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Abstract—The collection of a voluminous real-world stream 

data is achieved today through a large number of distributed 

and heterogeneous data sources. On the other hand, it is quite 

rare to discover and collect semantic models associated with 

this data, in order to be able to represent implicit meaning and 

specifying related uncovered concepts and relationships 

between them. Such semantic models, however, are the key to 

make the data easily available, understandable and 

interlinkable for its potential users and applications. Manually 

modeling the semantics of data requires significant effort and 

expertise. Most of the related work focuses on the semantic 

labeling/annotation of the data fields (source attributes), given 

that a semantic model is already provided. Constructing a 

semantic model that explicitly describes the relationships 

between the data attributes in addition to their semantic types 

is critical. Related works support the semantic annotation of 

data using existing ontologies, but there are only a few that 

automatically construct the ontology based on the real-world 

stream data that will eventually annotate (two-step process). 

More important, existing solutions require a manually-created 

training data set and its mapping to existing related 

ontologies/models, in order to assist in the process of learning 

the mapping function between the actual stream data and the 

related semantic model (usually via a supervised machine 

learning approach). This paper a) presents the problem and 

representative related work, and b) proposes design directions 

that are aligned to key requirements. 
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I.  INTRODUCTION 

In domains such as the IoT, sensor devices are used to 
obtain insights about the things that ‘live’ in the surrounding 
world, and to facilitate an intelligent interaction with them 
(sense, analyze, act). The increasing need of using the data 
produced by the sensor devices (stream data) inevitably leads 
to Big Data, which requires new scalable and efficient 
methods to structure and represent the underlying 
information and to make the data accessible, processable and 
interlinkable for the applications/services that use it. For 
instance, this is the case for accessing, integrating and 
reasoning with large volumes of stream data generated from 
moving entities (e.g., ships, airplanes), dynamic data such as 
weather conditions, as well as historical/static data, in order 
to recognize high-level critical events to support real-time 
decision and policy making.  

Semantic technologies are used for the formal 
representation of the real-world sensor data, due to its 
advantage of conceptualizing and representing raw data in an 
easy but still formal and explicit way, making them machine 
interpretable and allowing their interlinkage to existing 

resources (e.g., Web, Linked Open Data cloud). For instance, 
representing raw numerical values of measurements of 
weather conditions that are measured and conceptualized by 
meteorological or AIS (automatic identification system) 
sensors, e.g., attributes, such as date, time, swell height (or 
height of swell), wind speed (or speed of wind), visibility, 
and their corresponding values such as “28/08/2017, 09.00, 
1, 20, 10” and “28/08/2017, 22.00, 8, 90, 5”, can be done by 
automatically discovering their corresponding semantics and 
assigning to them the appropriate semantic labels. 

Typically, individual data table columns (e.g., 
CSV/Excel table) are mapped to ontological properties, a set 
of data table columns are mapped to ontological classes, and 
row data table rows are mapped to ontological individuals. 
For structured data/information such as relational databases 
(RDB) and Web tables, the aim is to semantically 
annotate/label the sources of structured data by mapping 
RDB and Web tables against an ontology. As recently 
reported [1], such a task can be decomposed into different 
subtasks such as table-to-class mapping, row-to-instance 
mapping, and column-to-property mapping.  

Defining the problem of semantic labeling of a data 
source S with a semantic labeling function  

  is explained in the following lines.  
A data source S is a collection of ordered 

pairs , where  denotes an attribute name (e.g., 

‘date’, ‘time’, ‘swell height’, etc.) and  denotes the set of 

data values corresponding to the attribute  (e.g., for  
equals to the ‘date’ attribute the set will have values such as 
‘28/08/2017’, ’30-04-2018’). Different data sources can have 
attributes that have different names but map to the same 
semantic label (e.g., ‘swell height’ of S1 and ‘height of swell’ 
in S2 are both mapped to the same property i.e., 
‘swell_height’ of a Weather ontology). Multiple data sources 
are often mapped to the same ontology in many practical 
scenarios. The goal is to automatically learn the semantic 
labeling function.  To assign a semantic label to an attribute 

in a new data source, we take an ordered pair  
and use a semantic labeling function, which has been learned 
from training data, to predict its semantic label. 

