
Hybrid Client/Server Rendering with Automatic Proxy Model Generation

Jens Olav Nygaard
and Jon Mikkelsen Hjelmervik

SINTEF Digital
Applied Mathematics

Norway
Email: Jens.O.Nygaard@sintef.no,
and Jon.M.Hjelmervik@sintef.no

Abstract—A common problem in remote rendering setups is that
of temporarily insufficient bandwidth and latency. For a proper
experience of immersiveness, at least some rendering should be
presented to the user, and it should appear to be responsive to
user input, even in the presence of connection glitches. The all too
familiar spinning hourglass symbol, or equivalent, will degrade
such an experience. With the advent of Virtual Reality (VR) and
Augmented Reality (AR), solutions to this become important even
though connectedness in general is improving. We are dealing
with a remote rendering of three-dimensional (3D) geometry
being pushed to a lesser client, and what we in essence do is
to replace a spinning hourglass symbol with an automatically
client-generated approximation of the 3D geometry rendered on
the client, responding to client-recorded user input. We call this
a proxy model. Our main result is a system for automatically
producing such proxy models on the client, from received images
and depth buffers only, for showing on the client when remotely
rendered frames do not arrive sufficiently fast.

Keywords–Client-server; remote rendering; high latency; low
bandwidth

I. INTRODUCTION

Hand in hand with increasingly powerful rendering en-
gines comes ever increasing requirements on computational
accuracy, power efficiency, data sizes, scaling properties, etc.
This is also reinforced by popular cloud-based approaches and
wireless usage patterns. An effect of this is that interactivity
still is a difficult issue. We consider a client/server model
for 3D rendering, addressing latency, bandwidth and scaling
problems in a novel way.

We introduce a proxy model, defined as a temporary model
to be shown and manipulated locally on a client while waiting
for the appropriate image from a connected server. Producing
such proxy models can be difficult for many kinds of 3D
data, like in our main case in which we have an oil reservoir
viewer [1] that renders large corner point grids, together with
faults, oil wells, and more; see Figure 1 for an example of
both a full server-side rendering, and automatically generated
proxy models rendered in Google Chrome. Our solution is to
pass depth information from the server along with ordinary
rendered images. From this, a rudimentary 3D model is built,
and with the Red, Green and Blue (RGB) image as a texture,
this model can be manipulated and rendered on the client
while waiting for the next update from the server. If the
client does not change the position or orientation of the model
too much, this proxy model rendering integrates seamlessly
with the slower stream of server-rendered frames. Even if

bandwidth and latency is not a problem, it may be desirable
to let a server of limited capacity serve many simultaneous
users, hence limiting the effective server time available for
each one. Suitable scaling may still be achieved using our
solution. This is currently being commercialized as a part of
the result of a recently finished European Union (EU) project
called CloudFlow [2].

In Section II, we review some previous and related work,
before we consider our contribution in Section III. This is
further split into three subsections, in Subsection III-A we
consider the server side part of the system, in Subsection III-B,
the client side and in Subsection III-C we consider automatic
parameter tuning during use of the system. We discuss results
in Section IV, before we finally sum up in Subsection V.

II. PREVIOUS WORK

Our approach has some similarities to Image Based Render-
ing (IBR) techniques [3], with the difference that an important
IBR problem would be the reconstruction of a depth map
from images, while we have access to the full depth map
from a rendering pass. Another way to use depth maps similar
to what we do, is for “immersive streaming”, see, e.g., [4],
where focus is on depth map compression, an issue that we
also consider. Another work focused on similar streaming and
geometry compression, is Teler [5]. Also, [6] contains some
of the same ideas as our work, with respect to image-based
rendering acceleration. A very early work aiming at the same
kind of “inter-frame rendering”, is Mark et al. [7]. Here,
several frames are warped, and subsequently combined, in
order to avoid large unpainted areas caused by occlusion. This
corresponds to our use of several proxy models, each from
a pair of (rgb, depth)-images, the main difference being that
they work on separate pixels, while we use larger, textured
“splats”. Our method avoids their slightly complicated mesh-
ing, discontinuity detection and final image composition stage.
Common to many IBR-algorithms is also that of stitching
together 3D or 2.5D point clouds. We could do this for our
2.5D maps fetched from the server, but it is unclear if the
benefit would outweigh the cost. Our approach differs from
many similar ones, in that we use existing depth maps to distill
and render temporary geometry, rather than retrieveing the
depth maps from images. We observe that these 2.5D height
maps are exactly what “3D cameras” (time-of-flight and other
range image sensors) produce, but most authors considering
these are typically building more complex geometries before

