
Performance Evaluation Suite for Semantic
Publish-Subscribe Message-oriented Middlewares

Fabio Viola∗, Alfredo D’Elia∗, Luca Roffia† and Tullio Salmon Cinotti∗†
∗ARCES - University of Bologna, Bologna, Italy - 40125
†DISI - University of Bologna, Bologna, Italy - 40126

Email: {fabio.viola2, alfredo.delia4, luca.roffia, tullio.salmoncinotti}@unibo.it

Abstract—The emerging Internet of Things paradigm is
driving the industry and the research towards Information
and Communication Technologies (ICT) scenarios supporting
high heterogeneity and interoperability. We claim that software
architectures based on Semantic Publish-Subscribe Message-
Oriented Middlewares (SPS-MoMs) are a powerful approach to
address the requirements of such scenarios. While benchmarks
and frameworks are available to evaluate the performance of
MoMs, Semantic Web tools (i.e., SPARQL endpoints and RDF
stores) and publish-subscribe systems, there are still no de-facto
standards for the evaluation of SPS-MoMs, due to the novelty of
this approach. In this paper, we propose Performance Evaluation
Suite (PES), a benchmarking framework aimed at retrieving
relevant performance indicators about a generic SPS-MoM. The
feasibility of the proposed approach is proved by using PES to
compare different implementations of a Semantic Information
Broker (SIB), the core component of a SPS-MoM named Smart-
M3.

Keywords—Message-oriented middleware; benchmark; perfor-
mance evaluation; semantics; IoT.

I. INTRODUCTION

In the last decade, the Information and Communication
Technologies (ICT) world has seen the birth of a new paradigm
known as Internet of Things (IoT) [1]. Researchers from dif-
ferent areas have been involved in studying and strengthening
the vision behind IoT. This new paradigm revolutionized the
way the Internet worked up to ten years ago: laptops, PCs,
tablets and smart phones are surrounded by (and need to
communicate with) heterogeneous smart objects (i.e., things)
spread in the physical environment. Smart objects continuously
produce (i.e., sensors) and consume (i.e., actuators) data in
order to provide services in different application domains
(Asin and Gascon listed more than 50 application domains
[2]) ranging from transportation [3][4] to logistics [5], from
healthcare [6][7] to entertainment [8], from agriculture [9][10]
to smart buildings [11][12], just to name a few.

Dealing with such heterogeneity in terms of application
domains (e.g., different requirements), networks and protocols
(e.g., DASH7 [13], 6LoWPAN [14], MQTT [15], COAP [16],
XMPP [17], AMQP [18]) and device capabilities (e.g., power
consumption [19]) ask for new interoperable and scalable
solutions. We claim that the level of interoperability, dynam-
icity, flexibility, expressivity and extendibility required in IoT
could be provided by a Message-Oriented Middleware (MoM)
[20], more specifically a Semantic Publish-Subscribe MOM
(SPS-MoM). On one hand, the MOM interaction paradigm
allows to cope with events generated by IoT devices and the
publish-subscribe mechanism provides an asynchronous and
highly scalable many-to-many communication model, granting

decoupling in terms of space, time and synchronization. On the
other hand, the use of Semantic Web [21] technologies (i.e.,
Resource Description Framework (RDF) [22], Web Ontology
Language (OWL) ontologies [23] and SPARQL 1.1 language
[24]) is functional to achieve interoperability at information
level. In fact, OWL ontologies allow the representation rich
and complex knowledge about application domains in the form
of RDF graphs that can be queried and updated using the
SPARQL 1.1 language.

The main drawback of Semantic Web technologies con-
cerns the low level of performance that makes it difficult to
achieve responsiveness and scalability required in many IoT
applications. The main reason for the poor performance is
that Semantic Web technologies have been designed to process
data sets consisting of big amounts of RDF triples that evolve
constantly but at a much slower rate compared to the rate
of elementary events occurring in the physical environment.
Frameworks, benchmarks and methods for performance eval-
uation of Semantic Web systems, in general, and Semantic
Publish-Subscribe systems, in particular, have been proposed
in the literature. Unfortunately, these methods are not suitable
for analyzing the performance of a Semantic Publish-Subscribe
MOM. In fact, the former (e.g., [25][26][27][28]) are mainly
designed to evaluate the performance of a SPARQL endpoint
on answering a predefined set of queries with reference to
several data sets and they do not include any SPARQL Update.
The latter are instead focused on analyzing the performance
of specific publish-subscribe systems (e.g., [29][30]).

