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Abstract—Building a virtual world with simulated physical 

phenomena based on attraction and repulsion rules offers a 

unique opportunity to move agents according to these rules and 

plan actions mimicking real-world animal behavior. This paper 

presents an attraction-based algorithm using the Unscented 

Kalman Filter (UKF) to learn and predict opponent behavior in 

real time. The algorithm leverages attraction and repulsion 

forces to simulate physical interactions, facilitating robust 

predictions and learning accurately. Agents can optimize their 

strategies through reinforcement learning by adjusting 

attraction and repulsion parameters. Our results demonstrate 

the algorithm's effectiveness in dynamic environments, 

compared with traditional Q-learning methods, especially in 

low-frame conditions. 

Keywords: Unscented Kalman Filter; Animal Behavior; Machine 

Learning; Autonomous Systems. 

I. INTRODUCTION 

Creating a virtual environment governed by attraction 

and repulsion principles enables the simulation of agent 

movements and decision-making processes that closely 

resemble real-world animal behavior. Animal movement is a 

dynamic spatio-temporal process where trajectory data 

reflect the instantaneous animal position in space and time, 

and other factors influence movement decisions between 

these observed positions [1]. This framework allows for 

accurate simulation of physical interactions and provides a 

robust foundation for improving predictions and facilitating 

learning. 

By leveraging attraction and repulsion rules in the 

simulation, we can achieve coherent and realistic modeling 

of agent behavior. These rules can predict future states of the 

system by simulating natural interactions and dynamics 

observed in real-world scenarios. For instance, when an agent 

(e.g., a robot) moves towards a target (e.g., a ball), the 

attraction force guides its path, while repulsion forces from 

obstacles ensure collision avoidance. This combination can 

be fine-tuned to predict the agent’s trajectory accurately. 

Each agent is assumed to move following a first-order 

Newtonian law, distinguishing speed and orientation, which 

results from the balance of behavioral stimuli defined by 

direction and weight [2]. 

These rules can also be utilized for learning purposes. By 

simulating various scenarios and observing the outcomes, the 

system can iteratively adjust the parameters governing the 

attraction and repulsion forces to optimize agents' 

performance. This approach is particularly effective in 

reinforcement learning, where agents learn optimal strategies 

through trial and error within the simulated environment. 

Interactive multi-agent simulation algorithms compute the 

trajectories and behaviors of different entities in virtual 

reality scenarios. However, current methods involve 

considerable parameter tweaking to generate plausible 

behaviors [3]. 

Integrating learning algorithms, such as Artificial Neural 

Networks (ANN) or Kalman filters (KF), with these physical 

rules can enhance the system's predictive and adaptive 

capabilities. For example, a KF can estimate the state of the 

system (e.g., the positions and velocities of agents) and 

update predictions based on observed data. This iterative 

process refines the model's accuracy over time, 

accommodating both linear and nonlinear dynamics present 

in the simulation. The KF is commonly applied with ANN for 

chaotic systems identification [4]. 

Constructing a virtual world governed by attraction and 

repulsion rules not only allows for realistic simulation of 

physical phenomena but also provides a powerful tool for 

improving predictions and facilitating learning. By 

continuously refining the parameters and incorporating 

learning algorithms, the system can evolve to exhibit 

increasingly sophisticated and accurate behaviors akin to 

those observed in the natural world [5]. 

For concrete cases, consider Agre and Chapman's 

approach, which addresses the complexity, uncertainty, and 

immediacy of real-world situations. This approach was 

applied using agents to play Pengo [6]. Agre describes that 

Pengi, the implementation for playing Pengo, is part of a 

cognitive architecture theory derived from theories by 

Drescher, Minsky, and others. Mackworth proposed an 

architecture aimed at providing solutions for intelligent 

embedded systems using AI and robotics [7]. Sahota built on 
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the work of Agre, Chapman, and Mackworth, proposing a 

simulator with two robots and a ball [8]. 