37Copyright (c) IARIA, 2017. ISBN: 978-1-61208-598-2

UBICOMM 2017 : The Eleventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

a) b) c)

Figure 1. Oil reservoir viewer showing one server-rendered and two client-rendered images of automatically generated and slightly rotated proxy models.
For (b), parameters are chosen to produce the best possible image, and in (c) we want to highlight artifacts and implementational details. See the text for

further discussion.

visualization, see [8]. Another approach is that of [9]. They
use websockets where we use the http protocol, a more
significant difference is that we get away with transferring a
lot less data due to our adaptive compression ratio depending
on continuous bandwidth and latency measurements. In [10],
Pajak et al. considers remote rendering and streaming of frames
rendered from a dynamical 3D model, we are quite agnostic
to the source of imagery. Their setup requires more powerful
clients than ours, due to the use of the Open Graphics Library
(OpenGL) vs. Web Graphics Library (WebGL), but they will
also have higher fidelity. A special case is provided for in the
rendering of stereo images. In this case, the 3D disparity is
limited, while the rendering cost is doubled, since two views
per frame is needed. In [11], this is exploited to make a solution
tailored to such stereo synthesis; performance approaches that
of rendering non-stereo, with a minimization of depth disparity
artifacts. Occlusion and disocclusion holes are avoided by
warping quads rather than pixel and filling in with previous
images.

III. THE AUTO PROXY ALGORITHM

Since the depth buffer is a height map seen from the
observer, it does not contain information about occluded scene
elements. Our approach assumes that small transformations
of this height map still will give good approximations of the
scene. In Figure 2 below, a sequence of three server-rendered
images (thick lines) is shown, together with intermediate
client-rendered proxy models with different features that will
be discussed in Section III-B.

A. The server side

The server renders the 3D model into a framebuffer, and
in the process generates a depth image that we also send to
the client. Since this adds to the data being sent, it must be
kept to a minimum. We have found that reducing the spatial
resolution of the depth image (for instance by a factor of
1/16) only degrades the proxy model imperceptibly. We also
encode each depth value in the range [0, 1] as a 16 bit fixed
point number, and the bundling of the depth image with the
RGB image then imposes just a small data overhead. Further
compression may bring this down even more, but the cost
of compression/decompression must also be considered. One
proposed solution is to be found in [12], which promises to
be fast both for the compression and decompression stages.

(a) Low frame rate (b) Initial proxy model

(c) Client-generated frame (d) With texturing

(e) Screen-space-sized splats (f) With intra-splat depths

Figure 2. Bird’s view of 3D model (solid lines) and proxy
model renderings.

B. The client side
When the client receives an RGB and depth image, together

with view transformations, it builds a proxy model from this.
This model can then be transformed and rendered directly, or
it can be combined with other proxy models the client already
has in store, see Section III-B2.

As indicated by Figure 2 (b), the received height map does
not allow us more than concluding where a set of points belong
on the 3D model, i.e., we have little topologic information.
Since the information from the depth map can only contain
the foremost point along any ray from the observer, it is said
to be in 2.5D, as opposed to 3D. The simplest thing the client
can do, is just to transform and render the set of 3D points with
color sampled from the server-rendered image, as is illustrated
in Figure 2 (b).

