
context-awareness in pervasive computing”, Dissertation (Master in
Computer Science) – School of Informatics, Catholic University of
Pelotas, 2008, p. 198.

[5] J. Gao, X. Bai, W. Tsai, and T. Uehara, “Mobile Application Testing:
A Tutorial”, In:,” Computer, vol. 47, no. 2, Feb. 2014, pp. 46-55.

[6] A. M. Memon, M. E. Pollac, and M. L. Soffa, “Hierarchical GUI Test
Case Generation Using Automated Planning,” IEEE Transactions on
Software Engineering, vol. 27, no. 2, Feb 2001, pp. 144-155.

[7] T. H. Chang, T. Yeh, and R. Miller, “GUI Testing using Computer
Vision,”. Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, New York, USA, 2010, pp. 1535-1544.

[8] Project my phone screen to a TV or PC. Available from:
http://www.windowsphone.com/en-us/how-
to/wp8/connectivity/project-my-phone-screen/2015.05.30

19Copyright (c) IARIA, 2015. ISBN: 978-1-61208-418-3

UBICOMM 2015 : The Ninth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

http://www.windowsphone.com/en-us/how-to/wp8/connectivity/project-my-phone-screen/
http://www.windowsphone.com/en-us/how-to/wp8/connectivity/project-my-phone-screen/

