
ASUT : Advanced Software Update for Things

Juhyun Choi

Samsung Electronics and
Sungkyunkwan University

Suwon, South Korea
Email: honest.choi@samsung.com

Changue Jung, Ikjun Yeom and Younghoon Kim

Sungkyunkwan University
Suwon, South Korea

Email: {ckjung1987, ijyeom, kyhoon}@gmail.com

Abstract—Due to severe competition among manufacturers,
timely firmware updates have become one of the most important
issues. The constantly increasing number of things connected
to the Web leads to high traffic contention in shared networks
that causes poor service quality. In this paper, we propose an
efficient software update system for smart things. The burden
of downloading updates is offloaded to an always-on in-home
hub. This delegation achieves not only avoidance of contention,
but also the decrease of unnecessary transfer requests. Updates
are transferred to the registered smart things without harming
active service traffic. To achieve these goals, we implement a
transport scheme based on Quick User Datagram Protocol (UDP)
Internet Connections (QUIC) protocol that is known as emerging
transport layer for Hypertext Transfer Protocol (HTTP). Our
experimental results show that the proposed scheme is completely
backed off with the existence of active service traffic and quickly
completes the transfers when no others are active.

Keywords–protocol; transport; software update.

I. INTRODUCTION

Recently, the rapid growth of smart things enforces manu-
facturers to be in a hurry when releasing their products. As a
result, flawed software is often shipped and on-time software
updates become one of the most urgent and important issues
among manufacturers and service providers. Although both
online and offline updates are possible, updates through the
Internet occupy a dominant portion thanks to the develop-
ment of network infrastructure and easier user scenarios for
deploying them. A naive server-client communication model
is commonly used for updating things, and updating scenarios
can be categorized in two distinctive ones. In the first category,
downloading firmware and/or applying it occurs when the
things are in standby mode. Timely firmware updates for
things, however, become hard to be achieved in this scenario
due to efforts for reducing standby power based on this
report [1]. So, not-in-use things would be unplugged and
updating in the standby mode would not be realized. In the
second scenario, things are updated only when they are in-use.
Downloading and updating are initiated when users actually
use the things. Regarding large sizes of firmware, however,
it makes updating procedures unreliable due to unpredictable
users’ on-off patterns. Partial firmware updating is one alter-
native, but it is not considered as a realistic option because
of its high implementation complexity. In case of always-on
small things, keeping a connection for updating is a burden
because of insufficient processing power. Also, in the view
of service quality with shared network, numerous Hypertext
Transfer Protocol (HTTP) requests congest the network. This
contention causes a fluctuation in request latency.

Figure 1. Overall ASUT Architecture

In this paper, we consider an alternate efficient firmware
updating system for smart things. In our proposed scheme, an
always-on thing (a refrigerator in this paper) is exploited as a
software update hub onto which smart things can offload their
firmware downloading. Once the hub completes downloading
firmware, it starts updating things. As mentioned above, the
size of firmware becomes large and transferring it with conven-
tional transport protocols may cause severe contention between
things’ traffic and firmware transfer. Under the assumption that
in-home network is separated from the Internet, a new transport
protocol is proposed to mitigate this contention. The proposed
protocol achieves high transfer rate in idle network and uses
a quick backoff algorithm not to harm the users’ quality of
network usage. Another advantage of our proposed scheme is
that stored firmware can be reused when identical things reside
in shared network. This aspect not only enhances firmware
accessibility but also lowers update servers’ loads which suffer
from repeated update requests.

The rest of this paper is structured as follows. In Section
2, we illustrate the design of our proposed scheme. Section
3 shows the result of the proof-of-concept tests. Finally, in
Section 4, the conclusion of our work is described.

II. ASUT DESIGN

In perspective of network, a network software update can
be treated as one large file transfer that needs high reliability.
But, the conventional network update scheme has no way to
consider the firmware transfer in a special manner. To transfer
firmware efficiently with less damage to active services, we
designed a system as described in Figure 1, and named it
Advanced Software Update for Things (ASUT).

