
Multi-device Notifications: A Comparison Between MQTT and CoAP

Luı́s Augusto Silva∗, Gabriel de Mello∗, Bruno A. da Silva∗, Gabriel Villarrubia González‡, Juan De Paz Santana‡,
Paula Prata†, Valderi R. Q. Leithardt∗†

∗Laboratory of Embedded and Distributed Systems, University of Vale do Itajai (UNIVALI), Brazil, 88302-901
†Instituto de Telecomunicações, Delegação da Covilhã Departamento de Informática

Universidade da Beira Interior-PT, Portugal 6201-001
‡ Expert Systems and Applications Lab, Faculty of Science, University of Salamanca

Plaza de los Caı́dos s/n, 37008 Salamanca, Spain
Email: {luis.silva, gabrieldemello, silvabruno}@edu.univali.br,

{fcofds, gvg}@usal.es, {valderi.leithardt, pprata}@ubi.pt

Abstract—New devices generate, send, and display messages about
their status, data retrieval, and device information. An increase
in the number of notifications received, tends to reduce their
tolerance. This article sets out a notification management system
focused on user profiles and environments. The solution involves
transferring notifications in a multi-device scenario using MQTT
and CoAP technologies, while also adopting privacy criteria. It
consists of three modules, the first of which was a prototype
and evaluated using real devices, the second is a decision module
and the third which was a dispatcher module for processing the
messages.

Keywords–Notifications management; data privacy; internet of
things.

I. INTRODUCTION

Ubiquitous computing is currently an everyday phe-
nomenon in which we are surrounded by mobile devices, such
as smartphones, tablets, clocks, televisions, and other smart
devices. According to [1], the computer has been imperceptibly
shipped into the environment for the user. These devices also
meet the demands of the users and, in turn, collect data from
them [2]. In light of this, there has been a comparable growth
in mobile device networks, and as [3] and [4] state, devices
can be used to process an extensive collection of data from
the most wide-ranging events and points of interest.

The devices have become ubiquitous, and as a result, there
has been a rise in the number of notifications delivered. This
delivery requires a management system that can deal with
multiple devices since the number of interruptions caused by so
many notifications can distract the user’s attention. According
to [5], there is a need to bring together communication, the
user, and the devices being employed, to ensure data privacy
is protected. This task entails providing accurate information
to the right recipient, establishing rules for timely decision-
making, as well as choosing the location.

This work requires using the control and management
notifications with a suitable network for transferring messages
through devices using CoAP and MQTT protocols. The CoAP
was defined by the IETF [6] in 2014 and is the most recent
protocol of the two. The method of using CoAP is similar
to HTTP, since it follows the client/server model, and makes
use of REST. Its mode of operation includes HTTP methods
such as POST, PUT, UPDATE and DELETE. However, the
UDP-based communication of this protocol is different from
that of HTTP. The MQTT is an application layer protocol that
is already designed for devices with low computational power
and it uses the publish/subscribe architecture. This means that

when a client posts a M message on a particular topic, each
client enrolled in the T topic will receive the M message. In
the same way as the HTTP, the MQTT depends on the TCP
protocol and IP that are involved. However, compared with
HTTP, MQTT is designed to have a lower cost in the protocol
stack.

The main difference between CoAP and MQTT is that
the former runs on UDP, while the latter runs on top of
TCP. Since UDP is not reliable in its acknowledgment of
a receipt, CoAP provides a reliability mechanism. This is
carried out by using both confirmable and non-confirmable
messages. Confirmable messages are entirely dependent on
a commit message, while non-confirmable messages do not
need acknowledgment. Another difference between CoAP and
MQTT is the availability of different levels of QoS. The MQTT
defines three levels of QoS while the CoAP does not offer
different levels.

This paper is structured into six sections: Section II
presents the related works; Section III is dedicated to the
description of the proposed solution and comparison between
MQTT and CoAP are presented in Section IV; Section V
presents the prototype and the experimental results and, finally;
in Section VI, we present the conclusions and contributions ob-
tained.

II. RELATED WORK

The papers selected in this chapter emerged from a sys-
tematic review of the literature. In the search for the best
time for the delivery of notifications and breakpoint discovery
methods [7], the authors sought to execute the task directly on
the mobile device. The application can detect breakpoints and
then deliver notifications.

