
Towards Trusted Operated Services in the Internet of Things 
 
 

Pascal Urien 
LTCI UMR 5141 

Telecom ParisTech 
23 av d'Italie, 75013, Paris, France 

 
 

Abstract— This paper presents an innovative concept for the 
Internet of Things (IoT), in which objects work over TLS 
stacks running in secure elements. We notice that most of 
today IoT architectures are secured by the DTLS or TLS 
stack. Furthermore, tamper resistance, secure communications 
and storage are consensual requests for the emerging IoT 
frameworks. We demonstrate that it is possible to design cheap 
secured and trusted systems based on Javacards plugged in 
commercial nano-computers. Finally we detail the structure of 
an innovative JAVA framework able to provide trusted 
operated services, in a way similar to mobile network 
operators (MNO) managing smartphone fleets thanks to 
Subscriber Identity Modules (SIMs). 

Keywords-. IoT; Secure Elements; TLS; DTLS; Security. 

I.  INTRODUCTION 
The Internet of Things (IoT) is a major topic for the 

development of the digital economy; in [8] it is defined as "a 
network of connected things". According to [1] about 50 
billion of connected objects are forecasted by 2020, about 
6.6 per human being. It is expected [2] that "today 
households, across the OECD (Organisation for Economic 
Co-operation and Development) area, have an estimated 1.8 
billion connected devices, in 2017 this could be 5.8 billion 
and in 2022, 14 billion devices". More than 50 connected 
objects could be located in four people house, such as 
computers, smartphones, tv, cars, internet connected power 
sockets, energy consumption display, thermostat, camera, 
and connected locks.  

According to [6] the digital industry roadmap for next 
decades will not be centered on Moore’s law but will deploy 
networks with hundred trillions of devices [7]. In that context 
[7] "Security is projected to become an even bigger 
challenge in the future as the number of interconnected 
devices increases... In fact, the Internet of Things can be 
viewed as the largest and most poorly defended cyber attack 
surface conceived by mankind". 

As an illustration [3] introduces an IoT service-oriented 
architecture (SoA), based on the following four layers (see 
Figure 1) : 

- The Sensing layer that comprises hardware objects and 
acquisition protocols. 

- The Network layer, which is the infrastructure needed 
for the information transport. New wireless networks such as 

SigFox [4] or Lora [5] have been recently designed for low 
throughout interactions with sensors. 

- The Service layer that manages services needed by 
users or applications. 

- The Interfaces layer that includes API (Application 
Programming Interface) and applications front ends. 

This model suggests that some objects could be remotely 
managed by dedicated service providers. For example, in a 
smart grid context, connected plugs are remotely switched on 
in order to enable the battery recharge of electric cars. As 
underlined in [7] security is a major prerequisite and "a short 
list of requirements includes tamper resistance and secure 
communications and storage". 

In this paper we propose a new perspective for the IoT 
security, based on cheap secure elements enforcing secure 
communications for connected devices. Most of legacy 
devices are monitored thanks to the HTTPS protocol. The 
IETF (Internet Engineering Task Force) comity is currently 
pushing a framework based on the CoAP (Constrained 
Application Protocol ) protocol [12] whose security natively 
relies on the DTLS (Datagram Transport Layer Security) 
protocol and soon on TLS (Transport Layer Security) 
protocol [13]. We present an innovative concept in which 
TLS servers are fully running in secure elements. We 
describe a Java framework that enables the integration of 
such tamper resistant components in cheap boards, for 
example fuelled by nano-computer such as the popular 
Raspberry Pi (www.raspberrypi.org). 

 

 
Figure 1.  An IoT service-oriented architecture (SoA), based on four layers 

The paper is constructed according to the following 
outline. Section 2 details some acquisition protocols in today 
IoT systems. Section 3 introduces the concept of TLS server 

16Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies



running in secure elements. Section 4 describes an 
experimental JAVA framework designed for nano-
computers, such as the popular Raspberry Pi, whose 
communication security, is enforced by secure elements. 
Finally, section 5 concludes this paper. 

