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Abstract— Early vessel profiling and risk assessment is a 

critical component of advanced maritime tracking systems, 

required by a number of maritime stakeholders including 

custom controls, port authorities, coastguards and others.  This 

paper reports on the development of a fuzzy logic reasoning 

tool for generating maritime vessel profile indicators through 

the Automatic Identification System (AIS). The report 

describes the need and the underlying statistical methods 

applied, which are based on Fuzzy Logic Reasoning, for 

finding potential profile indicators and classifying vessels to a 

degree of “risk”, thus requiring further examination and 

monitoring. Under conservative assumptions, some 

preliminary results about the probabilities and boundaries of 

potential indicators are presented and discussed.  

Keywords-AIS; Maritime Domain Awareness; Anomaly 

Detection; Fuzzy Logic System. 

I.  INTRODUCTION 

Maritime Domain Awareness (MDA) is the effective 
understanding of activities, events and threats in the 
maritime environment that could impact global safety, 
security, economic activity or the environment [1]. Recent 
advancements in Information and Communications 
Technologies (ICT) have created opportunities for increasing 
MDA, through better monitoring and understanding of vessel 
movements. The International Maritime Organisation (IMO) 
identified this issue as affecting the safety and efficiency of 
navigation and initiated a work program named e-Navigation 
to reduce the “confusion of profusion”. The IMO defines e-
Navigation as: “the harmonised collection, integration, 
exchange, presentation and analysis of maritime information 
onboard and ashore by electronic means to enhance berth to 
berth navigation and related services, for safety and security 
at sea and protection of the marine environment” [2]. e-
Navigation is expected to contribute to safer waterways, 
reducing accidents and environmental incidents through 
improved situational and traffic awareness both afloat and 
ashore [3]. 

Sea transport surveillance has been ineffective in the past 
decades due to lack of data, but nowadays tracking 
technology (i.e., Automatic Identification System, AIS) has 
transformed the problem into one of data overload [4]. For 
the last decade AIS has been inseparable part of the modern 
maritime industry. The original purpose of the system was to 
reduce collision risks, by providing vessels’ crews the 
necessary traffic information. The AIS transponders are 
capable of communicating in range of a few kilometres (i.e., 
less than 50km) and although the AIS system was not 

designed to be monitored in a centralised method, the 
maritime industry has been extremely interested in such 
systems (e.g., MarineTraffic, etc.).   

Positional data together with the departure and 
destination ports transmitted in AIS messages can be used 
for route prediction and in conjunction with vessel’s speed, 
time of arrival prediction is possible. Performing complex 
operations over such large datasets can give extra insights 
besides route prediction. For instance, combining route 
forecasts for multiple vessels can provide early warnings of 
possible collisions (by determining whether vessels’ routes 
will meet in space and time) and actual route data can be 
used to perform various kinds of complex analytics (e.g., 
root-cause analysis in case of forensic investigation). In 
addition, improving the route analysis process can offer to 
various maritime stakeholders (e.g., shipping companies, 
charterers, insurance companies and port authorities) the 
opportunity to perform risk analysis and understand better 
any possible threats of vessels’ manoeuvres, or even perform 
environment impact assessment, providing CO2 emissions 
and fuel consumption predictions. Ultimately, AIS historical 
data can be used to determine actual sea lanes, their capacity 
and port connections, produce realistic vessel operational 
profiles that determine the normal behaviour of specific 
vessel types, detect any anomalies (i.e., irregular behaviour) 
and much more.   