Robots can cooperate to perform specific tasks, such as 

moving an object from one place to another [9]. For more 

complex tasks, studying the natural behavior of animals 

performing such tasks can be effective. Anderson and Donath 

question how a robot can automatically act across various 

tasks and environments, displaying diverse behaviors [10]. 

Observing animal behavior in nature for specific tasks 

without excluding others is beneficial. 

In their work, Anderson and Donath identify behaviors 

of animals with evasion (repulsion) and attraction. Animals 

may avoid certain locations through repulsion behavior to 

prevent collisions with moving objects, evade predators, and 

avoid unsuitable environments. Repulsion can be passive 

(stopping to avoid collision, like freezing) or active (direct 

commands to avoid approaching objects). Attraction 

behavior is fundamental for a robot's movement toward a 

goal [9]. 

Using the basic idea of animal instinct, where something 

that captures attention exerts an attractive force, directs the 

predator's actions similar to the brain's command to grasp an 

object on a table. Rejection is also instinctual, where an 

unwanted object causes repulsion. This behavior can be 

expressed by attractive and repulsive potential fields [9]. 

Section II describes the KF and its variations used in this 

work, while Section III discusses Q-learning and its variation 

with ANN. Section IV presents the adopted methodology, 

Section V shows the obtained results, and finally, the 

conclusions are presented in Section VI. 

 

II. KALMAN FILTER 

The Kalman filter is a powerful tool for estimating the 

state of a dynamic system from noisy measurements. 

Designed for on-the-fly correction, it obtains precise 

measurements through sample observations [11]. In its basic 

form, it is an optimal linear estimator with constraints. The 

necessary linear functions are: 

 

{
xk = Fxk−1 + qk
zk = Hxk + rk

   (1) 

 

Here, xk is the current state, qk is process noise (zero 

mean, covariance Qk, and rk is observation noise (zero mean, 

covariance Rk). F and H are transfer matrices. The state and 

noise distributions are: 

 

{

xk~N(x̅, Pk)

qk~N(0, Qk)

rk~N(0, Rk)
   (2) 

 

The discrete KF involves prediction and update steps: 

 

{
  
 

  
 

x̂k
− = Fxk−1

P̂k
− = FPk−1F

T + Q

Kk =
P̂k
−CT

CP̂k
−CT+R

x̂k = x̂k
− + Kk(zk − Hx̂k

−)

P̂k = (I − KkH)P̂k
−

  (3) 

The EKF handles nonlinearities by approximating 

models with linear functions around the current state [12]: 

 

{
xk = f(xk−1) + qk
zk = h(xk) + rk

   (4) 

Fk−1 =
∂f

∂x
   (5) 

Hk =
∂h

∂x
    (6) 

{
  
 

  
 

x̂k
− = f(xk−1)

P̂k
− = Fk−1Pk−1Fk−1

T + Q

Kk =
P̂k
−HT

HP̂k
−HT+R

x̂k = x̂k
− + Kk[zk − h(x̂k

−)]

P̂k = (I − KkHk)P̂k
−

  (7) 

 

The EKF can train neural networks by treating weights 

as states to be estimated. The nonlinear mapping g is 

parameterized by the weight vector W: 

 

yk = g(xk,W)   (8) 

 

The error is defined by: 

 

ek = dk − g(xk,W)   (9) 

 

The state-space representation is: 

 

{
Wk = Wk−1 + vk

yk = g(xk,Wk) + ek
   (10) 

 

The UKF improves estimation for highly nonlinear 

systems using the unscented transformation [13]. It 

represents the state distribution with sigma points: 

 

{
 
 
 
 

 
 
 
 

Xi = x

Xi = x + (√(L + λ)Px)i, para i = 1,… , L

X〉 = x − (√(L + λ)Px)i, para i = L + 1,… ,2L

Wo
(m) =

λ

L+λ

Wo
(c) =

λ

L+λ
+ (1 − α2 + β)

Wi
(m) = Wi

(c) = 1/{2(L + λ)}, para i = 1,… ,2L

   (11) 

 
where λ is a scalar parameter defined by the equation: 

 

𝜆 = 𝛼2(𝐿 + 𝜅) − 𝐿  (12) 
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where L is the state vector dimensionality. α determines the 

spread of sigma points, κ influences the spread, and β 

incorporates prior distribution knowledge. 