II. ACQUISITION PROTOCOLS 
Today many connected devices are using HTTPS, i.e. 

communication with web servers secured by the TLS 
protocol. As an illustration the popular Nest thermostats 
work [7] with JSON (JavaScript Object Notation) formatted 
data POSTed to their web servers; some connected plugs [8] 
use Home Network Administration Protocol (HNAP) a 
proprietary network protocol based on SOAP (Simple Object 
Access Protocol), invented by Pure Networks, Inc. and 
acquired by Cisco Systems, which allows identification, 
configuration, and management of network devices. 

The Constrained Application Protocol (CoAP) [12] is 
designed according to the Representational State Transfer  
(REST) architecture [11], which encompasses the following 
six features: 1) Client-Server architecture; 2) Stateless 
interaction; 3) Cache operation on the client side; 4) Uniform 
interface ; 5) Layered system ; 6)  Code On Demand. 

CoAP is an efficient RESTfull protocol easy to proxy 
to/from HTTP, but which is not understood in an IoT context 
as a general replacement of HTTP. It is natively secured by 
DTLS (the datagram adaptation of TLS), and works over a 
DTLS/UDP/IP stack. Nerveless the IETF is currently 
working [13] on a CoAP version compatible with a 
TLS/TCP/IP stack. 

 

 
Figure 2.  The CoAP Header 

The CoAP header is illustrated by Figure 2. Version (V) 
is the protocol version (01). Type (T) indicates if the 
message is of type Confirmable (CON), Non-confirmable 
(NON), Acknowledgement (ACK) or Reset. Token Length 
(TKL) is the length of the Token field (0-8 bytes). The Code 
field identifies the method and is split in two parts a 3-bit 
class and a 5-bit detail documented "c.dd" where "c" is a 
digit from 0 to 7 and "dd" are two digits from 00 to 31. For 
example methods named GET, POST, PUT and DELETE 
are respectively noted 0.01, 0.02, 0.03, and 0.04. The 
attribute Message ID matches messages ACK/Reset to 
messages CON/NON previously sent; it is usually noted 
inside two brackets ( [0xMessageID] ). The Token (0 to 8 
bytes) is used to match a response with a request. Options 
give additional information such as Content-Format dealing 
with proxy operations. 

According to the CoAP model objects act as "servers". 
Clients deliver requests to servers that return responses and 
may proxy HTTP requests. 

Some IoT frameworks (for example the ARM® mbed™ 
IoT Device Platform, see Figure 3) are supporting the MQTT 
(MQ Telemetry Transport) protocol [14], a Client Server 
publish/subscribe messaging transport protocol that is 
secured by TLS. 

 
Figure 3.  MBED stack  from the ARM company 

From the above lines it appears that TLS and DTLS are 
the security cornerstones of many IoT stacks. We believe 
that the integration of TLS servers in cheap tamper resistant 
chips enforces secure communications and storage. It could 
enable trusted and operated IoT infrastructure. Furthermore 
TLS/DTLS servers perform strong mutual authentication 
with clients when both entities are equipped with private 
keys and certificates, used for object identities. 

III. TLS SERVERS FOR SECURE ELEMENTS 
A secure element [19] is a secure micro controller, whose 

area is about 5x5 mm2. ISO7816 standards specify electrical 
and logical interfaces; small messages whose size is less than 
256 bytes are exchanged over serial or USB interfaces. It is 
usually glued in PVC rectangular supports referred as 
smartcards. Nerveless these tamper resistant devices can be 
shrunk in other electronic dies such as NFC controllers or 
SD memories. Most of secure elements include a Java 
Virtual Machine (JVM) and therefore run applications 
written in the javacard language [18], a subset of JAVA. 
They include cryptographic libraries providing symmetric 
procedures (3xDES, AES), asymmetric algorithms (RSA, 
ECC) and hash functions (MD5, SHA1, SHA2..). 

