
Service and Workflow Engineering based on Semantic Web Technologies

Volkan Gezer and Simon Bergweiler

German Research Center for Artificial Intelligence (DFKI)
Innovative Factory Systems

Kaiserslautern, Germany
Email: firstname.lastname@dfki.de

Abstract—This paper presents the concept and implementation
of a cloud-based infrastructure platform and tailored tools
for graphical user interaction. The goal is the creation of
a platform that allows users to generate workflows for their
experiments in the field of product design and quality assurance
without any knowledge of service engineering and the under-
lying Semantic Web technologies. An experiment is described
as workflow and consists of orchestrated services from several
vendors that encapsulate specific tasks. One advantage of this
approach is the combination of a cloud-based platform with
high-performance computing. Services that encapsulates complex
calculation procedures can be outsourced to specific servers. This
results in tremendous time savings and allows experts to carry
out more experiments with products, which was omitted due to
the complexity and the required computing power until now. The
possibility to conduct these experiments improves the productive
know-how of the companies and enhances the products they are
selling.

Keywords–Cloud infrastructure; Semantic Workflows; Semantic
Web services; graphical workflow interface.

I. INTRODUCTION

Nowadays, cloud-based solutions are part of the daily life,
and their usage is increasing day by day. These solutions
increase the mobility of data by allowing access from multiple
locations with minimum effort [1]. In this paper, we present
the concept and implementation of a flexible cloud-based plat-
form for the vendor-independent integration of Semantic Web
services in the engineering domain. This platform is provided
as Infrastructure as a Service (IaaS), and is able to combine
and orchestrate Web services. Involving semantic technologies
inside a cloud-based solution significantly improves usability
by structuring the data in a standardized way that these can
be understood by machines and humans. The structured data
can be utilized to create interoperable and vendor-independent
applications, and thereby avoid vendor lock-in problems [2].
The platform enables experts from various application domains
to independently plan and execute their experiments with strong
calculation procedures, e.g., to check the quality of products and
their compliance with construction rules by comparison of 3D-
models, or to identify weaknesses and subsequently improve the
positive effects of their products. Each experiment is described
as workflow that orchestrates services from different vendors.
Each service encapsulates specific tasks, calculation procedures
or complex sub-systems and require highly scalable computing
clusters for their execution within an acceptable time-frame.
Therefore, to provide an added value, the developed platform
is combined with a cluster of high-performance computers
spread across different virtualization solutions, which take over
the calculation of complex tasks. This results in enormous
time savings and allows experts to carry out more experiments
with products, which was neglected due to the complexity of
the task and the required computing resources until now. The

developed tailored tools of this cloud-based platform, described
below as core components, allow engineering companies or
software providers to integrate their Software as a Service
(SaaS) and orchestrate them in a specific workflow, seamlessly
supported by graphical user interfaces and without requiring
specific skills or knowledge of the underlying Semantic Web
technologies. The developed solution uses standardized Web-
based technologies and all workflows can be executed using
a Web browser, requiring no additional software. Due to this
distributed architecture, the platform offers optimal conditions
for both short and long-running experiments.

Section II introduces used technologies and describes the
topics under consideration. For a better understanding, Section
III describes the requirements in the engineering domain and
leads over to Section IV, methodology and concept of the
developed approach. The next section describes the architecture
and developed core components. The paper ends with a
conclusion and an outlook on future work and extensions.

II. BACKGROUND

Web services are designed to support machine-to-machine
interaction over a network and allow interoperable commu-
nication [3]. With the help of description languages, which
will be discussed in the upcoming sections, Web services
create communication between peer-platforms, prevent vendor
dependency and increase reusability.

A. Web Services Description Language
The Web Service Description Language (WSDL) is a

language- and platform independent XML-based interface defi-
nition language, designed with the aim to create a standardized
mechanism for the description of Web services. It describes
SOAP-based Web services in detail, their technical input and
output parameters, ports, data types, and how services must be
invoked. With this machine-readable description language, the
automatic detection and execution of Web services is possible.
A ready-revised language draft was submitted to the World
Wide Web Consortium (W3C) [4], but only version 2.0 was
standardized and proclaimed as W3C recommendation [5].
Unfortunately, WSDL is a lower level interface description
language that addresses the technical mechanisms and aspects
of Web services, and it does not reflect the functionality of a
service. Furthermore, it is difficult to create and understand
for humans. In this approach, WSDL is used for the technical
description of Web services, their input and output parameters,
and the SOAP messaging mechanism.