In this paper we present, a suite dedicated to the evaluation
of the performance of Semantic Publish-Subscribe MOMs.
The implementation of this general suite was then specialized,
without loss of generality, on the Smart-M3 platform [31],
where publish and subscribe primitives are both expressed
using SPARQL 1.1 (i.e., respectively as SPARQL Update and
SPARQL Query) or through a RDF triple pattern serialization
formalisn named RDF-M3. The main contribution of our work
consists in a set of tools and methods to evaluate all the rel-
evant performance metrics by executing existing benchmarks
or creating user defined ones, specific to the target application
domain. A benchmark definition includes the definition of the
updates and queries (e.g., SPARQL) along with the definition
of the RDF data set (e.g., OWL, N3). Tools are used to
populate the knowledge base and to run the benchmarks. The
evaluation outcome is in the form of graphical representations
of the main results (i.e., SVG or PNG files) and includes the
statistical analysis on the measured timing components (e.g.,
mean, variance, maximum and minimum values included in a
CSV file). Finally, an example of the evaluation of two Smart-
M3 SIBs (i.e., OSGi SIB [32], RedSIB [33]) is presented.

190Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

The article is organized as follows: after a review of the
related work, an overview of the reference platform is reported
in Section III. Then, a detailed description of the evaluation
suite software architecture is presented in Section IV. The
subsequent section reports on the evaluation of existing SIBs.
We conclude in section VI.

II. RELATED WORK

As stated by Guo et al. in [34], benchmarking a Semantic
Web system is a challenging task. The main research questions
concern the benchmark definition and the design of a suite able
to run the same benchmark on different systems. The answers
to these two questions become also more difficult moving
from Semantic Web systems to Semantic Publish-Subscribe
Message-Oriented Middlewares (SPS-MoMs). In fact, in a
Semantic Web system, the aim is in general evaluating the
performance of the query mechanism implemented by the un-
derpinning SPARQL endpoint, while in a SPS-MoM the focus
is more on the subscription mechanism. The latter assume that
the benchmark defines not just the set of queries (i.e., that can
be used as set of subscriptions), but also the set of updates and
how these two sets interact (i.e., which updates trigger which
subscriptions). Concerning the benchmark definition, Guo et al.
proposed the Leigh University Benchmark (LUBM) [35] aimed
at benchmarking Semantic Web knowledge base systems in
large OWL applications. LUBM provides a knowledge base
(whose ontology is called univ-bench) and a set of 14 queries
designed to validate the knowledge base management system
and its query engine. The starting knowledge is provided by the
Univ-Bench Artificial Data generator (UBA), a tool generating
a complete data set regarding the University domain. The
correctness, response time and completeness (evaluated on
explicit statements or implicit knowledge available through
reasoning) are taken in consideration to provide the per-
formance profile for the knowledge base. Considering SPS-
MoMs, this benchmark allows to evaluate the time response
of SPARQL queries, but it is not suitable to evaluate the
subscription mechanism (i.e., it does not specify any SPARQL
update).

The University of Freiburg proposed a Benchmark for
SPARQL endpoints called SP2B [36]. This benchmark is
based on the DBLP dataset containing open bibliographic
information on major computer science journals and pro-
ceedings [37]. SP2B is provided with a data generator that
produces an N3 file [38] containing n triples (where n ∈
{10k, 50k, 250k, 1M, 5M, 25M}). The query set is made up
of 17 SPARQL queries (14 SELECT, 3 ASK) for which
is known the exact number of results, depending on the
dimension of the knowledge base. This benchmark is designed
to assess the performance of the SPARQL query engine (func-
tionality and processing speed). Another relevant benchmark
for the SPARQL language is [39] but the research objective
originating the benchmark definition was not to evaluate or
compare SPS-MOMs, but to choose between a native Semantic
architecture or one obtained through a SPARQL to SQL
rewriter.

Concerning the design of a benchmarking suite for seman-
tic publish-subscribe systems, to the best of our knowledge,
[40] is the most representative work. Despite the approach
being quite similar to the one here presented, some differences

can be clearly appreciated. First, the update sequence is
supposed to be generated pseudo-randomly, while we specify
the update profile as an input. Having a predefined update set
allows to better control the experiment. Second, there is not
a clear distinction between the software modules and this can
limit the extensibility and flexibility of the solution. Third, it
is not possible to configure complex sequences of operations
in order to make the performance analysis deeper. Instead our
Performance Evaluation Suite (PES) is specifically designed
to be modular. The user is able to configure the experiments
and to obtain charts and detailed log files including important
statistics such as the variance of the elapsed time, the min-
imum, maximum and mean value. Since the performance in
SPS-MoMs are often affected by the content and size of the
knowledge base, PES also allows to repeat every experiment
on different data sets.

