
MQTT-based Translation System
for IoT Interoperability in oneM2M Architecture

Jiwoo Park, Geonwoo Kim and Kwangsue Chung
Department of Electronics and Communications Engineering

Kwangwoon University, Seoul, Korea
e-mail: {jwpark, gwkim}@cclab.kw.ac.kr, kchung@kw.ac.kr

Abstract—The key challenge for the future Internet of Things
(IoT) is interoperability between IoT systems and platforms. To
support the interconnection and interoperability between
heterogeneous IoT systems and services, open-source
Application Programming Interfaces (APIs) is one of the key
features of common software platforms for IoT devices,
gateways, and servers. The oneM2M standard is a global
initiative led jointly by major standards organizations in order
to standardize a common platform for globally-applicable and
access-independent IoT services. In this paper, we present the
design and open-source implementation of an IoT translator
that enables heterogeneous IoT devices to be interoperable in
oneM2M architecture. The translation system abstracts basic
functionalities from IoT devices and interconnects them within
oneM2M platform through MQTT, which is a publish/subscribe
messaging protocol for the lightweight M2M communication.
The implementation has been validated in a real test case and
proved the interoperability by testing tools.

Keywords-Internet of Things; interoperability; oneM2M;
MQTT.

I. INTRODUCTION

The Internet of Things (IoT) is a large and heterogeneous
collection of networks, protocols, devices, systems, services,
solutions, and users. Advances in low cost processors have
been a key enabler of intelligent automation devices. IoT takes
the next step of networking these devices, resulting in
intelligent environments. With the heterogeneity of
independent platforms, a numerous of protocols have been
developed. Many of the protocols will never be known as they
are proprietary. But even within standardized protocols, there
is a large variety to choose from. They are the result of
evolving requirements and technology, leading to a highly
dynamic ecosystem of co-existing protocols unable to work
with each other. Interoperability in such an ecosystem is a
major challenge, and yet it is a crucial aspect of successful IoT.
However, many issues are still open in this domain, and the
interest has constantly increased in the recent years both in the
research and industrial communities [1].

One of the critical points for IoT deployment is the
interoperability between devices and applications across
multiple architectures, platforms and networking technologies.
As a matter of facts, the proliferation of competing
communication protocols and data representations across the
device ecosystem makes it difficult for smart things to be
easily integrated and cooperate with each other in a common

IoT network. Several IoT horizontal platforms are being
developed to overcome this issue; such platforms aim at
abstracting from the complexity of the hardware and the
networking sub-systems, so as to give smart things the ability
to automatically discover and communicate with each other,
and dynamically join and leave IoT proximal networks.
Examples of open-source frameworks currently being
developed by industries are the AllJoyn platform developed
by the AllSeen Alliance [2], IoTivity, sponsored by the Open
Connectivity Foundation (OCF) [3], and Google’s Thread [4]
and Weave [5]. Standard platforms are also being specified
like, e.g., oneM2M [6], while many others have been
developed as a result of research projects (e.g., EU FIWARE
[7] and BETaaS [8]).

There exist many relatively mature IoT communication
protocols, such as HTTP, Constrained Application Protocol
(CoAP) [9] and Message Queueing Telemetry Transport
(MQTT) [10], that may be already applied to pre-existing
successful IoT implementations and are not supported for the
future IoT framework. Replacing or updating IoT devices to
integrate them in such frameworks is not always a feasible
option due to device cost and other technical limitations. In
these cases, a middleware that behaves like a translator
between the pre-existing IoT platforms is therefore more
appropriate in order to address interoperability challenges.

In this paper, we present the design and open-source
implementation of a translation system that enables non-
oneM2M devices to be compatible with oneM2M systems.
The contribution of this paper covers the mapping of both IoT
resources into oneM2M entities, and MQTT messages into
oneM2M interface. The implementation of the translation
system is validated in a real test case, and proved to properly
work in a transparent manner.

The rest of the paper is organized as follows. Some
relevant related work is described in Section II. In Section III,
the design and architecture of the proposed system is
presented while Section IV illustrates some implementation
results. Finally, Section V offers concluding remarks.

II. RELATED WORK

Without standards, IoT systems and services would be
developed independently for different vertical domains,
causing high fragmentation problems and increasing the
overall cost for development and maintenance. In order to
mitigate the fragmented IoT ecosystem, several
industry/international standards organizations have come
together and published standard specifications on IoT systems.