KFs are used in navigation, tracking, signal processing, 

and control systems. They provide robust state estimation and 

improve accuracy in predictions and measurements. The 

UKF's ability to handle nonlinearities without Jacobian 

computations makes it suitable for complex dynamic systems 

[14]. 

III. Q-LEARNING FOR REINFORCEMENT LEARNING 

Reinforcement Learning (RL) is a computational 

approach where an agent learns to make decisions by 

performing actions and receiving feedback from the 

environment. One of the widely used algorithms in RL is Q-

learning, introduced by Watkins and Dayan [15]. Q-learning 

is a model-free RL algorithm that seeks to learn the value of 

the optimal policy, which guides the agent's actions to 

maximize the cumulative reward. 

Q-learning is an off-policy RL algorithm that learns the 

value of an action in a particular state without requiring a 

model of the environment. The core component of Q-learning 

is the Q-table, which stores the value (Q-value) of each state-

action pair. The Q-value update rule is given by: 

 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠
′, 𝑎′) − 𝑄(𝑠, 𝑎)] (13) 

 

where 𝑄(𝑠, 𝑎) is the Q-value for state s and action a. α is the 

learning rate (0 < α ≤ 1). r is the immediate reward received 

after performing action a in state s. γ is the discount factor 

(0≤ γ < 1). s′ is the next state after taking action a. 

𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠
′, 𝑎′) represents the maximum Q-value for the 

next state s′ across all possible actions a′. 

To approximate the Q-value function, we use a 

feedforward neural network. The network takes the current 

state as input and outputs the Q-values for all possible 

actions. The network is trained to minimize the Temporal 

Difference (TD) error: 

 

𝛿 = 𝑟 + γ𝑚𝑎𝑥𝑎′ Q(s′, a′)  −  Q(s, a) (14) 

 

The ANN architecture consists of an input layer with a 

size equal to the state space dimension, one or more hidden 

layers. An output layer with a number of neurons equal to the 

number of actions. 

IV. METHODOLOGY 

A. Integrating the Atari Emulator for Reinforcement 

Learning Algorithms 

The first step was to find an emulator that could provide 

the necessary structure to test the algorithms. We used the 

Atari emulator available within the OpenAI framework. 

OpenAI offers a comprehensive structure for reinforcement 

learning within the Python environment; however, there is a 

higher complexity associated with working with matrices and 

equations in this environment. To simplify and facilitate the 

visualization of states and images, we used the Octave 

environment. To call functions and procedures from Python, 

we used the pythonic library. The emulator is invoked with a 

simple call specifying the name of the game, which is an 

emulated ROM. The game chosen for testing was Boxing, a 

boxing game between two players with an overhead view 

where the player must press a button to punch and move to 

dodge or hit the opponent's nose to score points. The players 

are confined to the ring area. The first player to score 100 

points before the time runs out wins by knockout. 

B. Understanding Emulator Inputs and Outputs 

The second step was to study what can be sent to the 

emulator and what can be received from it. The emulator can 

accept button inputs from the controller to move the player, 

i.e., up, down, left, right, and an action button, which in this 

case is to punch the opponent. It accepts binary values such 

as 1 for pressed and 0 for released. By selecting the button 

values, they can be sent to the emulator via the 

set_button_mask function. Each iteration of the 

emulator can be performed using the step() function. This 

function runs one cycle of the game. Since a game runs at 60 

frames per second, calling the step() function advances the 

game by one frame. 

The emulator provides various outputs, such as memory, 

which can be utilized using the get_state() function. 

This function returns the current state of the game, allowing 

it to be saved and later restored using the 

set_state(state) function. In this study, we used the 

get_screen() function to capture the screen at the 

current game state. This screen capture was used to visualize 

the current state of the game. 