In the IoT domain, one of the biggest challenges is to 
discover and establish mappings between raw data and its 
intended meaning, formalized explicitly into ontological 
concepts, properties and/relationships between them. Such a 
problem is usually referred as the symbol grounding problem 
[2], describing the fundamental challenge of defining 
concepts/properties from numerical sensor data that is not 
grounded in meaningful real-world information. Voluminous 
real-world stream data are usually recorded and collected as 
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numerical values that cannot easily be related to meaningful 
information without knowing the context, such as the 
observation time and the location of the recorded data. Such 
data can change over time or it can be depended on other 
external factors. For instance, 30 degrees Celsius in summer 
time can be a normal condition, however in winter time such 
a reading could possibly mean an error of the sensor 
functionality. 

In contexts where real-world row data are generated in a 
streaming fashion by sensor devices or other data sources, 
the main problems related to their semantic labeling are: 

• In the absence of a semantic model (ontology), how 
to automatically construct one by 
learning/uncovering the semantics ‘hidden’ in the 
data 

• Given a (learned) semantic model, how to 
automatically, accurately and on-time compute the 
corresponding data-to-semantics mappings, in a 
continuous and iterative fashion. 

While syntactic information about data sources such as 
attribute names (e.g., title, name, location) or attribute types 
(e.g., string, int, date) may provide some hints towards 
discovering their related meanings and form the 
corresponding semantic types, often this information is not 
sufficient for an accurate prediction. For instance, the field 
‘title’ of a data source that records artworks is not by itself 
indicative of the intended meaning of its values (e.g., 
‘Zinnias’), i.e., it might by the case that values (titles) are 
meant to be related with book titles, with song titles or with 
artworks. This prediction can be even harder if the attribute 
names are used in abbreviated forms e.g., ‘dob’ (i.e., date of 
birth) instead of ‘birthdate’. That is the main reason why 
related approaches focus on learning data semantics using 
the data values rather their attribute names.  

The general idea behind existing related approaches is to 
learn a semantic labeling function from a training set of data 
that has been previously semantically labeled in a manual 
fashion. Then, when presented with a new data source of the 
same topic/domain, the learned semantic labeling function 
can automatically assign semantic types to each attribute of 
the new source. The training data consists of a set of 
semantic types and each semantic type has a set of data 
values and attribute names associated with it. Given a new 
set of data values from a new source, the goal is to predict 
the top-k candidate semantic types along with confidence 
scores using the training data. 

In the example of Artworks, the semantic types are ‘title’ 
of ‘Artwork’, ‘name’ of ‘Person’, and ‘label’ of ‘Museum’. 
By simply labeling the attributes with those types however, 
is not sufficient. Unless the relationships between the 
columns are explicitly specified (‘museum’, ‘painter’), a 
precise model of the data cannot be obtained.  For instance, a 
person could be the owner, the painter, or the sculptor of an 
artwork, but in the context of a specific example data for 
paints, only the semantic relation of ‘painter’ correctly 
interprets the intended relationship between an artwork and a 
person. Thus, to build a rich semantic model that fully 
represents the intended semantics of the data, another step 
that determines the relationships between the attributes of the 

data sources in terms of the properties in the ontology is 
necessary. 

Moreover, in terms of solving the same problem 
presented above, but for stream (mainly numerical) data as 
input, one is facing with even more challenging issues. Due 
to the nature of stream data (data arrives so rapidly in large 
volumes, usually with no structure or metadata attached to 
it), techniques such as dimensionality reduction and time-
windowing of data, as well as statistical/probability 
techniques for analyzing the distribution of numeric values 
corresponding to a semantic label as well as linking those 
labels to each other, are required.  

This paper presents a) a number of recent related works 
that try to solve the abovementioned problems,  and b) 
design directions aligned to technological requirements that 
must be satisfied towards the goal of automating the 
semantic labeling of stream data. It is structured as follows: 
Section 2 provides background knowledge of key 
technologies, Section 3 presents the related work, Section 4 
presents the proposed design directions towards efficiently 
approaching the problem, and Section 5 concludes the paper, 
also stating future work plans. 