137Copyright (c) IARIA, 2017. ISBN: 978-1-61208-598-2

UBICOMM 2017 : The Eleventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

A. oneM2M Standard

The oneM2M global initiative has made an effort to
standardize a common service layer platform for globally-
applicable and access-independent M2M/IoT services.
Swetina et al. summarized well the oneM2M standardization
activities [11]. The oneM2M first collected various
compelling use cases from a wide range of vertical business
domains. After that, it formulated requirements for the
oneM2M common service layer and then designed the system
architecture. The main goal of oneM2M is to define a globally
agreed M2M service platform by consolidating currently
isolated M2M service layer standards activities. The oneM2M
standard is organized into five technical working groups
focusing on M2M requirements, system architecture,
protocols, security, and management, abstraction and
semantics. The oneM2M standard adopted a RESTful
architecture, thus all services are represented as resources to
provide the defined functions.

Fig. 1 presents the oneM2M reference architecture model.
Considering a configuration scenario where oneM2M systems
are deployed, the oneM2M architecture divides M2M/IoT
environments into two domains (infrastructure and field
domain) and defines four types of nodes, which reside in each
domain: Infrastructure Node (IN), Middle Node (MN),
Application Service Node (ASN), and Application Dedicated
Node (ADN). Furthermore, the oneM2M architecture is based
on a layered model, which comprises the application layer, the
common service layer, and the underlying network service
layer, each of which is represented as an entity in the oneM2M
system. The Application Entity (AE) represents application
services located in a device, gateway, or server. The Common
Service Entity (CSE) stands for an instantiation of a set of
Common Service Functions (CSFs) that can be used by
applications and other CSEs. CSFs includes registration,
security, application, service, data and device management,
etc.

B. AllJoyn Framework

AllJoyn is an open source IoT software framework
developed under the guide of the AllSeen Alliance consortium
[12]. Its role is to handle the complexities of discovering
nearby IoT devices, creating sessions between them, and
communicating securely. AllJoyn can run on multiple
platforms and it supports multiple language bindings and
transports, so that devices and applications from different
manufacturers, running on different operating systems,
written with different language bindings have a common way
to interact to each other. The basic element of the framework
is the AllJoyn bus, which enables the exchange of marshaled
messages around the distributed system. AllJoyn provides its
own bus based on the D-Bus Wire protocol, an Inter-Process
Communication (IPC) and Remote Procedure Call (RPC)
mechanism, and extends it to support distributed devices.

The AllJoyn network comprises AllJoyn Routers, which
deliver messages within the network, and AllJoyn
Applications, which include the application code and the
AllJoyn Core Library. Applications implement and advertise
one or more service objects, each of which exposes its
functionality through AllJoyn interfaces. The framework

enables client applications to discover service objects
advertised on the network, and then to invoke methods and
properties, or to receive signals, provided by the interfaces. A
consumer application invokes methods through a proxy object,
which is a local representation of a remote service object.

C. MQTT

MQTT stands for message queuing telemetry transport.
Unlike CoAP, TCP, UDP, it is used because MQTT
specializes in low-bandwidth, high-latency environments; it is
an ideal protocol for M2M communication. Basically, there
are three components in MQTT: publisher, subscriber and
broker. Here, the process of receiving and publishing the data
is very much secure and accurate. Whenever the user wants to
check or go through any data it sends the request to broker and
upon receiving the request it sends to the publisher, it responds
to the requests and sends the data that is requested by the
subscriber and hence publishes the data, in overall process the
communication is secure and up to the topic of interest.
MQTT broker acts like a filter allowing only those data, which
are requested thereby saving the flow of ambiguous data.

III. PROPOSED MQTT-BASED TRANSLATION SYSTEM

Middleware is a common approach to addressing
interoperability. We developed a translation system as a
middleware in the oneM2M platform in order to interwork
with the non-oneM2M devices.

A. System Overview

The interaction between heterogeneous IoT systems
ensured by a translation middleware should be done in a
transparent manner, so that an application can communicate
with any devices in the foreign system as if those devices were
based on the same technology. Therefore, the design of the
translation system primarily involves how to map the
communication interface to a resource-oriented system based
on oneM2M. The translation middleware also entails mapping
both IoT resources into oneM2M entities, and MQTT
messages into oneM2M interface.

Fig. 2 shows the concept of the translation system. The
proposed system consists of things, a translation middleware,
a server, a validation tool and a user device. Things include

Figure 1. oneM2M reference architecture.

