UBICOMM 2018 : The Twelfth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Towards Modular and Adaptive Assistance Systems
for Manual Assembly: A Semantic Description and Interoperability Framework

Amita Singh
Technical University
Kaiserslautern
Email: amitas@kth.se

Fabian Quint
German Research Center
for Artificial Intelligence (DFKI)
Email: mail @fabian-quint.de

Abstract—With the advent of Industry 4.0 and human-in-the-loop
paradigms, Cyber-Physical Systems (CPS) are becoming increasingly
common in production facilities, and, consequently, there has been a surge
of interest in the field. In production systems, CPS which assist humans
in completing tasks are called assistance systems. Most recent designs
proposed for assistance systems in the production domain are monolithic
and allow only limited modifications. In contrast, this work considers an
assistance system to have a hybrid architecture consisting of a central
entity containing the process description (or instructions) and one or more
plug-and-play Cyber-Physical Systems to retrieve relevant information
from the physical environment. Such a design allows the overall system
capabilities to be adapted to the needs of workers and tasks. In this paper,
a framework is presented for designing the CPS modules using Semantic
Web technologies which will allow (i) interpretation of all data, and (ii)
interoperability among the modules, from the very outset. Furthermore, a
knowledge description model and ontology development of a CPS module
is described. An approach is illustrated with the help of a use case for
implementing the framework to design a module, data exchange among
modules, and to build a sustainable ecosystem of ontologies which enables
rapid development of third-party CPS modules. An implementation using
Protégé is provided and future direction of research is discussed.

Keywords—human-centered CPS; assistance systems; adaptive automa-
tion; ontology; interoperability.

I. INTRODUCTION

An ever growing catalogue of products, short product life-cycle,
competitive product costs, and changing demographics have led to
a demand of reactive and proactive production systems that can
adapt to the changing needs [1]-[3]. According to the European
Factories of the Future Research Association, human-centricity is a
prerequisite for the production systems to be flexible and adapt to the
changing demographics [4][5]. Thus, major efforts are being made
to make adaptive human-centered CPS (H-CPS) where machines and
automation adapt to the physical and cognitive needs of humans in a
dynamic fashion [6][7].

In this paper, assistance systems are considered as H-CPS in
production systems. Assistance systems assess the production process
using sensors embedded in the environment and, based on the state
of the process, provide instructions to workers through visualisation
devices attached to them [8]. Although humans have unparalleled
degree of flexibility, i.e., humans can adapt to varying production,
major focus is being placed on increasing the flexibility of automation
systems that help workers during processes. Emerging developments
like modularity, Service-Oriented Architecture (SOA), interoperability
by the virtue of common semantic description (e.g., administrative
shell [9][10]), and edge-computing [11] are rarely applied to H-CPS.

In this paper, a CPS-based assistance system, which adapts to
a worker’s need by exploiting the benefits of such techniques is
proposed. Such an assistance system has a central system and one or
more CPS modules attached to it as shown in Figure 1. CPS modules
feed information extracted from the environment to the central system.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-676-7

Technologie-Initiative

Email: bertram @smartfactory.de

Martin Ruskowski
German Research Center
for Artificial Intelligence (DFKI)
Email: martin.ruskowski@dfki.de

Patrick Bertram

SmartFactoryKL e.V.

Inventory Module

Eye-tracking
Module

i

Tool-tracking
Module

</ J
S n
= Visualisation
Devices
Ly
= I

Hand-tracking Module

Figure 1. Schematic description of an assistance system.

The central system, in turn, processes this information to assess the
state of the process and the worker’s needs.

To the best of the authors’ knowledge, no design so far allows one
module to access and use the data from other modules. In this paper,
semantic design of modules and interoperability between different
parts of an assistance system are discussed in detail, and consequently,
a Semantic Description and Interoperability (SDI) framework is
proposed.

In the remainder of the paper, first the related work is presented in
Section II and then the concepts of modularity and interoperability are
discussed in detail in Section III. In Section IV, the SDI framework
for design of modules is presented. Next, the development of such
modules is discussed in Section V. Finally, the implementation of
an assistance system is simulated using the proposed framework in
Section VI, followed by the conclusion and potential future work.