II. BACKGROUND KNOWLEDGE  

A. Semantic Labeling 

Semantic labeling (or annotation), in the most common 
cases, is the process of attaching additional information to 
various concepts (e.g., people, things, places, organizations 
etc.) in a given text or any other unstructured or structured 
content (e.g., video, RDB, Web tables). When a document 
(or another piece of content, e.g., video) is semantically 
labeled it becomes a source of information that is easy to be 
interpreted, combined and reused by computers. As 
described by OntoText [3], to semantically annotate concepts 
in the sentence “Aristotle, the author of Politics, established 
the Lyceum”, we need to identify Aristotle as a ‘person’ 
and Politics as a ‘written work of political philosophy’. Then 
we can index, classify and interlink the identified concepts in 
a semantic graph database (e.g., GraphDB), in order to be 
able to add (link) other information about Aristotle such as 
his date of birth, his teachers, and his works.  Politics can 
also be linked to its subject, to its date of creation etc. Given 
the semantics about the above sentence and its links to other 
(external or internal) formal knowledge, algorithms will be 
able to automatically answer questions such as: who tutored 
Alexander the Great, which of Plato’s pupils established the 
Lyceum. In other words, semantic labeling/annotation 
enriches content with machine-processable information by 
linking background information to extracted concepts.  

For structured data/information, such as relational 
databases (RDB) and Web tables, the aim is to semantically 
annotate sources of structured data by mapping RDB and 
Web tables against an ontology. Such a task can be 
decomposed into different subtasks such as table-to-class 
mapping, row-to-instance mapping, and column-to-property 
mapping [1]. There are many studies on mapping data 
sources to ontologies and several approaches have been 
proposed to generate semantic Web data from databases and 
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spreadsheets [4]. RDB schemas are easy to handle when 
computing 1-1 mappings (table-to-class and field-to-property 
correspondences). The D2RQ [5] and Ontop [6] Ontology-
Based Data Access (OBDA) approaches, introduces custom 
mapping languages that enables users to define mapping 
rules between tables of relational databases and target 
ontologies in order to annotate and publish semantic data in 
RDF format. R2RML [7] is a W3C recommendation for 
expressing customized mappings from relational databases to 
RDF datasets. Writing the corresponding mapping rules by 
hand however, is a time-consuming task. The users need to 
have a good understanding of the way source tables can be 
most effectively mapped to the target ontology. They also 
need to learn the syntax of writing the mapping rules.  

In recent years, some efforts were introduced towards 
automatically inferring the implicit semantics of tables. 
Polfliet and Ichise [8] use string similarity methods between 
column names and names of the ontological properties in 
order to discover the corresponding mappings. Wang et al. 
[9] use the header of Web tables along with the values of the 
rows to map the columns to the attributes of the 
corresponding entity that is represented in a rich and general 
purpose taxonomy of facts (built from a corpus of over one 
million Web pages and other data). This approach can only 
deal with the tables containing information of a single entity 
type.  Limaye et al. [10] use YAGO ontology [11] to 
annotate Web tables and generate binary relationships using 
machine learning approaches. This approach is limited to the 
labels and relations defined in the YAGO ontology. Venetis 
et al. [12] presents a scalable approach to describe the 
semantics of tables on the Web, leveraging a database of 
class labels and relationships that are automatically extracted 
from the Web. Although these approaches are very useful in 
labeling and publishing semantic data from tables, they are 
limited in learning the semantics relations: they only infer 
individual binary relationships between pair of columns. 
They are not able to find the relation between two columns if 
there is no direct relationship between the values of those 
columns.  