In [8], a study was conducted to predict the most opportune
time for delivering the notification to the user employing a
dataset obtained from the Android system which displays a
pop-up notification format. The process ends after a pairing
device and browser. In the study by [9], it is stated that before
notifications can be delivered effectively to a user with IoT
devices, it is first necessary to understand the user’s real need.
The main challenge is determining the user´s interest, which
may vary according to his/her status.

The work of [10] is a provisional study and only attempts
to predict which device should be selected to deliver the
notification. Although the dataset of notification is used to
train the algorithms, the solution is based on different machine

9Copyright (c) IARIA, 2019. ISBN: 978-1-61208-736-8

UBICOMM 2019 : The Thirteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

learning algorithms and allows the system to be evaluated. The
result is to some extent synthetic and assumes that the data
available for the notification are precise. As early as [9], the
author examines an approach to access user notifications, (usu-
ally for registration purposes), by establishing an open-source
framework for searching notifications on mobile devices.

III. PRISER

The solution that was found makes use of UbiPri’s pri-
vacy and control management middleware [11], which differs
from other existing solutions by providing a generic privacy
management and control model. One of the components refers
to services; this is called PRISER [12] and is responsible for
managing notifications. The application involves assigning a
lifetime value to the notification. In the case of a device without
Internet access, in a given environment, it should be possible
to send medium and high priority notifications in another way,
such as by sending an SMS.

In PRISER, a mobile device application was developed to
gather, and record notifications executed in the second plan.
All the requirements and running jobs in the second plan
are reliable and can be run in almost all android versions.
After granting users rights to manage services, this service
is executed in the second plan on a permanent basis and
receives a callback when a notification is added to or removed
from the system. The Notifications are stored in the device
memory and can be navigated by the device administrator. A
JSON object comprises all the notification information. The
infrastructure is based on open standards and used on the
Internet and IoT devices, such as the CoAP protocol and the
MQTT message queuing protocol for low-capacity devices.
The proposed architecture is composed of three modules: the
collector mentioned above, the decision and dispatcher. These
modules are highlighted in blue in Figure 1.

Notification Management System

User

Privacy

User
Environment
Device

Criteria
Priority
TTL
User profile
Envinronment

Device

IoT Device Webservices

id
group
profile

MQTT CoAP

App

Android

MQTT

Dispatcher

Decision

Figure 1: PRISER: Notification Management System [13]

A. Notification Collector

The notifications of the device are stored in the device
memory and can be navigated by the device administrator. An
Android app was used for this test, and its installation was
based in [5]. A JSON object comprising all the notification
information is obtained, in accordance with the items men-
tioned above.

B. Decision Maker

The main purpose of the decision module in the notifi-
cation management system is decision-making, and receiving
information concerning the privacy of the environment, the
device or even the user. The module seeks to answer the
following questions: (i) what is the best location to receive the
message?; (ii) when is the best time to show the notification
to the chosen user? (iii) in which device will the chosen users
receive the notification? and (vi) what is the best way to send
the notification?. The most important feature of this module is
the way it is used to make decisions.

According to [10], a decision tree algorithm creates a
flowchart pattern, in which each internal node represents a
test attribute, each branch represents the test result, and each
node in the sheet represents a label. The root- to-leaf paths
represent the classification rules for issuing the notification
This module also aggregates criteria information about the
user context (e.g., location, status, current activity), as well
as information related to the notification for a lifetime. The
criteria serve important purposes in the NMS, such as the
way information is used to choose the device and to alert the
user (e.g., vibration, sound or light) or to display notifications
received that are based on the user’s location.

C. Dispatcher

Finally, the dispatcher adapts the notifications to the chosen
target devices and then sends them. When handling notifica-
tions that are only intended for one device, this causes certain
problems. The first point is that the user must always be
charging the device, or remain close to it. The second point
refers to connectivity, during which the device that the user
uses may become disconnected, or even be without a battery.
The dispatcher module is based on an architecture that uses
multiple devices as shown above in Figure reffig:diagrama1.
Both MQTT and CoAP can be used in the dispatcher. Routing
messages for IoT include smart-things and devices and provide
a web service for third-party applications. The MQTT and
CoAP applications are described below.

IV. MQTT AND COAP

This section is dedicated to experiments performed on
multiple devices, including proposals for message transmission
and notifications between devices using the MQTT and CoAP
message protocols. Packet transmission times and tests from
notification quantities were used.