II. RELATED WORK

This work brings together two different areas of research: devel-
opment of CPS for production, as well as the semantic design of
these systems. Related work in both areas are discussed separately
and some aspects are discussed in detail.

Assistance Systems. There is significant contemporary research
interest in using sensor technology for developing context-aware
CPS [8][12]-[14]. Nelles et al. have looked into assistance systems
for planning and control in production environment [12]. Gorecky
et al. have explored cognitive assistance and training systems for
workers during production [13]. Zamfiresu et al. have also integrated
virtual reality and a hand-tracking module to help workers during
assembly processes [14]. However, they do not consider the modular
design of these modules and interoperability between such modules.
Very recently, Quint et al. have proposed a hybrid architecture of
such a system, which is composed of a central system and modules
which can handle heterogeneous data [8]. However, they do not
explore standardizing the design of such modules. In this work, a
framework for designing CPS modules and an ecosystem for ensuring
interoperability across these modules is proposed.

42

UBICOMM 2018 : The Twelfth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Semantic Design. The Semantic Web is an extension of World Wide
Web that promotes common data formats and exchange protocols on
the Web through standards. Wahlster et al. [15][16] use Semantic
Web technologies to represent and integrate industrial data in a
generic way. Grangel et al. [10] discuss Semantic Web technologies
in handling heterogeneous data from distributed sources using light-
weight vocabulary. Semy et al. [17] describe these technologies as
the key enabler for building pervasive context-aware system wherein
independently developed devices and softwares can share contextual
knowledge among themselves. Semantic Web technology formalisms,
such as Resource Description Framework (RDF), RDF Schema and
Web Ontology Language (OWL), help solve the major hurdle towards
description and interoperability between CPS by annotating the enti-
ties of a system. Some of the major advantages of using RDF-based
semantic knowledge representation are briefly discussed here:

Global unique identification. Semantic Web describes each entity
within a CPS and its relations as a global unique identifier. According
to the principles of Semantic Web, HTTP URIs/IRIs should be used
as the global unique identifiers [18]. This ensures disambiguation,
and retrieval, of entities in the complete system. As a consequence, a
decentralised, holistic and global unique retrievable scheme of CPS
can be established.

Interoperability. Interoperability is the ability to communicate and
interconnect CPS from different vendors. It is vital in order to
have cost effective rapid development. According to domain ex-
perts [10][16][19], RDF and Linked Data are proven Semantic Web
technologies for integrating different types of data. Gezer et al. [20]
mention that OWL-S ensures better interoperability by allowing ser-
vices to exchange data and allowing devices to configure themselves.

Apart from the above mentioned advantages, by using RDF repre-
sentation different data serialization formats, for example RDF/XML,
RDF/OWL can be easily generated and transmitted over the net-
work [10]. Further, data can be made available through a standard
interface using SPARQL, a W3C recommendation for RDF query
language [21].

Recently, Negri et al. [22] discussed requirements and languages
of semantic representation of manufacturing systems and conclude
that ontologies are the best way of such representations in the domain.
The authors also highlighted importance of ontologies in provid-
ing system description in an intuitive and human-readable format,
standardization not only in terms of definitions and axioms, but
also standardizing Web-services and message-based communication.
This not only makes engineering of the system streamlined but also
facilitates interoperability between parts of the system. In his seminal
work, Nocola Guarino formally defined ontologies both as a tool for
knowledge representation and management, as well as a database for
information extraction and retrieval [23]. In particular, he describes
how ontologies can play a significant role during development, as
well as run-time, for information systems.

Further, Niles et al. [24] highlighted the usefulness of upper
ontologies in facilitating interoperability between domain-specific
ontologies by the virtue of shared globally unique terms and def-
initions (HTTP URIs/IRIs) in a top-down approach of building a
system. Semy et al. [17] also described mid-level ontologies as
a bridge between upper ontologies and domain-specific ontologies,
which encompass terms and definitions used across many domains
but do not qualify as key concepts. Furthermore, Sowa et al. [25]
discussed ontology integration and conflicts of data in the process.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-676-7

They conclude that ontology merge is the best way of ontology
integration as it preserves complete ontologies while collecting data
from different parts of the system into a coherent format. In the
remainder of the paper, unless otherwise stated, the definition of
ontologies and standards as given by W3C [21] are followed.