Moreover, other related work exploits the data available 
in the Linked Open Data (LOD) cloud to capture the 
semantics of the tables and publish their data as RDF. Munoz 
et al. [13] present an approach towards mining RDF triples 
from the Wikipedia tables by linking the cell values to the 
resources available in DBpedia [14]. This approach is limited 
to Wikipedia. In Mulwad et al. [15], the Wikitology [16] is 
used to link cells in a table to Wikipedia entities. Wikitology 
is an ontology which combines some existing manually-built 
knowledge systems such as DBpedia and Freebase [17]. 
They query the background LOD to generate initial lists of 
candidate classes for column headers and cell values and 
candidate properties for relations between columns. Then, 
they use a probabilistic graphical model to find the 
correlation between the column’s headers, cell values, and 
relation assignments. The quality of the semantic data 
generated by this category of work is highly dependent to 
how well the data can be linked to the entities in LOD. 

In Karma [18], a graph from learned semantic types and a 
domain ontology is built. Then the graph is used to map a 

data source to the ontology interactively. In this work, the 
system uses the knowledge from the pre-defined existing 
domain ontology to propose models to the user, who can 
correct them as needed. The system remembers the semantic 
type labels assigned by the user, however, it does not learn 
from the structure of previously modeled sources.  

In terms of stream data, the aim is to automatically 
annotate real-world data flows, in real-time, with semantics 
that are already available before-hand (for the training 
dataset) [19]–[21] or not i.e., extract/uncover the real-world 
semantics on-the-fly, during the annotation process [22]. In a 
real-time stream processing and large-scale data analytics for 
IoT and Smart City applications’ context, the semantic 
annotation process of heterogeneous data for automated 
discovery and knowledge-based processing is sometimes 
referred as data virtualization [23][24][25].  

B. Ontology learning 

Ontology learning concerns the process of constructing 
an ontology from data/information source(s), in an automatic 
or semi-automatic manner, to minimize or eliminate cost, 
effort and time-consuming human involvement [26].  The 
process extracts the concepts and relationships between them 
from a corpus of natural language text or other sources of 
data and information, and encodes them in an ontology 
language (e.g., OWL). As building ontologies manually is 
extremely labor-intensive and time-consuming, there is great 
motivation to fully automate the process in several 
application domains. A typical text-based process of 
ontology learning, starts by extracting terms and concepts 
from plain text using techniques, such as part-of-speech 
tagging and phrase chunking. Then, statistical or symbolic 
techniques are used to extract relation signatures, often based 
on pattern-based or definition-based 
hypernym/hyponym/meronym extraction techniques. 

A representative work that learns and constructs 
ontologies from text documents is presented in Wang et al. 
[27], introducing an automatic learning approach to construct 
terminological ontologies based on different text documents. 
In Lin et al. [28], a learning approach that constructs an 
ontology automatically without the requiring training data is 
presented. Other related approaches include the learning of 
lightweight ontologies from query logs [29], aiming at the 
efficient retrieval of Semantic Web documents. In another 
related work [30], a new ontology is automatically 
constructed by utilizing representations of entities, their 
attributes and relations, learnt using unsupervised machine 
learning techniques on facts extracted from Wikipedia tables. 
Furthermore, a challenge in the automatic transformation of 
an RDB model into an ontology is how to label the 
relationships between concepts [31]–[33]. This challenge 
depends heavily on the correct extraction of the relationship 
types, since RDB models does not store the meaning of 
relationships between entities but it only indicates the 
existence of a link between them [33].  

Several works have been conducted in providing sensor 
data with semantic annotations. In Sheth et al. [34] semantics 
are used to represent and structure real-world data, however, 
automatically transforming the raw data into the semantic 
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representation in this work remains an open issue. Dietze et 
al. [35] describes the problem of symbolic grounding and the 
semantic sensor Web, and introduces an approach that uses 
conceptual spaces to bridge the gap between sensor 
measurements and symbolic ontologies in an automatic 
manner. In Stocker et al. [36] a system to identify and 
classify different semantic types of road vehicles passing a 
street is presented, using vibration sensors and machine 
learning algorithms. In Ganz et al. [22], a knowledge 
acquisition method is proposed that processes real-world 
stream data to automatically create and evolve domain 
ontologies, based on concepts-labeling rules that are 
automatically extracted from external sources.  