III. THE REFERENCE PLATFORM

The Performance Evaluation Suite has been designed with
a general approach and the first target platform chosen has
been Smart-M3 [31]. Smart-M3 is an interoperability platform
developed since 2008. This platform has been adopted in
several past and ongoing research projects, like Internet of
Energy [41], Arrowhead [42] and CHIRON [43] just to name a
few. The development of Smart-M3 is currently carried on by
several European universities and the proposed solution has
been applied in different application domains like e-health,
smart energy systems [44] and tourism [45][46].

The central component of the Smart-M3 platform is the
Semantic Information Broker (SIB) that is aimed at storing
the shared knowledge base in the form of an RDF graph.
Several implementations of the SIB exist: 1) RedSIB [47]
is a C general-purpose implementation, fast and nowadays
very diffused; 2) the OSGi SIB [32] is a more recent work
oriented at IoT gateways; 3) pySIB [48] is a lightweight Python
implementation developed for low-powered computing nodes
as, for example, System on Chips (SoCs) devices; 4) CuteSIB
[49] is another recent implementation born as a fork of the old
RedSIB.

Knowledge Processors (KPs) represent the client side of
each application: they share data through the SIB and interop-
erate thanks to proper messages encoded with the Smart Space
Access Protocol (SSAP). KPs can be developed exploiting one
of the many existing APIs (currently available for Java, Python,
C, C#, Ruby, Javascript, PHP).

The architecture of the Smart-M3 platform is summarized
in Fig. 1.

The Smart-M3 interoperability platform allows to update
and retrieve data using primitives based on SPARQL or on
a formalism known in the Smart-M3 literature as RDF-M3,
based on the concept of triple patterns. A triple pattern traces
the model of an RDF triple, but allows the use of wild cards
for the subject, the predicate and the object. If B, U and L are
respectively the sets of the possible BNodes, URIs and Literals,
a triple is defined as: t = (s, p, o) where s ∈ B∪U , p ∈ U , and
o ∈ U ∪B ∪ L. Introducing the wild card ”Any” or ”*” (that
corresponds to a specific URI and matches every term) a triple
pattern can be defined as: t = (s, p, o) where s ∈ B∪U ∪{∗},
p ∈ U ∪ {∗}, and o ∈ U ∪B ∪ L ∪ {∗}. In example a pattern

191Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Fig. 1. The architecture of the Smart-M3 interoperability platform

based query (∗, rdf : type ∈ U, ns : Person ∈ U) retrieves
every triple where the predicate is the URI rdf:type and the
object is the URI ns:Person allowing to build a list of all the
persons stored in the SIB. The SIB can be queried using a
list of triple patterns: the result is made up by all the triples
matching at least one of the provided triple patterns. In some
cases pattern based interaction is more intuitive and simple for
developers, however for inserting or retrieving complex graphs
the SPARQL language [24] is always the best choice.

In Section V, the proposed PES is used to benchmark the
performance of the RDF-M3 query and update mechanism of
two SIBs. The results of these benchmarks are then compared
with similar tests performed against the SPARQL query and
update engines of the same SIBs. The results demonstrates
how in some cases RDF-M3 outperforms SPARQL.

IV. SOFTWARE ARCHITECTURE

The PES is a free set of software modules released under
the GNU General Public License 3.0. The entire suite is
developed with the Python programming language and it is
based on the C implementation of the Python interpreter, often
referred to as CPython. PES is multiplatform, so it supports all
the major operating systems. The PES software architecture is
shown in Fig. 2 and described in the following subsections.

A. The Configuration Manager

The PES behavior depends on the directives specified in its
configuration files (compliant with the specifications contained
in [50]) and from the command line. The principal parameters
specified from the command-line or through the global config-
uration file are the list of the SIBs to be tested (composed by
IP address and port and by the required interaction protocol,
e.g., SSAP [31] or JSSAP [48]) and the type of test to be
performed (e.g., a query test).

Other configuration files are test-specific and are used to
configure the desired benchmark. A benchmark is defined by
proper configuration files. Each of these configuration files
allows to specify the initial knowledge base, the number of
iterations to perform, the desired output format for the chart
(i.e., SVG or PNG) and if the CSV output file should be
produced or not. Depending on the type of test to be performed,
the configuration file may include different sections.