B. Technologies of the Semantic Web
The development of the current Web to the “Semantic Web”

is pervasive. Efforts are aiming to add annotations to things
and objects of daily life. Through the help of annotations, the
vision of the Semantic Web allows better cooperation between

152Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

people and computers; well-defined meanings are attached to
information [6]. The Resource Description Framework (RDF)
is one of the most important data formats that has been devel-
oped to implement this vision. The Semantic Web combines
technologies that deal with the description of information and
knowledge sources, such as ontologies, RDF triple stores, and
Semantic Web services [7] [8]. Ontologies allow the definition
of a vocabulary of a dedicated application domain and define
for this purpose concepts and properties. These concepts can
in turn be connected by relations, which promise a significant
value, when conclusions are drawn about these structures. In
that field, the W3C defines his recommendations as an open
standard like RDF(S) [7][9] and the Web Ontology Language
(OWL) [10].

In contrast to a complex and comprehensive infrastructure
that tries to solve all problems of the interaction and communica-
tion of distributed applications, the Semantic Web Technology
Stack, depicted in Fig. 1, is a family of modular standards
mostly standardized by the W3C. Each of these standards aims
at another part of problem or another sub-problem.

Figure 1. Semantic Web technology stack.

This stack of Semantic Web technologies describes the
vision of the W3C to create a Web of linked data. The idea of
open data stores on the Web, the ability to build vocabularies,
and write rules for handling data based on these empowered
technologies, such as RDF, OWL, and the SPARQL Protocol
And RDF Query Language (SPARQL) [11].

C. Semantic Web Services
In the recent years, the tendency towards Semantic Web

technologies increased the research in the domain, results in an
elevated number of available ontologies as well as standards
recommended by the W3C. To widen the scope of applicability,
one of the submitted ontologies to W3C was the Web Ontology
Language for Web Services (OWL-S), which allowed services
on the Web to be found, executed, and monitored. The OWL-S
ontology is designed on top of OWL with extensions to make
service discovery, invocation, composition, and monitoring
possible. The provided structure also allowed these operations
to be performed autonomously, when desired [12]. Based on
the previously described technologies, domain models must
be created to form an important conceptual basis. Therefore,
parts of the dedicated knowledge domain are categorized and
structured in a machine readable form. OWL-S [12] extends this
base to a set of constructs that relate to properties, specialties
and dependencies of the Web service level and is also machine
readable and processable.

A concrete service description in OWL-S is separated in
several parts. Fig. 2 shows the main concepts and relations of a
service model in OWL-S: service profile, service model, service
grounding, and for our approach important, the processes. The
Service Profile is used for service discovery and describes the
functionality of the service and contains information about the
service provider. Furthermore, this profile reflects the overall
functionality of a service with its precondition, input and output
types, features, and benefits.

Figure 2. Main Web service concepts in OWL-S.

Any Web services provided with a WSDL description and
SOAP interface can be integrated into the infrastructure and
converted into semantic descriptions as long as they satisfy the
requirements. However, for a Web service that is converted into
a Semantic Web service with the help of an upper ontology, the
following types of the OWL-S Submission [12] are required:

• The Service Profile provides information to describe
a service to a requester. The profile provides three
types of information: the service creator, the service
functionality, and the service characteristics [12].

• The Service Model is a mandatory type for the descrip-
tion how a Web service works. The model describes
the inputs, outputs, preconditions and effects. It also
specifies the Process concepts and their execution
order. The process description consists of simple
atomic processes or complex composite processes
that are sometimes abstract and not executable. Each
function provided by the service is considered as an
Atomic Process, whereas combined multiple services
are named as Composite Service.

• The Service Grounding stores the detailed technical
communication information on protocols and formats.
This concept provides the physical location to the
technical description realized in WSDL. This WSDL-
file is called when the service is executed, as well
as during conversion process to retrieve the technical
inputs and outputs of the service.