C. Ontology matching 

In recent years, ontology matching has received much 
attention in the Semantic Web community [37]. Ontology 
matching finds the correspondence between semantically 
related entities of different ontologies. Semantic annotation 
can benefit from some of the techniques developed for 
ontology matching. For example, instance-based ontology 
matching exploits similarities between instances of 
ontologies in the matching process. A semantic labeling 
algorithm can adopt the same idea to map the data of a new 
source to the classes and properties of a target ontology. 
Such an algorithm computes the similarity (e.g. cosine 
similarity between TF/IDF vectors) between the data of the 
new source and the data of the sources whose semantic 
models are known. Most of the work on ontology matching 
only finds simple correspondences such as equivalence and 
subsumption between ontology classes and properties. 
Therefore, the explicit relationships within the data elements 
are often missed when aligning the source data to the target 
ontology. 

D. Stream data mining 

Stream data, e.g., encoded in JSON, is mostly numerical 
and often with no rich (or any) metadata attached to it. Data 
arrives in a stream or streams, and if it is not processed 
immediately (or stored), it is lost. Moreover, the data arrives 
so rapidly that it is not feasible to store it all in active storage 
(i.e., in a conventional database), and then interact with it at 
the time of your choosing. The algorithms for processing 
streams involve summarization of the data, to make a useful 
sample of it and to filter it in order to eliminate most of the 
“undesirable” elements (e.g., stop words, noise), before it is 
annotated. Then the number of different elements in a stream 
is estimated using much less storage than would be required 
if all the elements were listed.  

Knowledge acquisition requires several processing steps. 
Due to the large volume of real-world stream data, 
techniques are required to lower the amount (or dimensions) 
of the data input to make it manageable for processing 
algorithms such as clustering and statistical methods. In the 
domain of time-series analysis there has been a number of 
dimensionality reduction techniques such as Fast-Fourier 
transformation (FFT), Discrete Wavelete Transformation 
(DWT), Piecewise Aggregate Approximation (PAA), and 
Symbolic Aggregate ApproXimation (SAX). The 

comparative study by Ding et al. [38] reveals that SAX 
performs best in preserving the data features by remaining 
high dimension reduction (data compression).  

SAX transforms time-series data into aggregated words 
that can be used for pattern detection and indexing. Since 
SAX was not developed for small constrained devices, 
authors in Ganz et al. [22] introduce Sensor-SAX, a modified 
version that has less data transmission in times of low 
activity in the sensor signal that is processed. In order to 
group similar types of patterns and events, clustering 
mechanisms are used. Cluster mechanisms do not require 
training data and can be unsupervised. However, the 
clustering methods rely on distance functions that map the 
data samples to a comparable space. The k-means clustering 
method provides fast computation of the groups even in large 
datasets. However, the biggest drawback is that the number 
of clusters (i.e., k) is an input parameter, and therefore should 
be known beforehand. In order to learn the ontological 
properties, a rule-mining approach can be used, similar to the 
one proposed in Hu et al. [39]. The authors aim at creating 
ontologies automatically by learning the logical rules to 
construct the ontology. In Ganz et al. [22] a rule learning 
approach is used, similar to the one of Hu et al. [39] to label 
the unnamed concepts in the ontology. 

III. RELATED WORK 

In the context of the work of Gao and Lianli [20], a 
Semantic Annotation and Activity Recognition (SAAR) 
approach is presented, integrating semantic annotation with 
Support Vector Machine (SVM) techniques to automatically 
identify animal behaviors from 3D accelerometry data 
streams. It enables biologists to visualize and correlate 3D 
accelerometer data streams with associated video streams. It 
also enables domain experts to accurately annotate segments 
of tri-axial accelerometer data streams, with standardized 
terms extracted from an activity ontology. These annotated 
data streams can then be used to dynamically train a 
hierarchical SVM activity classification model, which can be 
applied to new accelerometer data streams to automatically 
recognize specific activities. The approach requires a) 
significant human involvement, b) the creation of a training 
data set, and c) the use of predefined domain-specific 
ontologies. 