A. Collect and Share using MQTT

The notifications collected in an Android device are shared
with the decision module through the publish/subscribe that
implements an MQTT protocol. The WebSocket unit provides

10Copyright (c) IARIA, 2019. ISBN: 978-1-61208-736-8

UBICOMM 2019 : The Thirteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

the communication layer between a combination of the client-
side and the server-side for MQTT. The reaper unit receives
heartbeat events from operational devices and the component
for connecting the devices is called triproxy because it deals
with three endpoints instead of the usual two. They can have
more than one instance of running simultaneously, and then
give a comma-separated list to the provider.

The unit below uses a provider in the dispatcher module
unit for making a connection to the Android Debug Bridge
(ADB) and starting worker processes for each device. It then
sends and receives commands from the processor. Its purpose
is to send and receive requests from the app units and distribute
them across the processor among the units.

B. Collect and Share using CoAP

In the case of CoAP, the notification system employs a
request/response system for transferring messages to other
devices. A gateway called COSGP-IoT was implemented that
relied on the methods and other resources provided by the
libcoap2 library, which is the default system for limited
capacity devices. This method makes the server responsible
for assigning the appropriate working logic of the GET,
PUT and DELETE methods defined by the CoAP protocol
specifications. It follows the Constrained Restful Environment
(CORE) architecture, that includes the Write / Read and Full /
Partial of the OSGP model. Also, it supports Pending Events
Descriptors (PEDs), which act as the Pending Activator Tables,
that are essential for maintenance and general scalability. It
should be noted here that there is an absence of a POST
function, which can be explained by the lack of an analog
method from the OSGP model; thus, it is not necessary to
implement the type of request in question.

The following are invoked for its use: a) the gateway
function, b) an individual call for each request and response,
and c) a corresponding translation method and d) , mapping
the data when extracting certain attributes, such as a message
identifier, request/response, packet size and token. The data
repository of the CoAP server is one of the resources that can
be added in the context of the application, and it is through
this that the methods must be called. When used for the CoAP
requests, this work carried out the implementation of a client
in Python, owing to the practicality of the language and ease
of use of the libraries available for the platform.

Figure 2: GET Full method for received message.

The testing environment consisted of the hardware imple-
mentation of the code developed. The chosen development
platform, that was focused on integrating implementations
planned in the work, were divided between the client and
server. In the case of the CoAP client, it was decided to use the
BeagleBone Black microcontroller, which has 512MB of RAM
and an ARM Cortex A8 AM3358 CPU with a core operating

at 1GHz, while running the Debian 9.4OS and Raspberry Pi
model 3 which has 1GB of RAM and an ARM Cortex-A53,
1.2GHz.

V. PROTOTYPE AND EXPERIMENTAL RESULTS

The initial tests of the collector module proved that,
depending on the number of notifications a user receives,
the collection process can alternate between every 10 and
60 seconds. A large accumulation of notifications of just
the operating system was noticed when using notification by
application. The application used for the tests were initially
developed by Weber et al. [5] and described in PRISER [13].
This application is shown in Figure 3. Only the message
transmission control part and the protocols were used for this
work. This resulted in a comparison System for Notifications
x Notifications of an application shown in Figure 4.

Figure 3: NMS Notification collector. [13]

6 12 18 24 30 36

20

40

60

80

Time(h)

No. of Notifications

Apps
System

Figure 4: Notification by System x Notification by App per
hour.

A. MQTT Results

The purpose of the second experiment is to compare the
MQTT transfer and latency to forward a notification. First, a

11Copyright (c) IARIA, 2019. ISBN: 978-1-61208-736-8

UBICOMM 2019 : The Thirteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

transmission was carried out by dividing the packets into the
MQTT. 64, 128, 256 and 512 bytes were used for a total load
of 1024, 2048, 4096 and 8192. In every case, a JSON file was
simulated. The results are shown in Figure 5.

128 bytes 256 bytes 512 bytes FULL

20

40

60

Size

Time(ms)
1024
2048
4096
8192

Figure 5: MQTT Publish transmission splited in packets on
Beaglebone Black microcontroller.

128 bytes 256 bytes 512 bytes FULL

10

20

30

Size

Time (ms)
1024
2048
4096
8192

Figure 6: MQTT publishing with split packages on Raspberry
Pi device.