The listed types provide basis for OWL-S to create relations,
which are utilized for improved interoperability. However, the
relations generated using only OWL-S ontology form the
minimal relationship for services, enough to be operated. If
the usage scenario requires involvement of additional relations,
these must be defined creating a meta-ontology and including
it inside a semantic repository [13].

D. Workflows
Services provide functionality for special tasks, but complex

tasks in the engineering domain usually consist of multiple steps.
Therefore, one service is not sufficient and an orchestration of

153Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

services is needed. The complete service chain is described in
a workflow. Depending on the domain, a workflow can have
multiple definitions, but in the context of this paper, a workflow
will be considered as a set and ordered list of chained up Web
services provided with a WSDL file and a SOAP interface to
perform a specific task with or without user interaction.

Determined by the complexity, multiple workflows can
be necessary to finalize the task. In this case, with the help
of semantic descriptions, workflows can be grouped and
chained up to create “sub-workflows.” Workflows as well as
sub-workflows are stored in semantic repositories. Similar to
Semantic Web services, they are reusable and their descriptions
are updated without causing any fragmentation.

E. Triple Stores
Computational tasks often require collection and storage of

the results for further usage. Storage of information without a
structured form increases the complexity and the time to access
the data, and reducing the flexibility for further modifications
and enhancements [14] causing to fragmentation problems. To
address this issue, databases play the role as containers, which
collect and organize the data for swift future access [15].

Semantic repositories are similar to the database manage-
ment systems (DBMS) in terms of providing functionality for
organization, storage, and querying the data, but differ from
them in terms of the type of organization and data representation.
Unlike DBMS, semantic repositories use schemata to structure
the data thus allow defining the data stored to set relations
between. Regarding to data representation, semantic repositories
work with flexible and generic physical data models, which
allow merging other ontologies “on the fly” and relate the
data among merged schemata [16]. As OWL-S is based on
OWL, which is built on top of RDF, see Section II-B, the
data operations are performed using the same RDF structure.
This structure provides descriptions to query the data, and
allows optimal extension of relations allowing multiple use.
The Sesame framework [17] is one RDF store solution, which
can be used in this context. It creates, processes, edits, stores,
and queries RDF data, therefore it is chosen to serve as a
storage for the framework.

F. Related Work
The Business Process Execution Language (BPEL) is a

language for describing and executing business processes in
general. It provides an XML-based syntax and allows data
manipulation for data processing and data flow. It also allows
orchestration of services, after specifying the service set and
the service execution order [18].

For the languages OWL-S and BPEL, there exist tools
for the automated execution of Web services described in
WSDL. They also permit implementations in any programming
languages as long as they provide valid WSDL descriptions.
Different from BPEL, OWL-S facilitates Semantic Web tech-
nologies, which make the structure meaningful for human and
machines and allow automated design and orchestration of
services, whereas BPEL does not [19].

The execution order of services is usually defined using a
design tool (textual or graphical) which is then executed and
monitored using an engine. For BPEL, Apache BPEL Designer
and JBoss Tools BPEL Editor can be given as examples to
design tools, whereas Oracle BPEL Process Manager, Apache

ODE, IBM WebSphere Process Server, and Microsoft BizTalk
Server can be listed as examples for execution and monitoring.

Using OWL-S increases the interoperability and enables
automatic orchestration between the services, but it requires a
deep knowledge in the domain. Hence, there are few editors
available for OWL-S. However, all of them must be locally
installed to be used. To create complex workflows, Protégé
OWL-S Editor [20], which is a plug-in for Protégé, can be
utilized. Nevertheless, the usage of this plug-in also requires
advanced knowledge in the domain. To convert Web services
into Semantic Web services, a design tool and an execution
engine are necessary.

In another approach, created in the context of the THESEUS
funding program, a framework for the discovery, integration,
processing, and fusion of Semantic Web services is described
[21]. According to a user request, the framework identifies and
assembles matching services for problem solving and creates
a plan for the composition and execution order. The focus is
on the matching of heterogeneous services and the fusion of
all gathered information in real time. The harmonizing and
mapping of knowledge is carried out based on ontologies.