 

 

Micro-Server 

messages 
EAP 

Portable

EAP-Smartcard 

EAP 
Bridge 

 
Figure 4.  The first TLS micro-authentication server [15], 2005 

The first micro-authentication server, illustrated by 
Figure 4 was introduced ten years ago in [15]. It was running 
in a javacard , including a TLS stack embedded application. 
This former TLS stack booted a TLS session in about 30s. 

17Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies



Ten years later, secure elements perform this task in about 1 
to 10s for TLS full sessions and about 0,5 to 5s for TLS 
resume sessions. 

According to [16] embedded TLS server interface is 
based on the EAP-TLS protocol, whose packets are 
transported over ISO 7816 messages. Figure 5 illustrates the 
choreography of these exchanges. 

 

 
Figure 5.  Booting of a TLS session from a secure element with an 

interface based on EAP-TLS over ISO 7816 [16][17] 

A recent IETF draft [17] introduces TLS/DTLS security 
modules dedicated to secure elements. TLS/DTLS sessions 
are booted according to [16], but afterwards the TLS secure 
channel can be used for the decryption of data sent by the 
client or the encryption of information to be transmitted to 
the client (see Figure 6). Software agents mentioned in 
Figure 5 and 6 are logical entities that drive the secure 
elements. They act as a logical bridge between the network 
transporting TLS packets over TCP/IP and the secure 
element dealing with EAP-TLS messages shuttled in 
ISO7816 requests/responses. 

 

 
Figure 6.  Application data encryption and decryption performed by a TLS 

server (i.e. a RecordLayer) running in a secure element [17]. 

It should be noted than in a previous work [20] we 
suggested to export TLS sessions from secure elements 
according to a technology named TLS-Tandem. Therefore, 
upon opening a TLS session two choices are possible : 1) 
processing TLS packet ciphering/deciphering in the secure 
element OR 2) performing this task in the application that 
drives the tamper  resistant chip. 

The TLS server javacard application is designed 
according to the OpenEapSmartCard framework previously 
detailed in [21] and illustrated by Figure 7. 

 
Figure 7.  Javacard TLS/DTLS stack framework according to the 

OpenEapSmartcard [21] framework. 

 

IV. JAVA FRAMEWORK 
Today many objects are working in a LINUX software 

environment. For example the popular Raspberry Pi nano 
computer is powered by a DEBIAN operating system (see 
Figure 8). It supports the PCSC-Lite (Personal 
Computer/Smart Card) middleware developed by the 
M.U.S.C.L.E (Movement for the Use of Smart Cards in a 
Linux Environment) organization. Furthermore the JAVA 
framework (up to the 1.5 version) is also available. PCSC-
Lite can be easily linked with the javax.smartcardio JAVA 
package, which provides a set of smartcard I/O APIs. 

 

 
Figure 8.  TLS Server satck embeded in secure element, in a Raspberry Pi 

environnment. 

Therefore it is possible to deploy TLS servers running in 
secure elements for this class of objects and to control these 
chips, thanks to a dedicated API (SE-TLS API) described 
below. This approach facilitates the design of secure 
communications and storage. 

18Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies



 
Figure 9.  Software stack for SE based TLS server, such as HTTP or 

CoAP 

The software for HTTP and CoAP servers based on 
secure elements is depicted by Figure 9. The main JAVA 
package needed by a server daemon is the SE-TLS API, 
which comprises three logical components: the core 
implementation, the ServerTLS thread, and the 
GenericServer class. 

The core implementation of the server daemon is 
illustrated by Figure 10. It begins by the instantiation of a tls-
tandem object (named myserver) that initializes a TLS socket 
server (on the 443 port) and resets the secure element. The 
secure element embedded TLS stack, written in javacard, is 
identified by the parameter AID. It requires a PIN value, and 
is associated to an identity attribute "server"  defining a set of 
cryptographic attributes such as certificates and private key. 

 

 
Figure 10.  Core implementation of a SE based TLS server 

During the instantiation of the tls-tandem class, the 
ServerTLS thread (see Figure 11) is created. It deals with 
two control (boolean) flags rdv and InUse.  