Anomaly is a “strange” deviation from a vessel’s normal 
behaviour, meaning that it is inconsistent with, or straying 
from what is usual, normal or expected, or because it is not 
conforming to rules, laws or regulations [5]. Detecting an 
anomaly can be defined as a method that supports situation 
assessment by indicating objects and situations that deviate 
from the expected behaviour and thus may be of interest for 
further investigation. The understanding of the complex 
maritime environment and a vessel normal behaviour 
though, can never be limited to simply adding up and 
connecting various vessel positions as they travel across the 
seas. A combination of static information such as reporting 
information, vessel’s flag (i.e., country), ship’s owner, 
vessel’s name, IMO and Maritime Mobile Service Identity 
(MMSI) and destination port with dynamic information such 
as speed/course changes, proximity with other vessels or 
structures, etc., is needed to classify possible abnormal ship’s 
behaviour. An anomaly can be classified as either static or 
dynamic depending on the vessel’s characteristics that 
distinguish the behaviour as anomaly. Static anomalies are 
related to vessel’s identification information mismatches or 
irregular changes. This information includes vessel’s flag, 
IMO, MMSI, vessel’s name and owner company. In 
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addition, irregular changes in destination reported from AIS 
messages (particularly when the vessel is under-way) is a 
potential indicator of risk. Combining such information with 
port inspections or incident reports that prove vessels are not 
conforming to regulations can also assist in anomaly 
detection; thus, classifying a vessel as potentially riskier than 
others and worthy of further investigation and monitoring. 
Dynamic anomalies are mostly related to vessels’ voyages 
and deviations from these. Speed or course changes, 
proximity with other vessels, and mismatches between the 
ship type and the sea lane (or zone) travelling are aspects that 
could constitute a dynamic anomaly.  

In this paper, we propose a decision support system that 
evaluates modifications of vessel identities and mismatches 
between reported destinations and actual port calls to 
determine possible risks (i.e., static anomalies). As this is a 
complex problem that requires the evaluation of multiple 
criteria while relying on inexact or partial knowledge 
obtained from the analysis of the AIS messages, we 
introduce a fuzzy-logic based mechanism that maritime 
stakeholders can use to detect risk indicators and classify 
vessels.  

The rest of this paper is structured as follows; Section II 
provides the state-of-the-art analysis for anomaly detection. 
Then, Section III presents the proposed Fuzzy Logic (FL) 
Reasoner and Section IV provides the analysis of the 
correlation of the FL inputs with the produced output. 
Finally, Section V concludes our work and discusses 
possible future extensions. 

II. RELATED WORK 

Static anomaly detection is mostly treated as a decision-
making process driven by risk identification/assessment in 
the related literature. Two classes of solutions are dominant 
in this perspective; the ones relying on probabilistic risk 
assessment and the ones using fuzzy logic as a relaxation 
approach to the definite boundaries of probabilistic 
approaches. Probabilistic risk assessment has been 
introduced as a solution for the assessment of risk in the 
maritime domain in [6]. In [7], the authors applied a 
Bayesian simulation for the occurrence of situations with 
accident potential and a Bayesian multivariate regression 
analysis of the relationship between factors describing these 
situations and expert judgments of accident risk, to perform a 
full-scale assessment of risk and uncertainty. A fuzzy 
approach that evaluates the maritime risk assessment when 
applied to safety at sea and more particularly, the pollution 
prevention on the open sea is introduced in [8]. The proposed 
decision-making system exploits a set of open datasets 
combined with human expert experience to perform 
information analysis and define the risk factor. Besides this 
solution, other approaches [9][10] also rely on Fuzzy-
Bayesian networks to model maritime security risks.   

Dynamic anomaly detection is highly related to 
efficiently handling vast amount of mostly positional data. 
Previous works have been focused on extracting knowledge 
regarding motion patterns from AIS data in support of MDA 
including numerous methods of supervised and unsupervised 
clustering data mining techniques.  In their work [11], 