Rendering a 3D point for each depth fragment available
may tax a thin client, and it may be necessary to use a smaller
number of primitives and instead render each with a larger
number of pixels on the client side, a splat. A set of such splats
for a given depth image we call a proxy model. By rendering
splats, we get fewer “false connections” than if we connect
3D points and reconstruct topology, but we risk getting more
“holes” in our models. We can render each splat as a fixed
geometry, e.g., a disk or rectangle, with the correspondig color

38Copyright (c) IARIA, 2017. ISBN: 978-1-61208-598-2

UBICOMM 2017 : The Eleventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

from the image, see Figure 2 (c), where we have introduced a
transformation local to the client. We will briefly describe some
improvements to this. Note that other possibilities include
building and maintaining a 3D occupancy mesh, computing
a distance field from which iso-surfaces can be extracted, etc.

1) Texturing: Each splat produces many client pixels, ne-
cessitating an “intra-splat” fragment texturing for which we
need a local texture coordinate transform. A first approxima-
tion is for the client to assume that the corresponding part
of the server’s model is planar in a region around the given
point. If this is the case, a local 2D texture transformation
will provide a good approximation to the intra-splat texturing
to be performed on the client. Let Pc and Ps be projection
matrices on the client and server, respectively, and Mc and
Ms corresponding view matrices. For the splat centered in
vi,j = (xj , yi, zi,j), to be centered on the client’s canvas at
screen coordinate pi,j = PcMcM

−1
s P−1

s vi,j = Uvi,j , the
texture coordinate transformation to be used is,

T =

(
1
nx

0

0 1
ny

)(
sx sy

)−1
(w
nx

0

0 h
ny

)
= A

(
sx sy

)−1

B,

where A maps the “client’s splat region” (in [0, 1]2) to the cor-
responding texture area, (sx sy)−1 maps the “client’s screen
space splat area” to [0, 1]2, and B provides a scaling factor to
fill the viewport of size w× h with nx × ny splats laid out in
a grid, when Mc = Ms. We obtain sx and sy by evaluating
proxy model positions followed by perspective division and
transformation into window coordinates,

p = U

x
y
d
1

,px+∆x = U

x + ∆x
y

d∆x

1

and py+∆y = U

 x
y + ∆y
d∆y

1

,
where d = 2D(x, y)−1, d∆x = 2D(x+∆x, y)−1, and d∆y =
2D(x, y+∆y)−1 are depths sampled from the received depth
buffer D and transformed to [−1, 1]. With a w-component set
to one, we have in effect done a perspective division, so that
we are in clip space and multiplication with U is appropriate.
Note that ∆x and ∆y are not unique, we use

∆x = nx/width(D) and ∆y = ny/height(D),

but something larger may also be used. These are used for
looking up depth image samples, and the calculation of sx
and sy is really a gradient approximation, so we should not
make them too large either.

This leaves us p, px+∆x and py+∆y in clip coordinates,
and from this we get corresponding window coordinates s,
sx+∆x and sy+∆y , from which we finally get splat spanning
vectors

sδ = sx+δ − s =
L

2δ

(
px+δ.xy

px+δ.w
− p.xy

p.w

)
,

with δ = ∆x or δ = ∆y, L is viewport size, either w or h, and
we have used the “shader notation” for vector components. The
client renders a large glPoint for each splat, with texture
coordinates (s, t)′, and each fragment then looks up the server-
rendered image at position(

s
t

)
+ T

(
u
v

)
=

(
s
t

)
+ T

(
glPointCoord− 1

2

)

where (u, v) are “intra-splat texture coordinates”. When the
assumption that the geometry is locally planar does not hold,
e.g., if the splats are very large, or they originate from a
curved or non-smooth part, this may look slightly odd, see
Figure 3. The figure shows splats for which depths are sampled
on different planar regions at an angle to one another, causing
contortions when large splats cover more than one such planar
region.

(a) Server-rendered (b) PcMc = PsMs

(c) PcMc 6= PsMs

Figure 3. Notice the corner and edges, parameters are chosen to display
effects of different planes meeting at edges.

When the geometry is not planar, T produces the wrong
result for parts of a splat. Two ways to remedy this could
be to choose either more and smaller splats, or introduce
more complex texture transformations. Note that using a more
sophisticated texture coordinate transform may amount to
performing the same work as for more and simpler transforms.
The latter may be regarded as exactly a better “global” texture
transform implementation.