The results obtained through the comparison showed that
the CoAP is efficient for a low volume of messages but when
the volume increases the MQTT is more efficient; further tests
must be carried out to measure the degree of efficiency during
the work. This result is shown in Figure 7.

200 400 800
1600

3200

5

10

15

20

Messages

Time(s)

MQTT
CoAP

Figure 7: MQTT vs CoAP.

The requirements imposed on NMS were based on the
taxonomy and continued as rules and regulations in accordance
with research in the literature. The evidence obtained from this
article is as follows.

B. CoAP Results

The performance results of CoAP and the translation func-
tions, together with the resources coming from the standard
C language libraries, were obtained directly from the source
code of the gateway. The results are arranged in milliseconds
in the graphs below. The communication latency between the
devices was discounted . Only the PUT and GET Fulls methods
were tested, in view of the complexity involved in describing
the results and the nature of the article. The payloads of the
CoAP packages had JSON files of sizes varying between 1024,
2048, 4096 and 8192 bytes. These were divided into packets
smaller than 64 bytes, which allowed a larger sample and
greater control. Each method was tested 4 times, making a
total of 960 packets for each of the two methods tested. The
first test can be seen in Figure 8.

Figure 8: Comparative graphs between the Raspberry and
BeagleBone microcontroller for the PUT Full method.

There is a difference between the processing time of the
PUT Full requests made by the two microcontrollers. The
requests for translation from the CoAP script to OSGP took
up more time (between 0.021 ms and 0.175 ms) than the
response translations (0.002ms to 0.018 ms), owing to the
number of fields and amount of information used by the OSGP
packages. The total time for the method ranged from 0.076 ms
to 0.538 ms. However, in Figure 9, the processing time between
both types of hardware is technically the same (except for the
fluctuation rates that may occur) for the GET Full method.

The read response translations from OSGP to CoAP were
predictably the most detachable, with times varying between
0.41ms and 0.318ms. The requests were given in the order of
0.003ms to 0.027ms and the total amount of time ranged from
0.083ms to 0.608ms.

12Copyright (c) IARIA, 2019. ISBN: 978-1-61208-736-8

UBICOMM 2019 : The Thirteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 9: Comparative graphs between the Raspberry and
BeagleBone microcontroller for the GET Full method.

VI. CONCLUSION AND FUTURE WORK

Throughout this work, stress was laid on the importance of
using the privacy criteria with regard to the environment and
the hierarchy assigned to the user, and the taxonomy discussed
earlier was highlighted. In this way, we were able to contribute
to applications of different types of environments and deal with
different types of notifications. In addition, it was possible to
ensure that relevant notifications were sent and received in
compliance with the defined rules. Our architecture is divided
into three key modules to manage the notifications received.

A simplified version of the architecture was prototyped, and
a preliminary validation was made of the collection module.
Besides, the transfer of messages between devices was tested
through CoAP and MQTT. New tests must be conducted to
determine the variables and make comparisons. Also, a careful
evaluation of the decision algorithms had to be implemented,
so that different algorithms could be employed and compared.
Finally, the prototype must be improved by including an
assessment of a large numbers of users.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior—
Brasil (CAPES)—Finance Code 001. Supported by project
PLATAFORMA DE VEHÍCULOS DE TRANSPORTE DE
MATERIALES Y SEGUIMIENTO AUTÓNOMO — TAR-
GET. 463AC03.

Project co-financed with Junta Castilla y León, Con-
sejerı́a de Educación and FEDER funds. This work was
partially funded by FCT- Fundação para a Ciência e a
Tecnologia through national funds and when applicable co-
funded by FEDER – PT2020 partnership agreement under
the project UID/EEA/50008/2019. Operação Centro-01-0145-
FEDER-000019 – C4 – Centro de Competências em Cloud
Computing, co-financed by the Programa Operacional Re-
gional do Centro (CENTRO 2020), through the Sistema de

Apoio à Investigação Cientı́fica e Tecnológica – Programas
Integrados de IC&DT. Including a cooperation with the project
international cooperation project Control and History Man-
agement Based on the Privacy of Ubiquitous Environments—
Brazil/Portugal.