Pallotta et al. propose the TREAD methodology as a method 
of automatically learning a statistical model for maritime 
traffic from AIS data in an unsupervised way as a framework 
for anomaly detection and route prediction. A statistical 
analysis upon AIS data to extract motion patterns, predict 
vessel movements and detect possible anomalies in their 
itineraries is introduced in [12]. In relation to AIS and sea 
ports research, AIS data are used in [13] to model maritime 
terminals operations, specifically focusing on the Port of 
Messina. In [14], the authors introduce a two-step 
methodology for anomaly detection that attempts to deal 
with the scalability issues caused by the vast amount of raw 
AIS data by distributing the learning process. Firstly, a 
density-based clustering algorithm that uses spatial and 
voyage information is used to distinguish “normal” vessel 
positions from the “abnormal”. Then, the labelled dataset is 
fed as training data into a distributed supervised learning 
algorithm running on Hadoop.  

Spatial join queries, which combine trajectory datasets 
and a spatial objects dataset based on spatio-temporal 
predicates, have high computational requirements, which 
often lead to long query latencies. In [15], Ray et al. propose 
a parallel in-memory trajectory-based Spatiotemporal 
Topological join (PISTON), a parallel main memory query 
execution infrastructure designed specifically to address the 
difficulties of spatio-temporal joins. Generally, the methods 
which are used in the context of anomaly detection are based 
on statistical/probabilistic models [16]–[19], such as the 
Gaussian Mixture Model (GMM) and the adaptive Kernel 
Density Estimator (KDE) [12][20], Bayesian networks [21]–
[24], but also neural networks [25]–[27] and hybrid 
approaches [28]. 

A number of prototype systems have been developed for 
experimental and operational reasons. For example, 
SeeCoast [29] is installed at Kount Harbor Operations Center 
in Portsmouth, Virginia. The system uses the Hawkeye 
system to fuse video data with radar signals and AIS 
messages to produce fused vessel tracks in or close by the 
port and reliably detect anomalies on such tracks. 
SCANMARIS [30] is a feedback-based system tested at 
“Centre Régional Opérationnel de Surveillance et Sauvetage 
Corsen” on Ouessant traffic management. It uses a rule-
based learning engine to process data fused from maritime 
traffic imagery, alert operators based on the rules defining 
anomalies and adapt its operation through the operators’ 
feedback. LEPER [31], which was tested successfully at the 
Joint Interagency Task Force South (JIATF South), is a 
system that performs primitive geohashing using a military 
grid reference system upon which it decomposes ship’s 
trajectories into sequences of discrete squares and uses 
Hidden Markov Model to calculate transition probabilities 
between grid locations. The predicted location is compared 
with the vessel’s position (determined by the speed and 
heading of the vessel) and if the distance between these two 
positions is above a predefined threshold, an anomaly is 
raised. Other notable prototypes that currently exist are 
SECMAR [32], FastC2AP [33] and MALEF [34]. 
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In our work, we introduce a Fuzzy Logic Reasoner in 
which the thresholds of the Fuzzy Logic Rules are based on 
statistical analysis and not on experts’ view. 

III. FUZZY LOGIC REASONER FOR ANOMALY DETECTION 

Fuzzy logic was first introduced in [35] by Lotfi Zadeh 
and relies on the theory of fuzzy sets. Contrary to the 
classical set theory, such sets contain element with degree of 
membership. This approach exploits the notion of degree in 
the verification of a condition, enabling conditions to be in 
intermediate states between the states of conventional 
evaluations, thus allowing variables to be “partially” true, or 
“not definitely yes” etc. Such notions can be formulated 
mathematically and processed by machines, giving thus a 
more human-like interaction between the programmer and 
the computers [36]. Fuzzy logic has been selected for static 
anomaly detection as it is considered to be an ideal tool when 
dealing with imprecise or contradictive data, which can be 
modelled adequately with fuzzy sets, and combined with 
human logic [37].  