Ontologies. Ontologies conceptualise a domain by capturing its
structure. In this section, some features of ontologies, which are
relevant for the proposed design are discussed. Ontologies are used
to explicitly define entities and relations between entities. Figure 2
shows an example of a small ontology, an associated SPARQL query
language, and query results obtained during a run-time. Ontologies
provide unique global addresses to all entities and relations using
HTTP URIs/IRIs . Hence, with the virtue of HTTP URIs/IRIs, entities
and relations can be referred to easily from within and outside the
system. Ontologies can also be imported, which is how definitions
of entities and their relationships can be re-used during development
time. This feature, as shown in the work later, is crucial in creating an
ecosystem of ontologies. During run-time, individuals of the entities
along with their relationships with each other are created.

Ontology SPARQL Query Result
PREFIX iri: ...

Na Count
iri: PartName ame oun

iri: Inventory

iri: NumOfParts

SELECT ?Name ?Count
WHERE { Ml 10
?Inv iri:PartName ?Name .
?Inv iri:NumOfParts ?Count M2 15

}

Figure 2. An example of ontology definitions and relations, SPARQL query
and results.

To know more about ontologies, the reader is encouraged to visit
the W3C standards [21]. The described features are essential while
designing and implementing the proposed SDI framework.

III. MODULAR DESIGN AND INTEROPERABILITY

The assistance system should be designed to be adaptive and
flexible, such that it should be possible to combine different CPS with
very varying capabilities without requiring extensive configuration
from the worker. This flexible design makes it possible to scale the
intelligence of the overall system by adding/removing CPS. The paper
assumes that the central system contains a process description model,
which describes the instructions for a process. The model remains
unchanged irrespective of addition or removal of CPS modules.
Adding new CPS modules to the central system makes the complete
assistance system more aware of its environment and consequently
more intelligent.

An assistance system, considered in this work, has hybrid archi-
tecture which consists of CPS modules and a central system where
each CPS module collects and preprocesses data and feeds informa-
tion to a central decision-making entity as shown in Figure 1. The
central system collects information from all the modules attached to it
and decides the next step of the process depending upon the process
description model. Next step in the process is conveyed to a worker
with the help of visualisation devices as shown in Figure 1. In contrast
to a completely centralised or decentralised architecture, in a hybrid
architecture, the burden of making sense from the raw-data is divided
between the CPS modules and the central system: the modules need
to preprocess raw data and make minor decisions before reporting it
to the central system. The preprocessing step may include operations
like analog to digital conversion, computing a parameter which is a

43

UBICOMM 2018 : The Twelfth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

function of data from more than one sensor (e.g. numberofParts from
totalWeight and weightPerPart), calculating a moving average of a
sensor reading, etc. This avoids any computing overhead on both the
central system and CPS modules, and consequently makes them more
intelligent and context-aware. This division is discussed in detail in
Section IV.

A modular design enforces separation of concerns: the central
system will only rely on the information provided by the modules. As
per the traditional modular design, the internal state of the modules,
i.e., the implementation details, would ideally be made completely
opaque and inaccessible to the central system and other modules. In
contrast, in this work, a framework for designing the modules using
ontologies is proposed, which will allow the modules to access and
use information from each other.

There are several challenges which need to be addressed in order
to allow for such interoperability. The paper shows how these can be
overcome by semantically annotating the information in each module
using ontologies. As discussed in the previous section, an outright
advantage of using ontologies is that they can give a unique name,
i.e., URIS/IRISs, to each piece of information in the complete system
thus making it immediately accessible using a simple declarative
querying language (SPARQL) as shown in Figure 2 [26]. Moreover,
other advantages come naturally with using ontologies, viz. self-
documentation, automatic reasoning using description logic for free.

Using ontologies as the tool of choice, the following two ques-
tions are considered.

(i) How to design and semantically annotate a CPS module?
This question is answered in Section IV.