Related approaches map each data value individually, 
typically by learning a model based on features extracted 
from the data using supervised machine-learning techniques. 
In the approach of Ramnandan et al [19], the difference is 
that it considers a holistic view of the data values 
corresponding to a semantic label, and uses techniques that 
treat this data in a collective manner. This way, it is possible 
to capture characteristic properties of the values associated 
with a semantic label as a whole. It supports both textual and 
numeric data analysis and proposes the top-k semantic labels 
along with associated confidence scores. For textual data, the 
TF-IDF-based approach is used, and for numeric data, the 
Kolmogorov-Smirnov (KS) statistical hypothesis test 
respectively. The semantics for the semantic annotation of 
data are automatically discovered, however the approach 
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requires the existence of training sets, as well as of domain-
specific ontologies that are used to label the training sets. 

Taheriyan et al. [21] exploits external knowledge from 
specific domain ontologies and other semantic models 
learned from previously modeled sources (based on the idea 
that data sources in the same domain usually provide 
overlapping data) to automatically learn an expressive new 
semantic model for a new source. The new semantic model 
represents the semantics of the new data source in terms of 
the concepts and relationships defined by the exploited 
domain ontology/ies. The approach is based on 
training/sample data of the new data source against the 
mapped semantics of the domain ontology and the known 
semantic models. Although the approach can be used to learn 
rich semantic models from data, human involvement as well 
as the existence of external knowledge (domain ontology and 
other related semantic models) is needed. Also, the data used 
to evaluate the approach (museum domain) cannot be 
considered as the hard case of streaming data (numerical vs 
textual semantic labeling). Finally, supervised machine 
learning (training data sets) is used for the semantic labeling 
of the data. 

Ganz et al. [22] introduces a knowledge acquisition 
method that processes real-world streaming data to 
automatically create and evolve domain ontologies, based on 
concept-labeling rules that are automatically extracted from 
external sources. They use an extended k-means clustering 
method and apply a statistic model (Markov chain model 
approach) to extract and link relevant concepts from the raw 
sensor data and represent them in the form of a domain 
ontology. A rule-based system is used to label the concepts 
and make them understandable for the human user or for the 
semantic analysis, reasoning tools and software. The 
approach is based on the abstraction of numerical values, 
creating higher-level concepts from the large amount of data 
produced by sensor devices. To do so, as in other related 
work [23], the symbolic aggregate approximation (SAX) 
dimensionality reduction mechanism [40] is used. The 
approach uses the extended version of the SAX algorithm, 
i.e., SensorSAX. The approach uses the SSN Ontology [41] 
as a starting point and extend it by extracting new insights 
from the raw sensor data to construct a topical ontology 
representing an extract of the observed domain. 

IV. DESIGN DIRECTIONS 

In this section we propose a set of design directions for 
future approaches, based on the specific techniques/methods 
of existing ones that stand-out as key choices towards 
achieving the highest positive impact in an automated 
semantic annotation framework for real-world voluminous 
stream (sensor) data. The aim is to design an approach that 
transforms raw sensor streaming data (e.g., “28/08/2017, 
09.00, 1, 20, 10” or “28/08/2017, 22.00, 8, 90, 5”) into 
meaningful semantics (e.g.,  “Calmness” or “Storm”), as 
automatically and accurately as possible, minimizing human 
involvement and the use of pre-defined existing domain-
specific ontologies.  

The focus of these design directions is towards 
automating (as much as possible) the transformation of raw 

stream data related to the continuous monitoring of moving 
entities (vehicles, ships, aircrafts), for instance, trajectories, 
weather conditions, and low-level events (e.g., start, stop, 
turn), to valuable annotations of higher-levels of abstraction 
such as: change of course (a change in the direction that 
vessels are moving),  three-point turn (the act of turning a 
vessel around in a limited space by moving in a series of 
back and forward arcs), cold wave (a wave of unusually cold 
weather), calmness (an absence of strong winds or rain), 
atmospheric phenomenon (a physical phenomenon 
associated with the atmosphere). Moreover, the focus is 
towards investigating how these automatically generated 
abstractions may be used in a combined way to infer and 
model even more higher levels of abstractions and critical 
high-level events such as: trade route (a route followed by 
traders, usually in caravans), migration route  (the 
geographic route along which populations of 
animals/humans customarily migrate), flight path (the path of 
a rocket or projectile or aircraft through the air), collision (an 
accident resulting from violent impact of a moving object), 
crash, wreck (a serious accident, usually involving one or 
more vehicles).  