REFERENCES

[1] M. Satyanarayanan, “Pervasive computing: Vision and challenges,”
IEEE Personal Communications, vol. 8, no. 4, 2001, pp. 10–17,
DOI:10.1109/98.943998.

[2] F. Viel, L. A. Silva, R. Q. Valderi Leithardt, and C. A. Zeferino, “Inter-
net of things: Concepts, architectures and technologies,” in 2018 13th
IEEE International Conference on Industry Applications (INDUSCON),
Nov 2018, pp. 909–916, dOI:10.1109/INDUSCON.2018.8627298.

[3] M. Stolpe, “The internet of things: Opportunities and challenges for
distributed data analysis,” ACM SIGKDD Explorations Newsletter,
vol. 18, no. 1, 2016, pp. 15–34, DOI:10.1145/2980765.2980768.

[4] S. K. Goudos, P. I. Dallas, S. Chatziefthymiou, and S. Kyriazakos,
“A survey of iot key enabling and future technologies: 5g, mobile iot,
sematic web and applications,” Wirel. Pers. Commun., vol. 97, no. 2,
Nov. 2017, pp. 1645–1675, DOI:10.1007/s11277-017-4647-8.

[5] D. Weber, A. Voit, and N. Henze, “Notification log: An open-source
framework for notification research on mobile devices,” in Proceed-
ings..., ser. UbiComp ’18, International Joint Conference and 2018
International Symposium on Pervasive and Ubiquitous Computing and
Wearable Computers. New York, NY, USA: ACM, 2018, pp. 1271–
1278, dOI:10.1145/3267305.3274118.

[6] Z. Shelby, K. Hartke, and C. Bormann, “Constrained
application protocol (coap) - draft-ietf-core-coap-18,” ago 2019,
https://datatracker.ietf.org/doc/draft-ietf-core-coap/.

[7] T. Okoshi, J. Nakazawa, and H. Tokuda, “Attelia: Sensing user’s
attention status on smart phones,” in Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing:
Adjunct Publication, ser. UbiComp ’14 Adjunct. New York, NY, USA:
ACM, 2014, pp. 139–142, DOI:10.1145/2638728.2638802.

[8] A. Sahami Shirazi, N. Henze, T. Dingler, M. Pielot, D. Weber, and
A. Schmidt, “Large-scale assessment of mobile notifications,” in Pro-
ceedings of the 32Nd Annual ACM Conference on Human Factors in
Computing Systems, ser. CHI ’14. New York, NY, USA: ACM, 2014,
pp. 3055–3064, DOI:10.1145/2556288.2557189.

[9] Z. Pan, X. Liang, Y. C. Zhou, Y. Ge, and G. T. Zhao, “Intelligent push
notification for converged mobile computing and internet of things,” in
2015 IEEE International Conference on Web Services, June 2015, pp.
655–662, DOI:10.1109/ICWS.2015.92.

[10] F. Corno, L. D. Russis, and T. Montanaro, “A context and user aware
smart notification system,” in 2015 IEEE 2nd World Forum on Inter-
net of Things (WF-IoT), Dec 2015, pp. 645–651, DOI:10.1109/WF-
IoT.2015.7389130.

[11] V. R. Leithardt, L. H. A. Correia, G. A. Borges, A. G. Rossetto,
C. O. Rolim, C. F. Geyer, and J. M. S. Silva, “Mechanism for privacy
management based on data history (ubipri-his),” Journal of Ubiquitous
Systems and Pervasive Networks, vol. 10, no. 1, 2018, pp. 11–19.

[12] L. A. Silva, D. dos Santos, R. Dazzi, J. S. Silva, and V. Leithardt,
“PRISER - Utilização de BLE para localização e notificação com
base na privacidade de dados,” Revista Eletrônica Argentina-Brasil de
Tecnologias da Informação e da Comunicação, vol. 2, no. 1, 2018,
DOI:10.5281/zenodo.1336806.

[13] L. A. Silva, V. R. Q. Leithardt, C. O. Rolim, G. V. González, C. F. R.
Geyer, and J. S. Silva, “Priser: Managing notification in multiples
devices with data privacy support,” vol. 19, no. 14, 2019. [Online].
Available: https://www.mdpi.com/1424-8220/19/14/3098

13Copyright (c) IARIA, 2019. ISBN: 978-1-61208-736-8

UBICOMM 2019 : The Thirteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