B. The KB Loader

The Knowledge Base Loader (KB Loader) is used to load
the triples that initially constitute the knowledge base when a

performance test is started. This component currently supports
the N3 and the OWL KB serialization formats. The first allows
to be compatible with the SP2B benchmark [36], since its
data generator produces an N3 file. The KB Loader sends n
triples at a time to the SIB, where n is a parameter whose
value depends on the trade off between KB size, number of
operations to load it and efficiency of the target SIB to process
large input files.

C. The PES Core

The core of PES is composed of the test modules. This
extensible set of modules is currently composed of an Update
Test, a Query Test and a Subscription Test.

1) Update Test: allows to measure the performance of an
update request with either SPARQL or RDF-M3. For all the
SIBs to be tested, the module performs a series of insertions
of n triples where n ranges from nMIN to nMAX with
step s. Each of these parameters is configured exploiting the
Configuration Manager described in Subsection IV-A. Every
test is repeated I times, here I is the number of iterations
requested to obtain sufficient statistical samples. The mean
value, the minimum and maximum and the variance are then
calculated.

The time elapsed to perform the update operation is mea-
sured at the client side, so it can be considered as the sum of
different components:

tupdate =tkp req + tnet req+

tsib req + tsib elab + tsib rep+

tnet rep + tkp rep

(1)

where tkp req and tkp rep respectively represent the time
needed by the Knowledge Processor to encode the request
and parse the reply, tnet req and tnet rep are the number of
milliseconds used to transfer the packets over the network
and tsib req , tsib elab and tsib rep represent the time used by
the context broker to parse the received request, elaborate the
request and produce a reply. The current implementation of
the PES only measures tupdate.

Measuring the time elapsed to perform an update allows to
assess whether or not the SIB is able to timely store and share
the information sent by the KP. The module can be configured
to run with active subscriptions to evaluate their impact on the
platform.

2) Query Test: The Query Test module measures the per-
formance of the SPARQL engine (whether the requested query
is a SPARQL one) or of the underlying RDF store (in case the
requested query formalism is RDF-M3). For each formalism,
two kinds of tests can be performed:

• Simple test: the knowledge base is loaded, then the
query is performed;

• Complex test: the knowledge base is loaded in several
steps and at the end of each step the specified query
is performed.

The module can be configured, as in the previous case,
exploiting the Configuration Manager described in Subsection

192Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Fig. 2. The Software Architecture of the Performance Evaluation Suite

IV-A. The parameters used to set the behavior of the module
are:

• The type of query test to perform (i.e., simple or
complex);

• The files containing the knowledge base to load to-
gether with their format (i.e., N3 or OWL) and the
desired step;

• The query to perform together with its type (i.e.,
SPARQL or RDF-M3);

• The number of iterations to perform.

The measured time tquery can be considered as the sum
of different components, the same highlighted for the Update
Test. For each test the minimum, the maximum and mean
values of the time elapsed are returned, together with the
variance. A CSV file gathers all the information deriving from
the execution of a test and, if desired, an SVG chart is plotted
according to the settings in the test configuration file.

3) Subscription Test: represents our most significant contri-
bution since, to the best of our knowledge, none of the existing
benchmarks allows to properly characterize the performance of
a semantic publish-subscribe platform.

This test allows to subscribe to a given triple pattern
using RDF-M3 or to a subgraph using the SPARQL QUERY
language, then to perform updates of the knowledge base and
measure the time in milliseconds required by the KP to receive
the expected notification. The Subscription Test can also be
used to instantiate a variable number n of KPs, each one with
the same subscription, in order to calculate a notification loss
ratio or to perform stress tests.

The Subscription Test can be configured with a dedicated
configuration file that states the initial knowledge base (a list
of n3 or OWL files to load), the subscriptions and the updates
to perform and the desired number of iterations.

D. The Ouptut module

The Output module reports the results of the tests per-
formed by plotting the related charts and writing all the
measured values on a CSV file. The module relies on the pygal
library that allows to render the charts on SVG or PNG files.

In Section V, it is possible to observe the charts rendered
by this module, while in the following listing it is reported

an example of a CSV file produced during the execution of a
subscription test. The first field is the name of the SIB tested
and from the second field a list of the collected notification
times. The row is concluded by the mean value, minimum
and the maximum values and the variance. All the values here
reported are expressed in ms.