The hardest problem of a data-to-semantics approach that 
uses an unsupervised machine learning algorithm for leaning 
concepts from numerical data, is probably the problem of 
automatically labeling the learned unnamed classes and 
properties. In the absence of a trained data-to-semantics 
learning algorithm, a rule-based mechanism must be applied 
on clustered symbolized SAX patterns in order to 
automatically add names to the unlabeled concepts. Such 
rules can be manually defined (increasing however the 
undesired, in our case, human involvement), or to construct a 
mechanism that can automatically extract those rules. The 
aim is to develop such a mechanism in order to automate the 
process of constructing such naming rules, possible encoded 
in the Semantic Web Rule Language (SWRL), towards 
supporting the automated concept and property naming task. 
For instance, such a rule set in the maritime/safe-shipping 
application domain may look like the ones presented in 
Table 1. 

TABLE 1. EXAMPLE RULE SET IN THE MARITIME/SAFE-SHIPPING DOMAIN 

isAISdata(?ad)  

& isSimpleEvent (?se)  

& equal(?se, ‘turn’) 

 

=> VesselInTurn 

isAISdata(?ad)  

& isSimpleEvent (?se)  

& equal(?se, ‘lost communication’) 

 

=> VesselInLostCommunication 

isWeatherData(?wd)  

& (swell_height_m(?sh) & 

greaterThanOrEqual(?sh, 8))  

& (wind_speed_kmph(?ws) & 

greaterThanOrEqual(?ws, 90)) 

& (visibility(?v) & lessThanOrEqual(?v, 5)) 

 

=> Storm 

 

badWeatherConditions  

& vesselInTurn 

& ??? 

=> WeatherForcedChangeOfCourse 

     (inferred knowledge) 

badWeatherConditions  

& vesselInLostCommunication 

& ??? 

=> VesselInDanger 

     (inferred knowledge) 

Natural Language Processing (NLP) techniques and 
heuristic rules will be further incorporated in order to assist 
the process of ontology construction. For instance, the 
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Vessel-related concepts learned from the rule-based 
mechanism, VesselInTurn and VesselInDanger, can be 
classified under WordNet-extracted learned concept Vessel, 
Storm under WeatherConditions, and 
WeatherForcedChangeOfCourse under ChangeOfCourse. 
Furthermore, WordNet (open multilingual knowledge graph) 
semantic relations that hold between the extracted concepts 
can be further analyzed in order to introduce labels for the 
unnamed properties as well. 

A two-step process is proposed and presented below in 
an abstract design level. The first step concerns the learning 
of the ontology from a specific time-window of the stream 
data (Figure 1) and the second concerns the semantic data 
annotation of the data stream (Figure 2) i.e., the use of the 
learned ontology for the computation and refinement of data-
to-ontology mappings of the data stream. The input of the 
process is: a) streaming data, mainly numerical, and b) 
external generic semantic lexicons or knowledge graphs. The 
proposed abstract steps of the process are: 
1. Ontology Learning (Figure 1) 

1.1 Pre-process stream data:  

• Transform into a specific working format (e.g., 

from CSV or JSON to RDF), 

• Distinguish data between textual DST (e.g., vessels’ 

historical data) and numerical DSN (e.g., AIS and 

weather data). 

1.2 Define a time window T for a subset DS of the stream 

data D that will be used for the automated learning of 

the ontology. 

1.3 Analyze data for DS using external knowledge (e.g., 

WordNet) and a data summarization method (e.g., 

SAX). 