The Rendez Vous mechanism is a fundamental paradigm 
for a SE based server. An incoming TCP connection is 
denied if no logical entity is ready for its processing; this 
availability is indicated by the rdv flag. Afterwards the InUse 
flag is set and the ServerTLS thread will remain idle until its 

resetting. The InUse variable means that the secure element 
is currently computing a TLS session, implying that no new 
incoming client can be processed. In that case incoming TCP 
sessions are stored in the backlog queue, whose size is fixed 
by the JAVA constructor of the ServerSocket class (see 
Figure 11). According to the JAVA documentation the 
default value is set to 50. The backlog queue size tunes the 
number of TLS sessions that can be delayed before being 
processed by the secure element. 

The OpenSession() method (see Figure 10) provided by 
the tls-tandem object initializes a Rendez Vous (rdv= true) 
with a TCP client. The secure element is thereafter in use 
(InUse =true) and a software agent (as illustrated by Figure 
5) boots the TLS session. Upon success a RecordLayer 
object is created (see Figure 10) and returned by the 
OpenSession() procedure. 

At this step the Rendez Vous is cancelled (rdv =false). 
The RecordLayer class manages a TCP socket and provides 
the procedures (see Figure 12) needed for exchanging TLS 
record packets over TCP/IP. If  the TLS session is exported 
from the secure element then the InUse flag may be reset. 
Otherwise the secure element remains busy (inUse= true) 
and incoming TCP connections are delayed. 

 

 
Figure 11.  The ServerTLS thread 

The GenericServer class (see Figure 10)  is an 
implementation of an HTTP or CoAP server; as illustrated 
by Figure 6 it is a functional subset of the Software Agents. 
It uses services provided by the RecordLayer object (see 

// ServerTLS Thread 
 
ServerSocket soq = new 
ServerSocket(443,backlog, 
InetAddress.getByName("0.0.0.0")); 
InUse=false; 
while(true) 
{ client = null ; 
  try {Socket client= soq.accept();} 
  catch(IOException e){client=null;} 
  if (!rdv) 
  { try {client.close();client=null;} 
    catch(IOException f){} 
  } 
   
  if (client != null) InUse=true; 
  while(InUse) 
  {try  { Thread.sleep((long)100);} 
   catch (InterruptedException e){}; 
  } 
  if (client != null) 
  { try { client.close();} 
    catch(IOException e){}; 
  } 
} 
// End of ServerTLS 

public static void ServerDaemon() 
{ 
 tls-tandem myserver= new  
 tls-tandem(tls_tandem.SERVER, readername, 
            AID, PIN , "server"); 
 myserver.ServerTLS.rdv   = false; 
 myserver.ServerTLS.InUse = false; 
 
 while(true) 
 { //myserver.ServerTLS.rdv = true; 
   recordlayer RecordLayer = 
   myserver.OpenSession(); 
   myserver.ServerTLS.rdv =   false; 
   myserver.ServerTLS.InUse = false; 
 if (RecordLayer == null); 
 else 
 { GenericServer myGS= new  
   GenericServer(myserver,RecordLayer); 
  // myserver.CloseSession(RecordLayer); 
  } 
 } 

19Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies



Figure 12) dealing with TLS packets reception and 
decryption, or TLS packets encryption and transmission. 
These operations may be performed in the secure element or 
by pure software means if the TLS session has been 
previously exported. 

 

 
Figure 12.  TLS packets processing by the RecordLayer object. 

V. CONCLUSION 
In this paper, we have demonstrated a TLS server 

running over a secure element in an object environment, i.e. 
a cheap nano-computer with an LINUX operating system, 
similar to many devices already available on the IoT. Thanks 
to this innovation we claim trusted and secured 
communications booted from a strong mutual authentication. 
In a way similar to SIM modules managed by mobile 
network operator (MNO) we believe that this paradigm is a 
step towards IoT infrastructure remotely controlled by IoT 
operators. 