The advantage of our approach is the continuous integration
of services, from the UI to an automatic executable experi-
ment, described as a specific workflow. Within the developed
infrastructure, specific services can be deployed and assigned
to workflows graphically, without detailed knowledge of the
underlying Semantic Web technologies.

III. SCENARIO
In the engineering domain, a conventional practice for

quality assurance of the manufactured final product are compar-
ison checks against the virtual designed product model. This
accuracy check is performed by comparing two 3D models.
First a scanning process creates and transfers accurate points,
and in this way a virtual 3D model is created. The entire model
consists of millions of 3D points, which must be matched and
compared with the designed product model to find out the
discrepancies by calculating the distances of points in both, the
designed model and the virtual clone of the final product [22]
[23].

The manufacturer of these big turbine blades uses different
tools to perform this comparison task and these supplementary
tools generate additional license and training costs. The
handling of different software solutions requires many hours
of work. By using the workflow and service infrastructure and
the distributed High Performance Computing (HPC) solution
described here, the comparison time is significantly reduced.
These advantages allow the company to focus on quality
measurement and also increase the capacity of the company for
initiating new projects. Fig. 3 shows a complete Kaplan turbine
(a), one blade that is to be evaluated (b) and the scanned and
virtualized 3D model with color-coded comparison results (c)
[23]. The virtual model is created by an open-source tool for
rendering and visualization [24].

To perform such a comparison task, the complete workflow
has to be formally described. The workflow description defines
that two CAD files must be loaded and compared by the
help of additional comparison services. These services make
compatibility checks, they check whether components of the
production environment created by different tools in different
formats for Computer-Aided Design (CAD) and Computer-
Aided Engineering (CAE) fit together, by comparing compatible

154Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 3. A complete manufactured Kaplan turbine (a), its single turbine
blade (b) and the color-coded comparison of its scan and design (c).

heights and dimensions.

IV. CONCEPT
The cloud-based infrastructure allows to orchestrate services

individually, formalized by a workflow. To design the workflow,
a special tooling is needed, where each step in the workflow
or each state change is assigned to a service. To solve this
problem, all available technical Web service interfaces needs
to be described using standards, such as WSDL. Based on
this technical description with its functions, input, and output
types, a semantic Web service model, described in OWL-S,
is generated and integrated into the semantic repository. This
transformation and conversion is automatically performed by
the provided converter libraries, shown in Fig. 4. As depicted,
the creator retrieves the service type and the URL of the WSDL
file and converts the service into a specific instantiated Semantic
Web service description that is stored in the semantic repository.
Using the cloud-based approach, it is easily possible to execute
the service execution task in an HPC cluster, which extremely
saves computation time.

Figure 4. Generation of services in OWL-S.

However, in this approach three service categories must be
differentiated:

• Synchronous Service
• Asynchronous Service
• Asynchronous Web Application
These service categories are disjoint, each Web service can

only be assigned to one category of the service repository.
Standard Web services belong to the Synchronous Service
category. Whenever a request is made, they must respond within
60 seconds, which is defined as default timeout limit in SOAP.
Every service, which does not require an interaction with the
user is part of this category. An Asynchronous Service is a
special category, which returns information whenever the calling
component checks the status. Unlike the previous category,

asynchronous services can display feedback messages and these
services can last days or even weeks to complete. A response
to the calling component reports the status by telling either the
service is completed or still ongoing. Lastly, the Asynchronous
Web Application category contains Web services, which are
similar to asynchronous services, but without a status check.
This type of service is used by interactive Web pages in the
Web portal.

With this kind of service categorization, it is possible to
support users and their specific needs to complete their tasks
with synchronous or asynchronous processes executed in the
background. A detailed description of the system design that
uses annotations for workflow modeling is given in Section V.
A service orchestration is performed by using a component for
workflow editing to create a semantic workflow description. Fig.
5 summarizes the generation of workflows. First the workflows
define the order in which the services have to be executed.
In the process chain, the output of a service is passed to the
input of the next service. A tool supporting graphical user
input has the advantage that the user must not have a detailed
knowledge of OWL-S to describe a workflow. The graphically
sketched sequence of services is formalized in a workflow and
stored in an XML-based meta-format that serves as input for
the conversion into OWL-S.