(ii) How to develop such modules using ontologies? This issue
is discussed in Section V and in Section VI.

Remark. Note that the decision-making algorithm in the central
system should be designed in such a way that it does not need to
be adapted to accommodate the underlying frequently changing CPS
modules, i.e., the assistance system should be able to function without
all modules being attached to the system and the modules should be
plug-and-play. However, the problem of designing the algorithm is
out of the scope of this work.

IV. FRAMEWORK FOR DESIGNING A CPS

In this section, a framework for designing a CPS module and
its ontology is proposed as shown in Figure 3. It starts with what
the module designer wants to achieve by adding a particular CPS to
the system, and then determines its boundary, or scope, with respect
to the central system. Next, decisions about the intelligence of the
system are made which, in turn, influence the hardware choices for
the module. Finally, a bottom up ontology of a CPS is created and
its integration with the central system ontology is described. The
framework, and its implementation, are explained with the help of a
use case of an inventory module which is shown in Figure 4.

Requirements. At the outset, it is important to understand why a
CPS module is required. This decision determines the metric used
for measuring the effectiveness of a module finally. This objective
may range from general, e.g., “increasing the efficiency of a factory”,
to specific, e.g., “decreasing the number of errors for a particular
assembly station”.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-676-7

N
Requirements | (M
I : b
CPS Design { g Central System
System Boundary Jnicriceins </ ..
< =90
CPS Intelllgencegb Integrate
{_} Ontologies
Develop Information
Model & Ontology
o@*}"&%b
(> &ff I N
J

Figure 3. SDI framework for designing a CPS module.

For example, the requirement behind adding an inventory module
can be to make the assistance system more aware of the environment
in order to better understand the state of the process by the virtue
of parts used in the process. This, in turn, improves the ability of an
assistance system to help the worker. Keeping the requirements as
specific as possible helps with the next step of the design.

Inventory Module

RFID Reader

Raspberry Pi
‘Weighing Sensor

Figure 4. Schematic description of an inventory module

System Boundary. In the next step, the objective needs to be trans-
lated into a concrete piece of information that the central system needs
from the CPS. An analogy can be drawn between the information
which the central system needs and the idea of minimal sufficient
statistic: the information should be sufficient for the central system
to arrive at its objective. This information is the interacting variable
between a CPS module and the central system. In terms of ontologies,
the interacting variable needs to have the same URI/IRI in both the
central system ontology as well as the ontology of the CPS module.
This is ensured by defining the interacting variable in the upper
ontology of an assistance system and the CPS module importing it.

For example, the central system may need the total number
of parts for each part on the assembly station from an inventory
module. This is the interacting variable for the CPS module.

CPS Intelligence. Once the system boundary is known, i.e., the
interacting variable for a CPS module, it is necessary for the CPS
to be intelligent enough to calculate this information from raw
sensor readings. This intelligence is manifested in the accuracy/update
frequency of sensors and the computational power afforded by the
hardware (e.g. Raspberry Pi or Arduino) used to create the CPS
module. Calculation of the value of the interacting variable effectively

44

UBICOMM 2018 : The Twelfth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

sets a lower bound on this system intelligence, i.e., a CPS should be
able to process the data received through sensors to communicate the
interacting variable whenever it is needed by the central system, e.g.,
calculating moving average of raw data every millisecond. The system
intelligence can further be improved by using more sophisticated
hardware and/or applying better algorithms while processing data,
which improves the quality of the values calculated by the CPS
module for the interacting variable.

Also, note that the CPS module should have the computational
power to use ontologies during run-time. However, the restrictions
placed by this requirement are mild because ontologies can be made
light-weight during run-time [10].

Developing the Information Model & Ontology. After deciding on
the hardware to use for a module, an information model which is an
abstraction of the physical layer is created based on the structural
and description models of the physical units present in a CPS
module (as shown in Figure 5). The structural model defines physical
assets present in a module: it lists all sensors, computational units,
communication units and relations between them. The description
model describes the properties of these assets. The process model
is the process description that exists in the central system and is
not changed on addition/removal of CPS modules. Structural and
description models of the information model are used to explicitly
define the hardware that was decided in the above steps. Figure 5 also
shows the structural and description models of an inventory module
and the process model contained by the central system.