REFERENCES 
[1] D. Evans, "The Internet of Things How the Next Evolution of the 

Internet Is Changing Everything", Cisco, White Paper, 2011 
[2] OECD, "Building Blocks for Smart Networks", OECD Digital 

Economy Papers, No. 215, OECD Publishing, 2013 
[3] L. D. X. Shancang Li and S. Zhao, "The internet of things: a survey", 

Information Systems Frontiers, vol. 17, pp. 243–259, 2015. 
[4] LoRa Alliance,  "LoRaWAN™ Specification", Version: V1.0,  

January 2015 

[5] SigFox, "One network A billion dreams", M2M and IoT redefined 
through cost effective and energy optimized connectivity", white 
paper, 2015 

[6] M. Waldrop, "More Than Moore", Nature, February 2016 Vol 530 
[7] SIA/SRC, "Rebooting the IT Revolution: A Call to Action", 2015 
[8] K. Pretz, "The Next Evolution of the Internet", March 2013, 

http://theinstitute.ieee.org/technology-focus/technology-topic/the-
next-evolution-of-the-internet 

[9] http://stackoverflow.com/questions/15482257/how-nest-thermostat-
communicates, seen June 2016. 

[10] http://www.devttys0.com/2014/05/hacking-the-d-link-dsp-w215-
smart-plug/, seen June 2016 

[11] R. Fielding, "Architectural Styles and the Design of  Network-based 
Software Architectures", 2000, 

[12] Z. Shelby, K. Hartke, C. Bormann, "The Constrained Application 
Protocol (CoAP)", RFC 7252, June 2014 

[13] C. Bormann  ET al,  "A TCP and TLS Transport for the Constrained 
Application Protocol (CoAP)", IETF draft April 2016 

[14] A. Banks and R. Gupta, "MQTT Version 3.1.1", OASIS Standard 
September 2014. 

[15] P. Urien, P, M. Dandjinou, M.Badra, "Introducing micro-
authentication servers in emerging pervasive environments", IADIS 
International Conference WWW/Internet 2005, Lisbon, Portugal, 
October 2005. 

[16] P. Urien, "EAP Support in Smartcard", draft-urien-eap-smartcard-
29.txt, July 2015 

[17] P.Urien, "TLS and DTLS Security Modules", draft-urien-uta-tls-dtls-
security-module-00.txt, June 2015 

[18] Z. Chen, "Java CardTM Technology for Smart Cards: Architecture and 
Programmer's (The Java Series)", 2002, Addison-Wesley, ISBN 
020170329 

[19] T.M. Jurgensen ET. al., "Smart Cards: The Developer's Toolkit", 
Prentice Hall PTR, 2002¸, ISBN 0130937304. 

[20] P. Urien, "TLS-Tandem: A Smart Card for WEB Applications", 
Consumer Communications and Networking Conference, 2009. 
CCNC 2009. 6th IEEE, January  2009. 

[21] P. Urien, P and M. Dandjinou, M,  "The OpenEapSmartcard 
platform", Fourth IFIP International Conference on Network Control 
and Engineering for QoS, Security and Mobility, Lannion, France, 
November 2005, Springer 2007. 
 

 

byte[] buf = RecordLayer.recv(); 
if (buf !=null); 
buf = RecordLayer.decrypt(buf); 
 
byte[] buf=RecordLayer.encrypt(buf; 
int err = RecordLayer.send(buf) ; 

20Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /Calibri
    /Calibri-Bold
    /Calibri-BoldItalic
    /Calibri-Italic
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Cambria
    /Cambria-Bold
    /Cambria-BoldItalic
    /Cambria-Italic
    /CambriaMath
    /Candara
    /Candara-Bold
    /Candara-BoldItalic
    /Candara-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /Consolas
    /Consolas-Bold
    /Consolas-BoldItalic
    /Consolas-Italic
    /Constantia
    /Constantia-Bold
    /Constantia-BoldItalic
    /Constantia-Italic
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /Corbel
    /Corbel-Bold
    /Corbel-BoldItalic
    /Corbel-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /Nina
    /Nina-Bold
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /PoorRichard-Regular
    /Pristina-Regular
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /SegoeUI
    /SegoeUI-Bold
    /SegoeUI-BoldItalic
    /SegoeUI-Italic
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