2) Other splat considerations: Splat sizing Each splat
should be rendered into a number of client pixels according
to the new splats’ 3D position. To achieve this, we use the
vectors s∆x and s∆y from the previous section, and in addition,
we scale the splats up a bit so that they overlap. Hence, we
can render rectangular window-aligned splats with less risk of
getting uncovered areas when interactively rotating and scaling
the model on the client. In most cases this removes the problem
visualized in Figure 3.

Splat depth fragments For larger splats, it makes sense
to also compute and use depth fragments on the client. The
“intra-splat” depth values can easily be fetched from the depth
image, just as the texture is looked up for color. Not all clients
support this WebGL extension.

Splat set replacement algorithms We mainly concern
ourselves with proxy models defined as sets of splats, and
it makes sense to keep a set of such models on the client,
then we may combine them to cover larger ranges of client-
side transformations. One can imagine a plethora of splat set
replacement algorithms. We have tested three approaches that
all retain a constant number of proxy models. The first is to
replace the one with a viewing direction differing the most
from the newly received model. The second simply replaces

39Copyright (c) IARIA, 2017. ISBN: 978-1-61208-598-2

UBICOMM 2017 : The Eleventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

the oldest one in store. The third replaces a proxy model k
if the replacement results in the following objective function
being reduced,

coverage =

n∑
i=1

n∑
j 6=i

(6 (camdiri, camdirj)2, (1)

where n is the number of proxy models available, camdir
is the direction in which the camera was looking when a
particular model was generated, and the model to be replaced
is the one that minimizes (1) after replacement.

C. Auto-tuning
It is important that the process of generating and send-

ing proxy model data from the server itself does not slow
down transmission. There are mainly three sources of delay
for server-rendered images to the client; high latency, low
bandwidth, and slow server-rendering. In the first case, it seems
prudent to have a good proxy model on the client, which can
be used for longer time and for a wider range of client-side
transformations. In the two other cases, it is important for
the proxy model generation/transmission to be cheap/fast, both
in order to get the proxy model to the client and keep from
delaying the server-image more than necessary. These demands
are not always compatible.

We have adopted an adaptive specification of proxy model
data from the server involving a more light-weight image
(lossy Joint Photographic Experts Group (JPEG) compression
with adaptive quality control) while interaction is ongoing.
Also, reduced resolution of the depth buffer sent from the
server is used. Another possibility is to let the client dynami-
cally set the number of splats, number of proxy models, etc.

IV. RESULTS AND DISCUSSION

We have tested the proposed algorithms through the Tinia
framework [13], which is a programming framework for setting
up and managing client/server based interactive visualization
applications. As client, we use Google Chrome, code is written
in standard Javascript/WebGL. The auto-proxy implementation
is invisible to the application, so all existing Tinia-applications
will have the feature available. The algorithm is minimally
intrusive in that only the depth buffer will have to be added to
the rendering output of the application. We have tested several
smaller test cases, but also on a larger oil reservoir viewer.

The reservoir viewer utilizes several OpenGL Shading
Language (GLSL) shaders to render reservoir cells, boundaries,
tubular wells, etc., and visualizes a 3D model that is not trivial
to reduce in complexity. It is typically also very large, so
rendering it on a thin client is prohibitive. With the automatic
proxy model, we obtain interactive frame rates with limited
connection from a lightweight client. For a comparison of
a server-rendered image and a client-rendered proxy model
that is slightly rotated on the client, see again Figure 1. In
Figure 1 (a), the full server-rendered image is shown, and in (b)
and (c), a slightly (about 10 degrees) rotated proxy model is
rendered on the client. In (b), parameters are chosen for best
possible results, while in (c), we want to highlight effects, so it
uses a small number of non-overlapping large splats. One can
easily spot areas not well covered, and areas where the texture
coordinate transform T does not produce optimal results.