Figure 5. Generation of workflows in OWL-S.

The service domain is structured by an upper model for the
generic description and vocabulary of services and workflows in
OWL-S. It defines how services must be described and specified,
using annotations and technical descriptions. The detailed
knowledge of different application domains is represented by
several domain ontologies that describe detailed application
functionality.

V. INTERACTION OF CORE COMPONENTS
The creation of an interoperable and flexible platform

provided as IaaS requires an embodiment of core components,
which are compatible with each other. These core components
are presented as Web services with a technical interface
description in WSDL and form the infrastructure and host
all the functionality:

• Semantic Repository for services and workflows: This
component hosts the OWL-S descriptions of services
and workflows.

• Workflow Editor: The graphical workflow editor assists
in the creation of workflows and associates service
functionality. The defined workflows are transferred
into an XML-based meta-format, based on a predefined
schema.

• Semantic Web Service Creator: This component creates
the Semantic Web services out of WSDL. In another
context, it creates semantic workflow descriptions in
OWL-S based on the XML-meta-format, introduced
by the Workflow Editor.

155Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

• Workflow Manager process control system: This com-
ponent manages, orchestrates, monitors workflows, and
checks permissions of the users for the execution.

Vendor specific Web services provide and wrap functionality
for specific software components of different complexity levels.
Generic services are provided to load data structures with
different formats, e.g., Computer-Aided Engineering (CAE)
and Computer-Aided Design (CAD) data. Higher services
encapsulate complex calculations and comparison operators
or even provide the interface to third-party systems to perform
complex calculations. The service providers are able to deploy
the WSDL description of their Web services via the Workflow
Editor (WFE) in the Web portal. The Semantic Web Service
Creator uses the absolute URL to the WSDL description of
the service to generate the semantic Web service descriptions
in OWL-S, and it stores and registers them in the Semantic
Repository including the inputs and outputs of the services.
The basic requirement for all saved workflows and services are
unique names. Each Semantic Repository is based on a central
domain model, formalized as an OWL ontology, that describes
the input and output types for the matchmaking process of the
services.

Fig. 6 gives an overview of the interaction of the core
components of the developed platform. The main user interface
of the developed platform is a Web portal, and it translates user
actions into core component specific requests, e.g., workflow
design, workflow and service execution, service monitoring,
and result management. With the graphical interface of the
Workflow Editor, the user gets access to the services stored in
the Service Repository and services dedicated to experiments
can be chained up to create dedicated workflows, such as for
the comparison of 3D models. Each created workflow is stored
in the Semantic Repository and can be found by querying
with simple properties. To store the workflows, the graphical
contents of the workflows are transferred into a XML-based
meta-format. This format serves as input for the Semantic Web
Service Creator that generates the workflow descriptions in
OWL-S.

Figure 6. Overview of the interactions of the core components.

The Workflow Manager (WFM) component is used for
the management and execution of individual predetermined
workflows. Each workflow is a formalized orchestration of
Semantic Web services and consists of at least one integrated
service or many complex services, defined in sub-workflows.

In the execution task, the component processes the individual
workflows and accordingly queries the listed services in the
defined order. If the service execution is completed and the
answer of a service is received, the next step in the sequence
is activated. The results of respective services are unified and
added to a single representation structure, which is passed at
the end of all processing steps to the UI of the Web portal.

For each workflow, the manager initiates processing pro-
cedures and tracks the progress individually. Before starting a
workflow, it checks whether the user has permission to run it to
prevent unauthorized execution. It also provides a monitoring
functionality, which allows users to leave the workflow anytime
and return at later stage to continue where they left off.
This maximizes the benefits of such a cloud-based platform,
supporting access anytime and from any desktop or mobile
device with internet access. If the workflow does not need user
input, the WFM is even able to complete it automatically and
display its results to the user at a later time. As explained in the
previous sections, services of different vendors can be used that
are implemented by different programming techniques and run
within the cloud on different application servers. But during
the lifetime of a workflow, the user does not need to know,
where the services are stored and how the data is forwarded to
the next service. The manager component retrieves the service
descriptions and performs the tasks without user notification
and the complexity of all associated services within a workflow
remains hidden from the user.