Structural Model Description Model Process Model

Many-to-many
hasRelations—| One-to-many
hasSubAssets Inverse hasStaticProperties

] isDecsribedBy |

hasProductDetailsOf / hasR.FlRTug
contains / areKeptin
Weight of
Bln

hasDynamicProperties

hasSubActivities

| canChange

| canChange

Assemble
product

— Bin

IsKeptOn / hasContainer
Weighing
Sensor

Figure 5. Information model contains structural, description and process
models.

Tighten the
assembly

The ontology of a CPS module is developed using the information
model as a reference. In addition to the entities and relations defined in
the information model, the ontology may also contain variables which
are the result of processing the data gathered by sensors. Finally,
the interacting variable(s), which were decided while determining
the system boundary, are added to the ontology with appropriate
relationships with other entities.

Ontology Integration. In the final step, ontology of the CPS module
is merged with the central system ontology. The central system uses
the interacting variable for making its own decisions, but also acts
as a database for the complete assistance system during run-time.
The modules, hence, can query the central system for not only the
interacting variables of other modules, but also about the internal

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-676-7

entities, which the central system does not explicitly use. The problem
of how can the CPS modules be made aware of the various entities
which can be accessed is addressed next.

As discussed before, the interacting variables are described in an
upper ontology and a mid-level ontology contains descriptions of the
entities of all modules. To help the ecosystem develop, a committee
which consists of all shareholders (central system designers, deploy-
ment point managers, module developers, etc.) which oversees the
addition to new modules to the ontology would be needed. The upper
ontology is kept minimal and is only extended with new interacting
variables, i.e. when a new potential CPS module is identified which
can aid the intelligence of the central system. The other entities which
can be provided by the new module, but which are not needed by the
central system, are described in the mid-level ontology. The mid-level
ontology acts as a repository of all relevant entities described in all
CPS modules. This simplifies the search by engineers for variables
provided by other modules. CPS modules <<import>> the upper
ontology to get the URIs/IRIs of interacting variables and mid-level
ontologies to get the URIs/IRIs of the entities of all modules.

Instead of having a mid-level ontology, it is possible to have
only an upper ontology and ontologies of CPS modules. In such
a setting, if one module needs to query for the variables of other
CPS module, it then <<import>>s the ontology of that particular
module. However, this scheme of ontology development may result
in reinvention of entities. Thus, a centralised W3C committee like
setup [21] which consists of all stakeholders is favoured.

V. MODULE DEVELOPMENT

This section describes at a high level the development of a CPS
module and the central system after the design for the module has
been included into the upper and mid-level ontologies. During the
design of the module, the interacting variable(s) were added in the
upper ontology while the mid-level ontology was updated to include
all entities which the module could provide, as agreed by all the
stakeholders. For the purpose of exposition and to maintain complete
generality, it is assumed in this section that the developer creating the
module is a third party who intends to develop a newer version of
the module from the specification.

e

Upper nntolngyg1

‘S\ ‘ ;Mld level ontolo; /

Developer
(Central System)

Figure 6. Ontology development of CPS modules.

In the next step towards development of the module, on the
one hand, the developer (say, Dev. 1) studies the capabilities of the
hardware available to her. Here, the developers can leverage the
information model and ontology created during the design phase.
On the other hand, the developer studies the upper (mid-level)
ontology to determine what entities/values they should (could) provide
to the central system. This part of the development process is
illustrated in Figure 6(a). It should be noted that there is no need

45

UBICOMM 2018 : The Twelfth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

for communication or synchronisation between the developers of the
different modules or between the developers and the central system
developer. The developer <<import>>s the upper and mid-level
ontologies and creates the module ontology with the remaining (local)
ontological entities, and writes code which uses the central system’s
API and SPARQL queries to update the central system database (as
shown in Figure 6(b)).

Lastly, it is advised that Protégé should be used to create the
module ontology as (i) it enhances interoperability by using OWL-
S, and, (ii) it can automatically generate code using OWL API
(Application Programmable Interface), which can ease the burden
on the developer. In this work, Protégé is used to create ontologies
and the code generated is used to update the ontologies. In the next
section, simulation of the central system and an inventory CPS module
using Protégé is discussed.