• For textual data DST: Methods for indexing and 

searching of documents (TF-IDF-based cosine-

similarity method). The labeling algorithm will use 

the cosine similarity between TF/IDF vectors of 

WordNet documents (focused subset of synsets) 

and the input document to predict candidate 

semantic types (WordNet senses) 

• For numerical data DSN: combined analysis of a) 

data values (using SAX) and b) data attribute 

names (using lexical and semantic analysis with the 

aid of external semantic lexicon such as WordNet 

or BabelNet) 

1.4 Automatically construct the top-k candidate 

ontological models Mk, for DS, using a rule-based 

entity naming method.  

1.5 Present user the candidate semantic models Mk and 

allow the selection and refinement of the preferred k 

model i.e., the final learned ontology. 

2. Semantic data annotation (Figure 2) 

2.1 Repeat step 1.1 for the rest of the stream data. 

2.2 Repeat step 1.3 using also the learned ontology as 

input to the data analysis method. 

2.3 Automatically compute data-to-ontology mappings m 

for DS. 

2.4 Based on user feedback allow the manual 

correction/refinement of one of more mappings of m. 

2.5 Automatically (re)compute the mappings, based on 

users’ corrections/refinements. 

 
Figure 1. Ontology learning from time-window stream data 

The output of the proposed process is: a) a learned-from-

data domain ontology (e.g., encoded in OWL/RDF, and b) 

data-to-ontology mappings (e.g., encoded in R2RML). 

 

 
Figure 2. Semantic data annotation 

The aim is to generate the learned-from-data domain 

ontology not just as a data-focused subset of the external 

lexicon source (e.g., WordNet, BabelNet), but a rich and 

expressive (as possible) lexicon-based ontology that reflects 

the intended meaning of analyzed data.  

V. CONCLUSIONS AND RECCOMENDATIONS 

The main problems related to the semantic annotation of 

stream data are: a) how to automatically construct a 

semantic model by learning the semantics ‘hidden’ in the 

data, b) given a semantic model, how to automatically, 

accurately and on-time compute the corresponding data-to-

semantics mappings, in a continuous and iterative fashion. 
We conjecture that there is a real need to develop 

approaches based on issues discussed in this paper, as well as 
on specific methods of existing approaches that stand-out as 
key choices towards achieving the highest positive impact in 
an automated semantic annotation framework for real-world 
voluminous stream (sensor) data. The need is to transform 
raw sensor streaming data into meaningful semantics, as 
automatically and accurately as possible, minimizing human 
involvement and use of pre-defined existing domain-specific 
ontologies.  
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The hardest problem, as identified in this paper, is 

related to the data-to-semantics approach that uses an 

unsupervised machine learning algorithm for learning 

concepts from numerical data: it is the problem of 

automatically labeling (adding names to) the learned 

unnamed classes and properties. In the absence of a trained 

data-to-semantics learning algorithm, a rule-based 

mechanism must be applied on clustered symbolized SAX 

patterns to automatically add names to the unlabeled learned 

concepts. Such rules can be manually defined (increasing 

however human involvement), or to construct a mechanism 

that can automatically extract them.  

Based on the discussion and findings presented in this 

paper, the following key research actions are recommended 

to be integrated in related frameworks: 

• Data synopses (summaries) from stream data 
sources, archival data, as well as detected and 
forecasted trajectories and events must be 
semantically annotated, transformed into a common 
form and be integrated. This task will exploit 
knowledge models and meta-data schemes that will 
be incorporated in the infrastructure, keeping them 
permanently up-to-date. 

• Advance the related research towards automating, as 
much as possible, the transformation of raw stream 
data related to the continuous monitoring of moving 
entities (vehicles, ships, aircrafts), for instance, 
trajectories, weather conditions, and low-level events 
(e.g., start, stop, turn), to valuable annotations of 
higher-levels of abstraction. 

• Develop a method for automatically learning a real-
world domain-specific ontology that is needed for 
the semantic annotation of steam data related to 
moving objects’ trajectories, weather conditions, and 
low-level events, minimizing human involvement 
and the usage of pre-defined external domain-
specific semantics, as much as possible.  

• Develop a set of novel NLP techniques and heuristic 
rules in order to assist the process of automated 
ontology construction. 
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