An example of a graphical workflow is shown in Fig. 7. The
execution order is represented by dashed arrows inside WFE
and the blue blocks are the individual workflow steps. The
green marked block is an HPC sub-workflow, which executes
the service in an HPC server environment. This sub-workflow
consists of three tasks: (1) pre-processing task to generate the
command to be executed by HPC process, (2) HPC command
task, which receives the command by user interface and gives
feedback to the user, and (3) post-processor task, which converts
the output from the HPC process into application specific
output.

Figure 7. The graphical workflow editor UI shows the scenario workflow.

Based on their defined service types, synchronous or
asynchronous, services are differentiated and executed by
the execution engine of the WFM. The services for the pre-
and post-processing tasks are implemented as Synchronous
Services. Whereas, the HPC operating procedure is implemented
as Asynchronous Service. If the duration of a Web service
execution cannot be predicted, the service must be implemented
as an Asynchronous Service, which provides its status via a
method. This method is periodically requested by the WFM.

156Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

As a result, this method is able to return HTML feedback,
which is displayed on the Web portal. The usage of pre- and
post-processing tasks varies from application to application.

If a Web service provides an UI to interact, the service
must be implemented as an Asynchronous Web Application.
Services that belong to this category are implemented similar
to Asynchronous Services, but contrarily do not need to deliver
their status. This service type explicitly tells the WFM that the
task is completed. After receiving this notification, the WFM
performs the next step and gives feedback on the Web portal.

VI. CONCLUSION AND FUTURE WORK
This paper explained the concept and realization of a flexible

cloud-based infrastructure platform, which involves Semantic
Web technologies and tailored tools for the creation, execution,
and management of workflows and conducted services by
graphical user interface. The realized platform satisfies the
requirements for the development and execution of experiments
defined as workflows, without requiring knowledge on High
Performance Computing or other underlying technologies of
the Semantic Web. The platform offers an UI for the integration
of Web services, described in WSDL. These services are
automatically converted into Semantic Web services, without
requiring specific knowledge of used complex Semantic Web
technologies, such as OWL and OWL-S. With another graphical
user interface, the Workflow Editor, the services can be
orchestrated within the meaning of the experiment can be
orchestrated and stored as workflow descriptions. For the
execution of the experiment, the Workflow Manager uses these
descriptions as a basis. One advantage of this approach is the
combination of the created platform with high-performance
servers. Complex tasks are outsourced to these servers and
this results in enormous time savings and allows the experts to
carry out more experiments with products, which was omitted
due to the complexity and the required computing power until
now. Of course, the possibility to conduct these experiments
leads to an enormous increase in expert knowledge.

In future, the Workflow Editor will be able to give recom-
mendations to the user, for an easier dynamic workflow design.
A dynamic workflow formalizes an orchestration of services,
supported by an automated matchmaking process that provides
adequate services ordered by their confidence values, which is
only possible using Semantic Web technologies. Furthermore,
the Workflow Editor automatically inserts converter services
into the workflow, just for adjustment of input and output types,
e.g., convert units of measurement and file formats.

ACKNOWLEDGMENTS
This research was funded in part by the 7th Framework

Program of the European Union, project number 609100
(project CloudFlow). The responsibility for this publication
lies with the authors.

REFERENCES

[1] T. Barton, “Cloud Computing,” in E-Business mit Cloud Computing.
Springer Fachmedien Wiesbaden, 2014, pp. 41–52.

[2] A. Ranabahu and A. Sheth, “Semantics Centric Solutions for Application
and Data Portability in Cloud Computing,” in Cloud Computing
Technology and Science (CloudCom), 2010 IEEE Second International
Conference on, 2010, pp. 234–241.