VI. IMPLEMENTATION

In the previous section, the development phase of ontologies was
discussed. In this section, the simulation of an assistance system
during run-time is discussed. Assistance system ontology is developed
in Protégé, a free, open source ontology editor. The code generated
using Protégé (as shown in Figure 7) is used to simulate the behaviour
of CPS module, via OWL API. This implementation is written in Java.
For the ease of exposition, it is assumed in the text that the central
system can answer queries sent to it in SPARQL. These queries
can be written in a different language or may be provided using
an alternate API. However, the use of unique URIs/IRIs to refer to
entities in the ontologies is crucial to facilitate interoperability in all
implementations.

de.dfid.smartfactorykL
events

consumers

B ConsoleBrainEventConsumer

T IBrainEventConsumer

€ % ZeroMQBrainEventConsumer
BrainWeighingModuleEvent
IBrainEvent
Ontologylpdater
simulated\eighingSensorEvent

WeighingModuleInitEvent

0N @A =N

WeighingSensorEvent
ontology
impl
1 Container
1 RFID
c Vocabulary
1 WeighingModule
€ ' WeighingModuleCntologyFactory
simulator
c HumanSimulator
c SimulationManager
€ ' WorkerAction
utils
€ & Main

Figure 7. Classes generated by Protégé, based on OWL API. Central system
discussed in the paper is referred to as Brain.

It is assumed that ontologies of an assistance system, i.e the
central system and CPS modules, are developed using the proposed
framework. During execution, the ontologies are populated by creat-
ing individuals locally on all modules. During execution, the system
goes through three primary stages: (i) intialization, (ii) trigger, and
(iii) update, which are shown in Figure 8, and are briefly discussed
here:

Initialization. When an assistance system is started, the central
system sends an init() request to all CPS modules attached to

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-676-7

it. This request contains the URI/IRI of the central system. This
URUVIRI is address with which all modules identify the central system
through the lifetime of the process. In case of hardware malfunction,
system restart, or when a new module is attached to the system, the
initialization step is executed again.

Trigger. Triggers can be either timer-driven or event-based. Event-
based triggers are reported by CPS modules to the central system
whereas timer-driven triggers are generated by the central system.
Event-based triggers can be events that change the present state of a
system to another (valid) state of the system [8]. In case an event
occurrence renders no valid state of the system, triggers are not
generated. Trigger() request is either sent from modules to the central
system, as shown in Figure 8, or may be generated internally by the
central system clock.

Update. Communication between the central system and CPS mod-
ules is pull-based. Upon a trigger, the central system sends a getUp-
date() reqeust to all modules. Modules send the complete, or a part
of, ontologies with the new data values to the central system which,
in turn, update its own ontology.

D) Y
(0]

Cenﬁal System Module 1 Module N

1 ! !
1.1 init() !

1.2 saveCentral 1

o Jleack SystemURI() !

T 1.2 saveCentral
e — — L3ACK _ N SystemURI()
E 2.1 eventOccured()
3.1 getUpdate() 3.2 Data read
-— _3.3_serEDita[) & update()

1
3.1 getUpdate() ! 3.2 Data read
- 3.3 sendData() I & update()

! 2.2 Trigger()

Figure 8. Communication between the central system and CPS modules.

An example implementation is available for download on
GitHub [27]. The implementation therein simulates an inventory
module (using code generated from Protégé), a central system, and
then simulates human actions, updates the ontology on the inventory
module using the OWL API, and shows the communication between
the module and the central system.