138Copyright (c) IARIA, 2017. ISBN: 978-1-61208-598-2

UBICOMM 2017 : The Eleventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

oneM2M-compatible devices and commercial IoT products
that are not compatible with oneM2M but support open-
source APIs and libraries. The translation middleware is
basically working as a MN-CSE to communicate with
oneM2M devices. For supporting non-oneM2M devices, the
interworking module is developed in the middleware using
open-source libraries supported by each IoT service platform.
The middleware abstracts data from connected non-oneM2M
things and translates their functionality to the oneM2M-based
resource structure. The server provides high-level features to
users; for example, registration and device management. To
verify and validate the translation function, the proposed
system runs several test tools for interoperability.

B. Design of MQTT-based Translation System

Since the oneM2M architecture adopted the Resource-
Oriented Architecture (ROA) model, the services and data that
oneM2M system supports are managed as a resource
information model. With the ROA concept, resources in the
ROA are uniquely addressed by the Uniform Resource
Identifier (URI), and the interactions with the resources are
supported by the basic four operations: create, retrieve, update,
and delete. The oneM2M system manages its resources as a
hierarchical structure as shown in Fig. 3. Starting from the root
of CSEBase, resources are created as child resources, which
represent services and data in the oneM2M system. When
accessing the resource, the address of the resource should be
represented as a hierarchical address that looks like the
resource structure. For example, considering the CONT1
resource, its address with which it can be accessed is
CSEBase/CSE1/AE1/CONT1. Additionally, oneM2M
specifies a service layer protocol and its protocol binding with
underlying delivery protocols including HTTP, CoAP and
MQTT.

The oneM2M standards are developed for creating
globally-applicable, access-independent IoT applications, but
there exists a huge number of non-oneM2M systems already
deployed across multiple domains. To interwork with the non-
oneM2M systems, the proposed translation system provides
non-oneM2M reference points and remapping the related data
model into the oneM2M-defined data model, which are
eventually exposed to other oneM2M systems. When
translating data models, a full semantic interworking between
two data models would be possible with the help of the related
protocol interworking, but otherwise, the encoded non-

oneM2M data and command messages will be packaged into
a list of oneM2M containers. Consequently, the oneM2M
applications need to know the protocol rules of the non-
oneM2M systems to decode and understand the content within
the containers.

Fig. 4 shows a sequence diagram of the MQTT-based
translation system. First, the middleware searches for IoT
devices through the Interworking Interface (II) module. After
searching for devices, the Abstraction (AS) module collects
device information and extracts features and functions from it.
The Translation (TR) module translates its functionality to the
oneM2M Resource Structure (RS). The Communication
Interface (CI) modules in the middleware and the server
subscribe a specific topic for the MQTT communication.
When the server receives a resource structure from the RS
module, the Device Management (DM) module first registers
newly added devices through a Registration (RG) module.
Users find IoT devices connected to the home network by
requesting a device list from the Discovery (DC) module.
Once users get the device list from the server, users can
control IoT devices by using a Remote Control (RC) module.
The control messages are translated to the corresponding
device APIs in the TR module. After performing users’
command, it needs to update the device status. Updating
process is performed in a similar way to the registration step
as we described above.

Figure 2. Concept of the proposed translation system.

Figure 3. oneM2M-based resource structure.

CSE1 AE1 CONT1

ACP1 AE2 CONT2

ACP2

CONT3

CSEBase

Figure 4. Sequence diagram of the MQTT-based translation system.

CI
Things

II
Middleware

AS TR RS CI CI
Server

RG DM DC CI
User

RC

Collects Device Information
Translates to oneM2M Structure

Makes Resource Structure

Publish(‶/oneM2M/req/AE/CSE/xml″, requestBody)

Requests for Creating AE and Set MQTT Topic

Subscribe(‶/oneM2M/req/AE/CSE/xml″)

Registers Device Information

Discovers Connected Devices

Publish(‶/oneM2M/req/AE/CSE/xml/forward″, requestBody)

Subscribe(‶/oneM2M/req/AE/CSE/xml/forward″)

oneM2M Message Decode and Fetch the Request Command
Translates to Device APIs

Controls a Device

Publish(‶/oneM2M/req/AE/CSE/xml″, requestBody)

Updates Device Information

Controls a Connected Device

Responses

139Copyright (c) IARIA, 2017. ISBN: 978-1-61208-598-2

UBICOMM 2017 : The Eleventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

IV. IMPLEMENTATION RESULTS

We conduct the implementation of the proposed system in
a real environment. The test case is set up with a translation
middleware, an IoT server and commercial IoT products, as
shown in Fig. 5. The proposed system is built on oneM2M
platforms, Mobius [13] and &Cube [14]. The translation
middleware is implemented on a Raspberry Pi 3, which is s a
credit-card sized single-board computer. The server runs an
open-source MQTT broker, Mosquitto [15], on a Linux PC to
interconnect with the middleware and users. We start with
interworking AllJoyn-enabled devices, such as smart light
bulbs and smart plugs. Then, we support various types of IoT
products, e.g., thermostat, air quality monitor, smart home
appliances.