C. Applying Computer Vision Techniques 

The third step involved applying computer vision 

techniques to extract important data for the algorithms. The 

targets were four objects: the two player sprites and the two 

score sprites. The player sprites were divided into three points 

on a two-dimensional Cartesian plane, corresponding to the 

fighter's head and the two boxing gloves. For the scoring 

sprites, we used a change detector on the scoreboard to count 

hits. The hits can be worth one or two points, depending on 

the proximity of the strike. We used only the hit count as the 

parameter. 

D. Implementation of the Proposed Algorithm 

The fourth step was the implementation of the algorithm. 

For the first algorithm, which we propose in this work, we 

developed an on-the-fly learning system that observes the 

moves of the opponent. To achieve this, we mapped the 

points of the players. Each player has three points, and we 

created two additional points representing the position of the 

gloves before throwing a punch. This is a good way to 

determine if a fighter is approaching the head of the 

opponent, regardless of whether they have thrown a punch. 
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Using this visualization, we applied a Discrete Kalman 

Filter (DKF) with three states to estimate the acceleration of 

the points and thus predict future states, which are the future 

positions of the players.  

 
𝑎−𝑘 = 𝑎𝑘    (14) 
𝑣−𝑘 = 𝑣𝑘 + a𝑘   (15) 
𝑝−

𝑘
= 𝑝𝑘 + 𝑣

−
𝑘   (16) 

[

𝑝𝑘  
𝑣𝑘
 𝑎𝑘
] = [

1 δ𝑡 0
0 1 δ𝑡
0 0 1

] [

𝑝𝑘−1
 𝑣𝑘−1
 𝑎𝑘−1

]  (17) 

 

where a is acceleration, v is velocity and p is position.  

A second nonlinear filter was used to estimate the 

intention of the fighters. This algorithm utilizes the UKF to 

determine the value of the attraction coefficient 𝑘 (repulsion 

if the value is negative) between the points of player 1 and 

player 2. 

By observing the five points of each fighter, we obtain 𝑘 

values for each point on each axis. This is because, to land a 

precise hit, the fighter must align the glove with the 

opponent's head and then deliver the punch in a straight line. 

The algorithm was configured to run in real-time. The UKF 

can map the attraction coefficient function: 

 
𝑂𝑎
′ = 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑂𝑎 , 𝑂𝑏 , 𝑘)   (18) 

 

where Oa is the object attracted by object Ob and k is the 

attraction coefficient. This is a global attraction defined at 

any point on the field. In this work, the objects are the points 

of each player. The attraction is process and observation 

function is given by: 

 

{
𝑘𝑘 = (𝑘𝑘−1) + 𝑞𝑘

𝑝1
′ = 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑝1 , 𝑝2, 𝑘𝑘) + 𝑟𝑘

  (19) 

 

where 𝑘k is the actual attraction coefficient and the 𝑝1
′  is the 

future observed state estimated by the DKF. 𝑝1 e 𝑝2 are the 

states for actual position. 

E. Comparative Techniques 

To compare the results, we used two other machine 
learning techniques commonly employed to control players. 
Typically, these techniques are executed in offline systems, 
where the player makes a move, and the reward is calculated. 
The player can avoid low or negative rewards by retracing 
steps and navigating through the best rewards. In our work, 
these algorithms had to be adapted for real-time use. 

For example, the Q-learning algorithm was modified to 
remove the exploration rate and was fixed at 6 states, 
corresponding to one button being pressed at a time or no 
button pressed, representing a state of no action. 

To test Q-learning with artificial neural networks in an on-
the-fly system, we used the Extended Kalman Filter (EKF). 
The EKF was chosen because it requires less memory and 
processing power compared to the UKF. With many states, 

the nonlinear filter becomes heavy and slow due to the 
computational cost of the sigma points. 

V. RESULTS 

To generate the results, we used the longest processing 

time of the algorithms to set a standard for real-time 

performance. The algorithm with the longest processing time 

was the EKF with artificial neural networks used to train Q-

learning, followed by the UKF, and then Q-learning with 

tables. 