ASUT is an advanced network update system for smart
things. ASUT offloads firmware downloading to the dedicated
hub residing in home and efficiently distributes it to internal
devices without degrading the network quality of running
services. All firmware requests are delegated to the software

127Copyright (c) IARIA, 2017. ISBN: 978-1-61208-598-2

UBICOMM 2017 : The Eleventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

0 5 10 15 20
Time (sec)

0

20

40

60

80

100

120

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Firmware Transfer
Running Service

Figure 2. Contention Simulation in Conventional Network

update hub, which has to be an always-on thing, normally a re-
frigerator. To avoid congestion, firmware downloading is post-
poned until the network is idle. This centralization achieves
not only high utilization of bandwidth, but the decrease of
redundant transfers from identical things. For the distribution
of downloaded firmware, we modified Quick User Datagram
Protocol (UDP) Internet Connections (QUIC) [2] protocol. In
order to steer the aggressiveness of the transfer, we utilize the
combination of the number of the virtual connections and pac-
ing mechanism [3]. The number of virtual connections implies
the aggressiveness of a flow, and we manipulate it to control
the aggressiveness in a coarse-grained manner. Setting a larger
number of virtual connections empowers aggressiveness to the
flow. So, our protocol dynamically adjusts it based on the
number of packet loss.

To manage aggressiveness in a fine-grained manner, pacing
is employed. Pacing is aware of the time intervals between
two consecutive packet-send-events, and it determines when
to send a next packet. We exploit pacing to make ASUT
to be conservative when there are other active flows in the
same network. Otherwise, ASUT should utilize maximum
bandwidth. Specifically, we let the pacing rate increase after a
large number of successful packet transfers (slow increase) and
we let it decrease sharply with only a few packet losses (fast
backoff). These features are designed to achieve the maximum
throughput in idle conditions, while staying at a minimum
during contention.

III. PRELIMINARY EVALUATION

In this section, we will show the result of proof-of-concept
tests to verify the ASUT transport algorithm. The test is
conducted in a dumbbell topology that employs a bottleneck
link featuring 100Mbps and a queue size of bandwidth delay
product. Our server and client implementation are based on
proto-quic [4], and Ubuntu 14.04 distribution is installed on
nodes. One server mimics the software update hub in the test,
and the other one acts as contending running services.

Figure 2 shows how the conventional firmware transfer
competes with an existing service flow. As soon as the transfer
starts, the existing flow immediately yields the bandwidth. This
implies existing HTTP requests are delivered with high latency.
And, if the active traffic is for video streaming, this bandwidth
sharing may lower streaming bitrate or cause the distortion of
video streaming, which severely spoils user experience.

The test in Figure 3 illustrates the effect of ASUT. Once the
network is dominated by the running service, the transport pro-
tocol of ASUT operates to maintain the minimum bandwidth as
shown in Figure 3(a). If packet losses are detected frequently,
ASUT decreases the pacing rate that contributes to decrease

0 10 20 30
Time (sec)

0

20

40

60

80

100

120

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Firmware Transfer
Running Service

(a) Less Damages in Contention with ASUT

0 5 10 15 20
Time (sec)

0

20

40

60

80

100

120

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Firmware Transfer
Running Service

(b) Efficient Transfer in Idle Network with ASUT

Figure 3. Contention with ASUT

the bandwidth. On the other hand, the maximum bandwidth
is achieved in idle network as shown in Figure 3(b). Once
the flow maintains high pacing rate without the packet losses,
ASUT accelerates the flow by the increase of the number of
virtual connections.

IV. CONCLUSION

We proposed an efficient and reliable software update
system for smart things, named ASUT. In ASUT, jobs for
downloading software updates are offloaded to an in-home hub
and those updates are transferred to things without harming
other active HTTP traffic. A transport protocol, designed based
on QUIC, achieves quick transfer between the hub and devices
with no harm to other protocols or services. Our ASUT helps
both network utilization and service quality in a flood of smart
things. For the future works, we have plans to precisely design
the communication protocol and implement ASUT on real
devices.

ACKNOWLEDGMENT

This work was supported by National Research Foun-
dation (NRF) of Korea grant funded by the Korea gov-
ernment (MSIP) (NRF-2016R1E1A1A01943474 and NRF-
2016R1C1B1011682).

REFERENCES
[1] Harrington et al., “Standby energy: Building a coherent international pol-

icy frameworkmoving to the next level,” Stockholm: European Council
for an Energy Efficient Economy, 2007.

[2] R. Hamilton, J. Iyengar, I. Swett, and A. Wilk, “Quic: A udp-based
secure and reliable transport for http/2,” IETF, draft-tsvwg-quic-protocol-
02, 2016.

[3] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the perfor-
mance of tcp pacing,” in INFOCOM 2000. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 3. IEEE, 2000, pp. 1157–1165.

[4] [Online]. Available: https://github.com/google/proto-quic [retrieved:
October, 2017]

128Copyright (c) IARIA, 2017. ISBN: 978-1-61208-598-2

UBICOMM 2017 : The Eleventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