S0,2.819,...,2.986,1.792,3.948,0.281
S1,3.789,...,2.538,1.381,3.789,0.57
S2,1.054,...,2.392,1.003,3.51,0.673

E. The Smart-M3 APIs

Knowledge Processors are developed through proper APIs
that make possible the interaction with the SIB. The APIs
are not developed ad-hoc for the purpose of this project, but
are external modules included into the PES. Since PES is
developed in Python, the APIs adopted by the suite are the
Python Smart-M3 APIs (including the one providing support
for the JSSAP introduced by pySIB [48]).

The update mechanisms, the query functionalities and the
subscription engine represents the targets of the tests modules
forming the PES Core. The PES is not constrained to the
Smart-M3 platform, but replacing this module with the proper
APIs (and replacing the function calls to such APIs) can be
used to evaluate the performance of other Semantic Publish-
Subscribe MOMs.

V. EVALUATION

The configuration adopted for these benchmarks is com-
posed of a server called mml and a host called desmodue
connected in a Local Area Network at 1GBps. The former,
mml, is a server provided with 12 core Intel Xeon CPU E5-
2430 v2 at 2.50 GHz, 15.360 Kb cache and 32 GB RAM and
280 GB hard disk. The latter, desmodue, is a laptop PC with
a CPU Intel Core(TM) i5-2520 at 2.50 GHz with 3.072 KB of
cache for every core. This host is provided with 4 GB RAM
and 160 GB hard disk. desmodue runs Linux Mint 17 Qiana,
while mml Ubuntu Server 16.04.

PES runs on the host named desmodue, while the SIBs to
be tested runs on mml. In this demonstrative tests we decided
to take into account the C implementation of the SIB named
RedSIB [47] and the Java one, called the OSGi SIB [32],
both supporting the standard SSAP protocol and both executed
without a persistent storage.

193Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

A. Update Test

A demonstration of the Update Test is shown in Fig. 3.
The test perfomed on the two above-mentioned SIBs consists
in measuring the time elapsed to insert a block composed by
n triples with an RDF-M3 update; n varies from 250 to 2500
with a step of 250. No subscriptions were active during the test.
Three iterations of the test have been performed. The RDF-M3
update builds the triples exploiting information coming from
the configuration file that contains the desired namespace (i.e.,
ns bound to http://ns#) the template for subject, predicate
and object (i.e., ns:SubN, ns:PredN and ObjN) and their
type (i.e., URI, URI and Literal).

Fig. 3. The Update test performed on RedSIB and OSGi SIB

An example of the textual output represented by the related
CSV file is shown below. The first field identifies the SIB, the
second the number of triples. After the list of the collected
values, the mean value, the minimum and maximum values
and the variance are reported.

osgi,250,28.14,..,28.38,28.14,28.82,0.09
osgi,500,53.28,..,56.29,56.10,59.00,4.09
osgi,750,66.93,..,65.77,62.72,67.67,4.74
osgi,1000,78.53,..,77.30,76.37,78.53,0.82
osgi,1250,88.98,..,87.56,85.95,88.98,1.55
...

Fig. 4 shows the results of repeating the update test with
only 1000 triples to insert on both the SIBs. The different kind
of graph is the result of a different configuration set up by the
user in the configuration manager.

B. Query Test

Two further tests have been performed on the OSGi SIB
and on RedSIB, both consisting in retrieving the entire content
of the knowledge base with RDF-M3 (Fig. 5) and with
SPARQL (Fig. 6). With RDF-M3 the triple pattern is (*, *,
*), while the SPARQL query is:

SELECT ?s ?p ?o
WHERE {

Fig. 4. The Update test performed on RedSIB and OSGi SIB with box chart
output

?s ?p ?o
}

The two charts allow to identify a better behavior of the
RDF-M3 queries with respect to the given use case and, in
general, a higher timeliness of the OSGi SIB.

Fig. 5. The Query test performed on RedSIB and OSGi SIB to retrieve the
entire RDF store content using the RDF-M3 query formalism

C. Subscription Test

The most relevant contribution of the PES, as mentioned
in the introduction, is the ability to measure the time needed
to receive a notification about an update of the RDF store. An
example of the Subscription Test is shown in Fig. 7. In this
example, a reference scenario of electric mobility was used and
the time required to receive a notification about the registration
of a new user was measured. In the chart is possible to observe
the minimum notification time (in milliseconds), the maximum
one and the mean value.

194Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Fig. 6. The Query test performed on RedSIB and OSGi SIB to retrieve the
entire RDF store content using the SPARQL query formalism

It is possible to observe the presence in the box chart of two
different boxes for RedSIB: the one labeled with redsib-R
is related to the volatile storage without support for hash tables,
while redsib-RH allows to test RedSIB with a volatile
storage exploiting these data structures. The results show a
little performance improvement in subscription management
if the hash tables are used.
The SPARQL update is:

PREFIX ns: <http://.../ioe-ontology.owl#>
PREFIX rdf: <http://.../22-rdf-syntax-ns#>
INSERT DATA {
ns:User1_URI rdf:type ns:Person .

ns:User1_URI ns:hasName "User Name" .
ns:User1_URI ns:hasPasswd "UserPasswd"

}

while SPARQL subscription is:

PREFIX ns: <http://.../ioe-ontology.owl#>
PREFIX rdf: <http://.../22-rdf-syntax-ns#>
SELECT ?s
WHERE {

?s rdf:type ns:Person
}

VI. CONCLUSION AND FUTURE WORK

A suite of software modules, named Performance Evalu-
ation Suite (PES), aiming at evaluating the performance of
Semantic Publish-Subscribe Message-Oriented Middlewares
(SPS-MoMs) has been presented. A first implementation of the
PES has been used to evaluate and compare the performance of
two instances of the Smart-M3 Semantic Information Broker
(SIB). The proposed platform allows to run existing bench-
marks (e.g., SP2B or LUBM) and to extend these benchmarks
to evaluate the subscription mechanism provided by the broker.
Future works include the definition of a set of benchmarks spe-
cific for IoT scenarios that can be used to perform an extensive

Fig. 7. The Subscription Test performed on RedSIB (with options --ram
and --ram-hash) and OSGi SIB

performance analysis of available SPS-MoMs, including the
several SIB implementations. The PES will be extended to
provide a set of Key Performance Indicators (e.g., the average
number of updates, or queries or subscriptions processed per
unit time) that, along with current statistical analysis of the
timing components, will allow to identify bottlenecks and
limits of current SPS-MoMs driving the research towards an
efficient and effective IoT solution.

REFERENCES

[1] R. Minerva, A. Biru, and D. Rotondi, “Towards a definition
of the internet of things (iot),” May 2015. [Online]. Available:
http://iot.ieee.org/definition.html, [retrieved: April 2016]

[2] A. Asin and D. Gascon, “50 sensor applications for a smarter world,”
Libelium Comunicaciones Distribuidas, Tech. Rep, 2012.

[3] X.-Y. Liu and M.-Y. Wu, “Vehicular cps: an application of iot in vehic-
ular networks,” Jisuanji Yingyong/ Journal of Computer Applications,
vol. 32, no. 4, pp. 900–904, 2012.

[4] W. He, G. Yan, and L. Da Xu, “Developing vehicular data cloud services
in the iot environment,” Industrial Informatics, IEEE Transactions on,
vol. 10, no. 2, pp. 1587–1595, 2014.

[5] P. Ferreira, R. Martinho, and D. Domingos, “Iot-aware business pro-
cesses for logistics: limitations of current approaches,” in Inforum,
vol. 3, 2010, pp. 612–613.

[6] S. Amendola, R. Lodato, S. Manzari, C. Occhiuzzi, and G. Marrocco,
“Rfid technology for iot-based personal healthcare in smart spaces,”
IEEE Internet of Things Journal, vol. 1, no. 2, pp. 144–152, April
2014.

[7] C. Doukas and I. Maglogiannis, “Bringing iot and cloud computing to-
wards pervasive healthcare,” in Innovative Mobile and Internet Services
in Ubiquitous Computing (IMIS), 2012 Sixth International Conference
on, July 2012, pp. 922–926.

[8] C. L. Hu, H. T. Huang, C. L. Lin, N. H. M. Anh, Y. Y. Su, and P. C. Liu,
“Design and implementation of media content sharing services in home-
based iot networks,” in Parallel and Distributed Systems (ICPADS),
2013 International Conference on, Dec 2013, pp. 605–610.

[9] J. Burrell, T. Brooke, and R. Beckwith, “Vineyard computing: Sen-
sor networks in agricultural production,” Pervasive Computing, IEEE,
vol. 3, no. 1, pp. 38–45, 2004.

[10] Z. Liqiang, Y. Shouyi, L. Leibo, Z. Zhen, and W. Shaojun, “A
crop monitoring system based on wireless sensor network,” Procedia
Environmental Sciences, vol. 11, pp. 558–565, 2011.

195Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

[11] G. T. Costanzo, G. Zhu, M. F. Anjos, and G. Savard, “A system
architecture for autonomous demand side load management in smart
buildings,” IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 2157–
2165, Dec 2012.

[12] L. Schor, P. Sommer, and R. Wattenhofer, “Towards a zero-
configuration wireless sensor network architecture for smart buildings,”
in Proceedings of the First ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Buildings, ser. BuildSys ’09. New
York, NY, USA: ACM, 2009, pp. 31–36. [Online]. Available:
http://doi.acm.org/10.1145/1810279.1810287

[13] M. Weyn, G. Ergeerts, L. Wante, C. Vercauteren, and P. Hellinckx,
“Survey of the dash7 alliance protocol for 433mhz wireless sensor
communication,” International Journal of Distributed Sensor Networks,
2013.

[14] E. Kim, D. Kaspar, D. Gomez, and C. Bormann, “Problem statement
and requirements for ipv6 over low-power wireless personal area
network (6lowpan) routing,” RFC 6606, October 2015. [Online].
Available: https://rfc-editor.org/rfc/rfc6606.txt

[15] A. Banks and R. Gupta, “Mqtt version 3.1.1,” October 2014,
[retrieved: April 2016]. [Online]. Available: http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html. Latest version:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

[16] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (coap),” RFC 7252, June 2014. [Online]. Available:
https://tools.ietf.org/html/rfc7252

[17] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Core,” RFC 6120, October 2015. [Online]. Available: https://rfc-
editor.org/rfc/rfc6120.txt

[18] “Advanced message queuing protocol (amqp) version 1.0. 29,” October
2012, [retrieved: April 2016]. [Online]. Available: http://docs.oasis-
open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf

[19] A. D’Elia, L. Perilli, F. Viola, L. Roffia, F. Antoniazzi, R. Canegallo,
and T. S. Cinotti, “A self-powered wsan for energy efficient heat
distribution,” in 2016 IEEE Sensors Applications Symposium (SAS),
April 2016, pp. 1–6.

[20] M. Albano, L. L. Ferreira, L. M. Pinho, and A. R. Alkhawaja,
“Message-oriented middleware for smart grids,” Computer Standards
& Interfaces, vol. 38, pp. 133–143, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0920548914000804

[21] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” pp.
34–43, 2001.

[22] “Rdf 1.1 concepts and abstract syntax,” February 2014, [retrieved:
April 2016]. [Online]. Available: https://www.w3.org/TR/2014/REC-
rdf11-concepts-20140225/

[23] “Owl 2 web ontology language primer (second edition),”
December 2012, [retrieved: April 2016]. [Online]. Available:
https://www.w3.org/TR/2012/REC-owl2-primer-20121211/

[24] “Sparql 1.1 overview,” March 2013, [retrieved: April 2016]. [Online].
Available: https://www.w3.org/TR/sparql11-overview/

[25] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for OWL
knowledge base systems,” Web Semantics, vol. 3, no. 2-3, pp. 158–182,
2005.

[26] Y. Guo, A. Qasem, Z. Pan, and J. Heflin, “A requirements driven
framework for benchmarking Semantic Web knowledge base systems,”
IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 2,
pp. 297–309, 2007.

[27] R. Garcı̀a-Castro and E. al., Web Semantics: Science, Services and
Agents on the World Wide Web, Special Issue on Evaluation of Semantic
Technologies. Elsevier, 2013, vol. 21.

[28] C. Bizer and A. Schultz, “The Berlin SPARQL Benchmark,” Interna-
tional Journal on Semantic Web & Information Systems, vol. 5, no. 2,
pp. 1–24, 2009.

[29] M. Murth, D. Winkler, S. Biffl, E. Kühn, and T. Moser, “Performance
Testing of Semantic Publish / Subscribe Systems,” Journal Of Web
Semantics, pp. 45–46, 2010.

[30] M. Murth, “K{ü}hn, e.: A Semantic Event Notification Service for
Knowledge-Driven Coordination,” in Proc. of 1st Int’l. workshop on
emergent semantics and cooperation in open systems (ESTEEM), co-
operation with the 2nd Int’l. Conf. on Distributed Event-Based Systems
(DEBS 2008), Rome, Italy, 2008.

[31] J. Honkola, H. Laine, R. Brown, and O. Tyrkko, “Smart-M3 infor-
mation sharing platform,” in The IEEE symposium on Computers and
Communications. IEEE, 2010, pp. 1041–1046.