V. CONCLUSION AND FUTURE WORK

The most attractive feature of the method described is
the automated generation of the proxy model. Problems with
compression and simplification of existing geometries is by-
passed altogether. The automatic proxy model implementation
is invisible to the application. There are several directions in
which we would like to follow up and improve this concept,
a couple of these are,

• Proxy model replacement algorithms Obtaining
good results with a minimal set of proxy models.

• Depth compression We would like to ivestigate other
approaches than just truncation, see, e.g., [12].

• Deferred shading With a normal map more advanced
shading could be done on the client. Such a map could
also be constructed from the depth map.

REFERENCES
[1] SINTEF, “Cloudviz — direct visualization in the cloud,” Project

website: https://www.sintef.no/projectweb/heterogeneous-computing-
expired/projects/cloudviz/, January 2010, website, retrieved: 2017-10-
18.

[2] CloudFlow: Computational cloud services and workflows for agile
engineering. Seventh Framework Programme (FP7) under grant
agreement number 609100. Website, retrieved: 2017-10-18. [Online].
Available: http://eu-cloudflow.eu/ (2017)

[3] M. M. Oliveira, “Image-based modeling and rendering techniques: A
survey.” RITA, vol. 9, no. 2, 2002, pp. 37–66.

[4] P. Verlani and P. J. Narayanan, “Proxy-based compression of 2 1
2

-d
structure of dynamic events for tele-immersive systems,” in Proceedings
of 3D Data Processing, Visualization and Transmission (3DPVT),
Atlanta, GA, USA, June 18-20 2008.

[5] E. Teler, “Streaming of complex 3d scenes for remote walkthroughs,”
Master’s thesis, School of Computer Science and Engineering, The
Hebrew University of Jerusalem, December 2001.

[6] I. Yoon and U. Neumann, “Web-Based Remote Renderingwith IBRAC
(Image-Based Rendering Acceleration and Compression),” Computer
Graphics Forum, 2000, pp. 321–330.

[7] W. R. Mark, L. McMillan, and G. Bishop, “Post-rendering 3d
warping,” in Proceedings of the 1997 Symposium on Interactive 3D
Graphics, ser. I3D ’97. New York, NY, USA: ACM, 1997, pp. 7–ff.
[Online]. Available: http://doi.acm.org/10.1145/253284.253292

[8] A. Kolb, E. Barth, R. Koch, and R. Larsen, “Time-of-flight sensors
in computer graphics (state-of-the-art report),” in Proceedings of
Eurographics 2009 - State of the Art Reports. The Eurographics
Association, 2009, pp. 119–134, retrieved 2017-10-18. [Online].
Available: http://www2.imm.dtu.dk/pubdb/p.php?5801

[9] C. Altenhofen, A. Dietrich, A. Stork, and D. Fellner, “Rixels: Towards
secure interactive 3d graphics in engineering clouds,” Transactions on
Internet Research (TIR), vol. 12, no. 1, Jan. 2016, pp. 31–38.

[10] D. Pajak, R. Herzog, E. Eisemann, K. Myszkowski, and H.-P. Seidel,
“Scalable remote rendering with depth and motion-flow augmented
streaming,” Computer Graphics Forum, vol. 30, no. 2, 2011,
pp. 415–424. [Online]. Available: http://dx.doi.org/10.1111/j.1467-
8659.2011.01871.x

[11] P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, and H.-P. Seidel,
“Adaptive image-space stereo view synthesis,” in Vision, Modeling and
Visualization Workshop, Siegen, Germany, 2010, pp. 299–306.

[12] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Trans. Vis. Comput. Graph., vol. 20, no. 12, 2014, pp. 2674–2683.
[Online]. Available: http://dx.doi.org/10.1109/TVCG.2014.2346458

[13] C. Dyken et al., “A framework for opengl client-server rendering,” 2013
IEEE 5th International Conference on Cloud Computing Technology
and Science, 2012, pp. 729–734.

40Copyright (c) IARIA, 2017. ISBN: 978-1-61208-598-2

UBICOMM 2017 : The Eleventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