A Fuzzy Inference System (FIS) is the fundamental 
implementation of fuzzy logic schemes comprising three key 
elements, namely the fuzzifier, the inference engine and the 
defuzzifier. The first element is responsible for transforming 
crisp values (e.g., real, integer, natural number, etc.) to fuzzy 
degrees of membership to states (i.e., values between the 
[0,1] interval). Then, the inference engine exploits a set of if-
then rules compiled by experts to link the inputs with the 
outputs and afterwards it collects and aggregates all the 
outputs of every rule into one fuzzy set. Multiple aggregation 
schemes have been proposed and applied relying on the 
maximum value, summing up the outputs or performing a 
probabilistic analysis on the produced fuzzy set. The sum 
aggregation is the most common one and also the one 
applied in our Fuzzy Reasoner. Finally, the defuzzifier 
aggregates the outcomes of all the fuzzy rules defuzzifies 
them to a single crisp value which is the output of the Fuzzy 
Reasoner. 

Thus, in order to define the FIS, the set of inputs and the 
output of the rule set should be defined. In the context of 
static anomaly detection, the inputs are the vessels’ static 
characteristics and the output is the fuzzy anomaly detection 
indicator. Table I sums up the rule set that drives the Fuzzy 
Inference System. Each rule is a union of conditions that 
when met the corresponding output is triggered (based also 
on the fuzzy degree). Thus, each set of input values may 
match to multiple rules with a certain degree. The defuzzifier 
will take this fact into account when transforming the fuzzy 
values into a crisp output. 

The proposed Fuzzy Reasoner (FR) produces a vessel 
anomaly indicator which captures the behavior of the vessel 
according to its static characteristics. The FR takes into 
consideration three inputs, namely “flag changes frequency”, 
“name changes frequency” and “destination changed/port 
arrival deviation”. “Flag changes frequency” captures how 
many times a vessel has changed its flag over a specific time 
period. Although this is not a de facto metric of abnormal 
behavior, frequent changes may be linked with fraudulent 
registrations or other illegal activities [38]. Furthermore, in 

order to minimize the probability of false negative cases (i.e., 
falsely assuming a vessel to be performing abnormaly), we 
take into account only flags that according to Paris MoU 
organization perform poorly [39]. “Name changes 
frequency”, similarly to the previous input is the input that 
captures how many times a vessel has transmitted a different 
vessel name through its AIS transponder in a specific time 
period and it is another indicator that a vessel may be trying 
to spoof its messages and hide its identity (e.g. O Ka San 
vessel that falsely transmitted its name to be Sarisa) [38]. 
Destination changed/Port Arrivals deviation: This input 
captures the mismatches between the number of destination 
ports a vessel reports through its AIS transponder compared 
to actual port arrivals. The latter have been produced through 
spatial analysis of the vessels’ reported positions and the 
ports locations. The metric for this input is calculated based 
on. (1). Finally, the output of the Fuzzy Inference engine is 
an indicator for vessel anomaly that the related stakeholders 
should further investigate its compliance to international 
safety, security and environmental standards. 

 Deviation = 1 – #Dest_changed / #Port_Arrivals () 

As depicted in Table I, we have selected two 
Membership Functions for the first two inputs labeled as 
Low and High and three Membership functions (i.e., Low, 
Normal and High) for the third input. This decision was due 
to the nature of the inputs. More specifically, “flag change 
frequency” and “name change frequency” are bounded in the 
[0, +∞) range with zero being the less risky situation (i.e., 
normal) while the “destination changed/port arrival 
deviation” is bounded  in the [-∞, 1) range with zero being 
the normal situation, in which case the reported number of 
destinations is equal to the actual port arrivals. 

TABLE I.  FUZZY LOGIC RULES 

Rul

e 

No. 