[3] R. Cyganiak, D. Wood, and M. Lanthaler, “Web Services Architecture,”
W3C Working Group Note, 2004, [retrieved: July 2016]. [Online].
Available: https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

[4] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana,
“Web Services Description Language (WSDL) 1.1,” W3C, W3C
Note, March 2001, [retrieved: July 2016]. [Online]. Available:
http://www.w3.org/TR/wsdl

[5] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana, “Web
Services Description Language (WSDL) Version 2.0 Part 1: Core
Language,” W3C Recommendation, 2007, [retrieved: July 2016].
[Online]. Available: https://www.w3.org/TR/wsdl20/

[6] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”
Scientific American, 2001, [retrieved: July 2016]. [Online]. Available:
http://www.jeckle.de/files/tblSW.pdf

[7] G. Klyne and J. J. Carroll, “Resource Description Framework (RDF):
Concepts and Abstract Syntax,” W3C Recommendation, 2004. [Online].
Available: http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

[8] P. Hitzler, M. Krötzsch, and S. Rudolph, Foundations of Semantic Web
Technologies. Chapman & Hall/CRC, 2009.

[9] R. Cyganiak, D. Wood, and M. Lanthaler, “RDF 1.1
Concepts and Abstract Syntax,” W3C Recommendation, 2004,
[retrieved: July 2016]. [Online]. Available: http://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/

[10] P. F. Patel-Schneider, P. Hayes, and I. Horrocks, “OWL Web
Ontology Language Semantics and Abstract Syntax,” Feb. 2004,
[retrieved: July 2016]. [Online]. Available: http://www.w3.org/TR/2004/
REC-owl-semantics-20040210/

[11] I. Horrocks, B. Parsia, P. Patel-Schneider, and J. Hendler, “Semantic
Web Architecture: Stack or Two Towers?” in Principles and Practice
of Semantic Web Reasoning, Third International Workshop, PPSWR
2005, Dagstuhl Castle, Germany, F. Fages and S. Soliman, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 37–41.

[12] D. Martin et al., “OWL-S: Semantic Markup for Web Services,”
2004, [retrieved: July 2016]. [Online]. Available: http://www.w3.org/
Submission/2004/SUBM-OWL-S-20041122/

[13] S. Bergweiler, “A Flexible Framework for Adaptive Knowledge Re-
trieval and Fusion for Kiosk Systems and Mobile Clients,” in Eighth
International Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies (UBICOMM 2014), International Academy,
Research, and Industry Association (IARIA). IARIA, 8 2014, pp.
164–171.

[14] C. Casanave, “Designing a Semantic Repository - Integrating
architectures for reuse and integration,” 2007, [retrieved: July
2016]. [Online]. Available: https://www.w3.org/2007/06/eGov-dc/papers/
SemanticRepository.pdf

[15] “Webster Database Definition,” [retrieved: July 2016]. [Online].
Available: http://www.merriam-webster.com/dictionary/database

[16] Ontotext, “GraphDB - Semantic Repository,” [retrieved: July
2016]. [Online]. Available: http://ontotext.com/products/graphdb/
semantic-repository/

[17] Sesame Framework Contributors, “Sesame Java Framework,” [retrieved:
July 2016]. [Online]. Available: http://rdf4j.org/about.docbook?view

[18] “Web Services Business Process Execution Language Version 2.0,”
OASIS Web Services Business Process Execution Language (WSBPEL)
Technical Commitee, 2007, [retrieved: July 2016]. [Online]. Available:
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[19] S. Bansal, A. Bansal, G. Gupta, and M. B. Blake, “Generalized semantic
Web service composition,” Service Oriented Computing and Applications,
vol. 10, no. 2, 2016, pp. 111–133.

[20] D. Elenius et al., “The OWL-S editor - a development tool for semantic
web services,” in ESWC, 2005, pp. 78–92.

[21] S. Bergweiler, “Interactive service composition and query,” in Towards
the Internet of Services: The Theseus Program. Springer Berlin
Heidelberg, 2014, pp. 169–184.

[22] C. Stahl, E. Bellos, C. Altenhofen, and J. Hjelmervik, “Flexible Integra-
tion of Cloud-based Engineering Services using Semantic Technologies,”
in Industrial Technology (ICIT), 2015 IEEE International Conference
on, 2015, pp. 1520–1525.

[23] Stellba, “Comparing CAD Models with 3D Scanned Manufactured
Parts on the Cloud,” [retrieved: July 2016]. [Online]. Available:
http://eu-cloudflow.eu/experiments/first-wave/experiment_6.html

[24] C. Dyken et al., “A framework for OpenGL client-server rendering,” in
Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th
International Conference, 2012, pp. 729–734.

157Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