VII. CONCLUSION

This work is focused on designing a human-centric assistance
system used in production which can dynamically adapt to the
needs of the workers and tasks using Semantic Web technologies.
Assistance systems are considered as consisting of a central system
and one or many CPS modules. An SDI framework is proposed to
design CPS modules which makes the data of the complete system
globally accessible by the virtue of HTTP URIs/IRIs. The SDI
framework explained the steps used to decide the boundary between
the central system and CPS modules, the performance requirements
of hardware, describing modules with the help of information models
and finally developing and merging ontologies. It also explains briefly
the ecosystem of ontologies consisting of upper, mid-level and module
ontologies. The framework is implemented in Protégé using OWL-
S. OWL API is used to simulate CPS behaviour and data exchange

46

UBICOMM 2018 : The Twelfth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

is demonstrated. However, the proposed framework can be used to
design CPS in general: the discussion in the paper was limited to
designing a CPS for an assistance system for ease of both exposition
and demonstration.

The work assumes that all vendors and third party development
use SPARQL as the query language. Calbimonte et al. have discussed
how such a problem of multi-vendor multi-querying language can be
resolved [28]. It can be incorporated in the SDI framework to make it
more robust. Knowledge mapped in ontologies may evolve over time
due to modifications in conceptualisation and adaptation to incoming
changes. Thus, in future, it is important to establish protocols for
versioning of data on Semantic Web as well as understanding the
missing data [29]. Another non-trivial task towards adoption of
ontologies in real life is setting up committees which oversee the
creation and maintenance of upper and mid-level ontologies [30].

The framework results in a repository of data from all modules of
the system and interoperability between these modules, thus laying the
foundation of plug-and-play production systems. The next important
step in the development of assistance systems is to develop a plug-
and-play methodology for CPS modules, as alluded to in Section III.

Another important step to make the system deployable is to
create global standards: either by defining design and communication
standards specific to assistance systems, or by investigating the
suitability of existing standards, e.g. RAMI 4.0 [31].

ACKNOWLEDGEMENTS

This work was done as a Master thesis at German Research Center
for Artificial Intelligence (DFKI) and TU Kaiserslautern Germany.

REFERENCES

[1] M. M. Tseng and S. J. Hu, “Mass customization,” in CIRP encyclopedia
of production engineering. Springer, 2014, pp. 836-843.

[2] F. Salvador and C. Forza, “Configuring products to address the
customization-responsiveness squeeze: A survey of management issues
and opportunities,” International journal of production economics,
vol. 91, no. 3, pp. 273-291, 2004.

[3] Y. Koren and M. Shpitalni, “Design of reconfigurable manufacturing
systems,” Journal of manufacturing systems, vol. 29, no. 4, pp. 130-
141, 2010.

[4] D. Romero, O. Noran, J. Stahre, P. Bernus, and A. Fast-Berglund,
“Towards a human-centred reference architecture for next generation
balanced automation systems: human-automation symbiosis,” in /FIP
International Conference on Advances in Production Management
Systems. Springer, 2015, pp. 556-566.

[5] S. Tzafestas, “Concerning human-automation symbiosis in the society
and the nature,” Intl. J. of Factory Automation, Robotics and Soft
Computing, vol. 1, no. 3, pp. 624, 2006.

[6] P. A. Hancock, R. J. Jagacinski, R. Parasuraman, C. D. Wickens, G. F.
Wilson, and D. B. Kaber, “Human-automation interaction research: past,
present, and future,” ergonomics in design, vol. 21, no. 2, pp. 9-14,
2013.

[7] V. Villani, L. Sabattini, J. N. Czerniak, A. Mertens, B. Vogel-Heuser,
and C. Fantuzzi, “Towards modern inclusive factories: A methodology
for the development of smart adaptive human-machine interfaces,” 22nd
IEEE International Conference on Emerging Technologies and Factory
Automation, 2017.

[8] F. Quint, F. Loch, M. Orfgen, and D. Zuehlke, “A system architecture for
assistance in manual tasks.” in Intelligent Environments (Workshops),
2016, pp. 43-52.

[9] E. Tantik and R. Anderl, “Integrated data model and structure for the

asset administration shell in industrie 4.0,” Procedia CIRP, vol. 60, pp.
86-91, 2017.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-676-7

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

(28]

[29]

[30]

[31]

1. Grangel-Gonzalez, L. Halilaj, G. Coskun, S. Auer, D. Collarana, and
M. Hoffmeister, “Towards a semantic administrative shell for industry
4.0 components,” in Semantic Computing (ICSC), 2016 IEEE Tenth
International Conference on. IEEE, 2016, pp. 230-237.