Inputs Output 

Flag changes 

frequency 

Name 

change 

frequency 

Destination 

changed/Port 

Arrivals deviation 

Vessel 

anomaly 

indicator 

1 Low Low Low Medium 

2 Low Low Normal Low 

3 Low Low High Medium 

4 Low High Low Medium 

5 Low High Normal Low 

6 Low High High Medium 

7 High Low Low High 

8 High Low Normal Medium 

9 High Low High High 

10 High High Low High 

11 High High Normal High 

12 High High High High 
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Although the Fuzzy Logic ruleset is compiled by experts, 
determining the shapes and the boundaries of the 
membership functions for each input is a difficult process 
that should be carefully designed. In our approach, shapes 
and boundaries are determined based on statistical analysis 
of observed flag changes, name changes and destination 
changed/port arrivals mismatches. The data used in this 
study is an AIS dataset provided by MarineTraffic, covering 
the entire globe and collected during 2017.  

Multiple shapes for the membership functions can be 
used relying on the nature of each input (i.e., the data 
distribution) with the triangular, trapezoidal and Gaussian 
being the most commonly used. In our system, triangular 
membership functions have been used for the flag change 
frequency and the name change frequency, because at certain 
values we are certain about the state that they are capturing. 
On the other hand, for the destination changed/port arrivals 
input gaussian membership function has been used for 
exploiting the continuous and non-negative nature of this 
membership function at the definition domain. Finally, 
Gaussian membership function has also been applied on the 
output for its smoothness in the decision-making process. 

In order to determine the boundaries of the Membership 
Functions of each input, we have calculated the probability 
distribution of each input. Figure 1, Figure 2 and Figure 3 
show the Cumulative Distribution Function (CDF) for the 
vessel flag changes, name changes and destination 
reported/arrival deviation respectively. As shown in Figure 
1, most of the vessels (i.e., 91%) have made one or two flag 
changes in 2017, thus the boundary between the low and the 
high membership function of this input is set to two. 

Figure 1.  Cumulative Distribution Function of number of vessel flag 

changes  

Figure 2 highlights the CDF for the Vessel name 
changes. The curve in this case is smoother compared to the 
Flag Changes and most of the vessels (i.e., 89%) have four 
or less name changes in a full year. Thus, the boundary 
between Low and High is set to four for this input. 

 
 
 

 

Figure 2.  Cumulative Distribution Function of number of vessel name 

changes 

 Finally, Figure 3 highlights the CDF for the destination 
reported/port arrival deviation. This input is calculated based 
on (1) and normal behavior for a vessel would result in 
deviation equal, or near to zero. There are two cases of 
anomalies included in (1). If the deviation is near 1 then the 
destinations reported are much less than the actual arrivals 
which implies that the vessel’s crew is not reporting vessel’s 
itineraries. On the other hand, if the deviation is negative for 
a vessel, then this means that it changes its destination more 
frequently than its actual voyages, which is an abnormal and 
possibly risky situation. Thus, in this case we have three 
membership functions, Low, Normal and High capturing 
these three possible situations. The boundaries are such that 
Low and High deviation correspond to 7.5% of the vessels 
each and Normal corresponds to 85%. 

Figure 3.  Cumulative Distribution Function of destination reported/port 

arrival deviation  

IV. DISCUSSION AND CONCLUSIONS 

Detection and classification of vessels to profiles of 
vessels requiring further monitoring is a requirement of 
many maritime authorities. In this work, we suggest a tool 
which makes use of Fuzzy Logic Reasoning and exploits 
open maritime tracking data, such as that collected through 
the AIS to build such indicators.  
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We notice that frequent flag and vessel name changes are 
strong indicators of vessels operating outside normal 
behavioral patterns. Specifically based on the distribution 
and while taking into account the uncertainty of the data, we 
detect that most of the vessels (i.e., 89%) have four or less 
name changes in a full year, while the majority of vessels 
(i.e., 91%) have made one or two flag changes. Our broader 
goal is that of building an expert system of automatic 
anomaly detection for both positional and static data 
transmitted by vessels, which would increase the 
effectiveness of the system and high-level situational 
understanding. In our future work, we will perform thorough 
experimental evaluations of our fuzzy inference algorithms 
in combination with positional anomaly detection.  
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