To validate interoperability between IoT devices, we use
a web-based resource monitoring tool supported from the
oneM2M organization. When we access the server using the
monitoring tool, the oneM2M-based resource structure is
presented in a graphical form as shown in Fig. 6. If the
translation system works correctly, the resource of non-
oneM2M devices will be listed with oneM2M-compatible
devices. We have shown that all the devices connected to the
middleware works well in a real test case and can access their
resources by using the oneM2M monitoring tool.

V. CONCLUSION

In this paper, we presented the design and implementation
of a translation system that allows non-oneM2M devices to be
accessible in oneM2M systems. On the device side, each
device is connected to the middleware in order to advertise its
resources and functions. The translation middleware provides
an oneM2M-based hierarchical structure for each of these
resources, which is exchanged with the IoT server. The IoT
server is implemented as part of the translation system to
provide high-level IoT functions for users. The
implementation has been extensively tested in a real test case,
and is built on open-source libraries. Currently, the proposed
system supports a few commercial IoT services but the
interoperability with oneM2M systems is fully tested.

For future work, we plan to support other commercial IoT
solutions, especially sensor/actuation-type devices and voice-
activated services. We also plan to modify the proposed
system in order to satisfy the oneM2M release 2 specification.

ACKNOWLEDGMENT

This work was supported by Institute for Information &
communications Technology Promotion (IITP) grant funded
by the Korea government (MSIT). (No.2017-0-00167,
Development of Human Implicit/Explicit Intention
Recognition Technologies for Autonomous Human-Things
Interaction)

REFERENCES
[1] J. A. Stankovic, “Research directions for the Internet of

Things,” IEEE Internet of Things Journal, vol. 1, no. 1, pp. 3–
9, Feb. 2014.

[2] The AllSeen Alliance. [Online]. Available: https://
allseenalliance.org

[3] IoTivity. [Online]. Available: https://www.iotivity.org
[4] Thread. [Online]. Available: http://threadgroup.org
[5] Weave. [Online]. Available: https://developers.google.com/

weave
[6] oneM2M - Standards for M2M and the Internet of Things.

[Online]. Available: http://www.onem2m.org
[7] The FIWARE Catalogue. [Online]. Available: https://

catalogue.fiware.org
[8] C. Vallati et al., “BETaaS: A platform for development and

execution of machine-to-machine applications in the internet
of things,” Wireless Personal Communications, vol. 87, no. 3,
pp. 1071–1091, May 2015.

[9] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained
Application Protocol (CoAP),” RFC 7252, Jun. 2014. [Online].
Available: https://tools.ietf.org/html/rfc7252

[10] “Information technology – Message Queuing Telemetry
Transport (MQTT) v3.1.1,” ISO/IEC 20922:2016, Jun. 2016.

[11] J. Swetina, G. Lu, P. Jacobs, F. Ennesser, and J. Song, “Toward
a standardized common M2M service layer platform:
Introduction to oneM2M,” IEEE Wireless Communications,
vol. 21, no. 3, pp. 20-26, Jun. 2014.

[12] The AllJoyn Core Framework. [Online]. Available: https://
allseenalliance.org/framework/documentation

[13] J. Kim, S. Choi, J. Yun, and J. Lee, “Towards the oneM2M
standards for building IoT ecosystem: Analysis,
implementation and lessons,” Peer-to-Peer Networking and
Applications, pp. 1-13, Sep. 2016.

[14] J. Yun, I. Ahn, N. Sung, and J. Kim, “A device software
platform for consumer electronics based on the Internet of
Things,” IEEE Transactions on Consumer Electronics, vol. 61,
no. 4, pp. 564-571, Nov. 2015.

[15] Mosquitto. [Online]. Available: https://mosquitto.org

Figure 5. Configuration of the test environment.

Figure 6. oneM2M resource discovery using a monitoring tool.

140Copyright (c) IARIA, 2017. ISBN: 978-1-61208-598-2

UBICOMM 2017 : The Eleventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