[32] D. Manzaroli, L. Roffia, T. S. Cinotti, E. Ovaska, P. Azzoni, V. Nannini,
and S. Mattarozzi, “Smart-m3 and osgi: The interoperability platform,”
in Computers and Communications (ISCC), 2010 IEEE Symposium on.
IEEE, 2010, pp. 1053–1058.

[33] “Redsib,” [retrieved: April 2016]. [Online]. Available:
https://sourceforge.net/projects/smart-m3/files/Smart-M3-
RedSIB 0.9.2/

[34] Y. Guo, A. Qasem, Z. Pan, and J. Heflin, “A requirements driven
framework for benchmarking semantic web knowledge base systems,”
IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 2,
pp. 297–309, 2007.

[35] Y. Guo, Z. Pan, and J. Heflin, “Lubm: A benchmark for owl knowledge
base systems,” Web Semantics: Science, Services and Agents on the
World Wide Web, vol. 3, no. 2, pp. 158–182, 2005.

[36] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel, “Sp2̂bench: A sparql
performance benchmark,” in 2009 IEEE 25th International Conference
on Data Engineering, March 2009, pp. 222–233.

[37] M. Ley, “The dblp computer science bibliography: Evolution, research
issues, perspectives,” in String Processing and Information Retrieval.
Springer, 2002, pp. 1–10.

[38] T. Berners-Lee and D. Connolly, “Notation3 (n3): A readable rdf
syntax,” W3C Team Submission: http://www. w3. org/TeamSubmission,
no. 3, 1998.

[39] C. Bizer and A. Schultz, “The berlin sparql benchmark,” 2009.
[40] M. Murth, D. Winkler, S. Biffl, E. Kühn, and T. Moser, “Performance

testing of semantic publish/subscribe systems,” in OTM Confederated
International Conferences” On the Move to Meaningful Internet Sys-
tems”. Springer, 2010, pp. 45–46.

[41] “Ioe.” [Online]. Available: http://www.artemis-ioe.eu/ [retrieved: April
2016]

[42] “Arrowhead ahead of the future,” http://www.arrowhead.eu/ [retrieved:
April 2016].

[43] “Chiron.” [Online]. Available: http://www.unibo.it/en/research/projects-
and-initiatives/unibo-projects-under-7th-framework-
programme/cooperation-1/information-and-communication-technology-
ict-1/chiron [retrieved: April 2016]

[44] A. D’Elia, F. Viola, F. Montori, M. Di Felice, L. Bedogni, L. Bononi,
A. Borghetti, P. Azzoni, P. Bellavista, D. Tarchi et al., “Impact of
interdisciplinary research on planning, running, and managing electro-
mobility as a smart grid extension,” Access, IEEE, vol. 3, pp. 2281–
2305, 2015.

[45] A. Varfolomeyev, D. Korzun, A. Ivanovs, and O. Petrina, “Smart
personal assistant for historical tourism,” in RECENT ADVANCES in
ENVIRONMENTAL SCIENCES and FINANCIAL DEVELOPMENT. 9-
15 Nov, 2014, 2014, p. 9.

[46] A. Smirnov, A. Kashevnik, S. I. Balandin, and S. Laizane, “Intelligent
mobile tourist guide,” in Internet of Things, Smart Spaces, and Next
Generation Networking. Springer Berlin Heidelberg, 2013, pp. 94–
106.

[47] F. Morandi, L. Roffia, A. DElia, F. Vergari, and T. S. Cinotti, “Redsib:
a smart-m3 semantic information broker implementation,” in Proc. 12th
Conf. of Open Innovations Association FRUCT and Seminar on e-
Tourism. SUAI, 2012, pp. 86–98.

[48] F. Viola, A. D’Elia, L. Roffia, and T. Salmon Cinotti, “A modular
lightweight implementation of the smart-m3 semantic information bro-
ker,” in 18th FRUCT, 2016, pp. 370–377.

[49] I. V. Galov, A. A. Lomov, and D. G. Korzun, “Design of semantic
information broker for localized computing environments in the internet
of things,” in Open Innovations Association (FRUCT), 2015 17TH
Conference of. IEEE, 2015, pp. 36–43.

[50] D. Crocker, “Standard for the format of ARPA Internet text messages,”
Internet Requests for Comments, RFC Editor, RFC 822, August 1982.
[Online]. Available: https://tools.ietf.org/html/rfc822

196Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