J. Gezer, Volkan Um and M. Ruskowski, “An extensible edge computing
architecture: Definition, requirements and enablers,” in UBICOMM,
2017.

J. Nelles, S. Kuz, A. Mertens, and C. M. Schlick, “Human-centered
design of assistance systems for production planning and control: The
role of the human in industry 4.0,” in Industrial Technology (ICIT),
2016 IEEE International Conference on. 1EEE, 2016, pp. 2099-2104.

D. Gorecky, S. F. Worgan, and G. Meixner, “Cognito: a cognitive
assistance and training system for manual tasks in industry.” in ECCE,
2011, pp. 53-56.

C.-B. Zamfirescu, B.-C. Pirvu, D. Gorecky, and H. Chakravarthy,
“Human-centred assembly: a case study for an anthropocentric cyber-
physical system,” Procedia Technology, vol. 15, pp. 90-98, 2014.

W. Wahlster, “Semantic technologies for mass customization,” in 7o-
wards the Internet of Services: The THESEUS Research Program.
Springer, 2014, pp. 3-13.

M. Graube, J. Pfeffer, J. Ziegler, and L. Urbas, “Linked data as
integrating technology for industrial data,” International Journal of
Distributed Systems and Technologies (IJDST), vol. 3, no. 3, pp. 40-52,
2012.

S. K. Semy, M. K. Pulvermacher, and L. J. Obrst. (2004) Toward the
use of an upper ontology for us government and us military domains:
An evaluation. Retrieved on 2018-09-20.

C. Bizer, T. Heath, and T. Berners-Lee, “Linked data: The story so far,”
in Semantic services, interoperability and web applications: emerging
concepts. 1GI Global, 2011, pp. 205-227.

A. Schultz, A. Matteini, R. Isele, P. N. Mendes, C. Bizer, and C. Becker,
“Ldif-a framework for large-scale linked data integration,” in 21/st
International World Wide Web Conference (WWW 2012), Developers
Track, Lyon, France, 2012.

V. Gezer and S. Bergweiler, “Cloud-based infrastructure for workflow
and service engineering using semantic web technologies,” International
Journal on Advances on Internet Technology, pp. 3645, 2017.

S. Bechhofer, “Owl: Web ontology language,” in Encyclopedia of
database systems. Springer, 2009, pp. 2008-2009.

E. Negri, L. Fumagalli, M. Garetti, and L. Tanca, “Requirements and
languages for the semantic representation of manufacturing systems,”
Computers in Industry, vol. 81, pp. 55-66, 2016.

N. Guarino, Formal ontology in information systems: Proceedings of the
first international conference (FOIS’98), June 6-8, Trento, Italy. 10S
press, 1998, vol. 46.

I. Niles and A. Pease, “Origins of the ieee standard upper ontology,”
in Working notes of the IJCAI-2001 workshop on the IEEE standard
upper ontology. Citeseer, 2001, pp. 37-42.

J.. F. Sowa et al Building, sharing, and
ontologies. Retrieved on 2018-09-20. [Online].
http://www.jfsowa.com/ontology/ontoshar.htm

merging
Available:

E. Prud et al. Sparql query language for rdf. Retrieved on 2018-09-20.

A. Singh. Example implementation of the SDI frame-
work. Retrieved on 2018-09-20. [Online]. Available:
https://github.com/AmitaChauhan/SDI-Framework

J.-P. Calbimonte, H. Jeung, O. Corcho, and K. Aberer, “Enabling query
technologies for the semantic sensor web,” International Journal On
Semantic Web and Information Systems (IJSWIS), vol. 8, no. 1, pp.
43-63, 2012.

M. C. Klein and D. Fensel, “Ontology versioning on the semantic web.”
in SWWS, 2001, pp. 75-91.

I. Jacobs. World wide web consortium process document. Retrieved
on 2018-09-20. [Online]. Available: https://www.w3.0rg/2018/Process-
20180201/

M. Weyrich and C. Ebert, “Reference architectures for the Internet of
things,” IEEE Software, vol. 33, no. 1, pp. 112-116, 2016.

47