Another factor to note is that the Pythonic library does 

not have an implementation to transfer a variable or matrix 

directly from Python to Octave. Transferring matrices proved 

to be very slow. Transferring an emulator image took about 

1.3 seconds, involving a long and complex process. A much 

faster alternative was to save the image within Python using 

library calls and then read it in Octave. Using an SSD, the 

task took about 0.003 seconds. 

To simulate a real system, we assumed that out of 60 

frames per second (fps) (Figure 1), only 4 frames are 

received, meaning one frame is received every 15 frames 

(Figure 2), or 4 fps. For this type of task, not all systems are 

suitable for tracking, and many details are lost, limiting the 

results. 

 

 
Figure 1. Sprite movement in 60 fps. 

 

Figure 2. Sprites movement in 4 fps. 

For the machine learning approach proposed in this 

work, we first used the DKF with the variance values 

x=[0;0;0], Q=10, R=1 and P=100 with Δt set to 4. We then 

applied the value x twice using y=F⋅(F⋅x) to obtain a 

prediction given the anterior states. This was done with the 5 

points of each fighter. The DKF is used to provide a 

prediction of the movement in order to calculate the degree 

of attraction of the adversary to a position. Afterward, we 

applied the UKF with the values x=[0;0], Q=10, R=1 and 

P=100. 
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The algorithm for Q-learning was tested in a simulated 

environment with six predefined states. The Q-table was 

initialized, and the agent's performance was evaluated over 

multiple episodes. The learning parameters were set as 

follows: learning rate α=0.1, discount factor γ=0.9, and 

exploration rate ϵ=0.  

The Q-learning algorithm with EKF and ANN was tested 

using the following parameters: Q=0.01, R=0.001, and P=1, 

with pre-defined, randomly initialized weights. The neural 

network architecture consisted of Input Layer: 12 neurons 

representing the 3 points of each fighter, Hidden Layer: 13 

neurons, Output Layer: 5 neurons for the buttons. The 

transfer functions used were sigmoid for the hidden layer and 

linear for the output layer. For the Q-learning prediction 

values, we used a learning rate α of 0.1 and the following 

prediction equation: 

𝑜 = 𝑝 + 𝛼(𝑟 − 𝑝)  (20) 

 

where o is the observed state for EKF, p is the predicted state 

(the buttons for controller), r is the reward. The agent 

successfully learned to navigate the environment and 

maximize cumulative rewards. The Q-values converged to 

stable values, indicating the agent had effectively learned the 

optimal policy.  

The reward calculation in the Q-learning algorithm is 

critical for guiding the agent towards the optimal policy. In 

this work, the reward function is defined to balance the time 

spent in the game, the effectiveness of the player's punches, 

and the actions taken by the player. The reward function is 

given by: 

 

𝑟 =  −1𝑡𝑔 + ℎ𝑖𝑡1ℎ𝑖𝑡1𝑎𝑐𝑐 − ℎ𝑖𝑡2ℎ𝑖𝑡𝑎𝑐𝑐2 + 5 ∗ 𝐵 (21) 

ℎ𝑖𝑡1𝑎𝑐𝑐 = ℎ𝑖𝑡1𝑎𝑐𝑐 + 7  (22) 

ℎ𝑖𝑡2𝑎𝑐𝑐 = ℎ𝑖𝑡2𝑎𝑐𝑐 + 3  (23) 

 

where 𝑡𝑔 is the time counter of the game, ℎ𝑖𝑡1  and ℎ𝑖𝑡2 are 

the hit detection for player 1 and 2, ℎ𝑖𝑡1𝑎𝑐𝑐 and ℎ𝑖𝑡2𝑎𝑐𝑐 are 

the accumulative hit (each time, the hit value increase) and B 

is equal a 1 is for players' movement.  

To test the inputs and the capability of the emulator, an 

agent was created with three actions: Approach, Retreat, and 

Attack. The player approaches the opponent's head, and when 

within a certain distance from either the left glove or the right 

glove, the attack button is pressed. If the opponent's glove is 

close before the player makes an attack, the player retreats to 

the upper or lower diagonal, depending on which of the 

opponent's gloves is closer. 

In TABLE I, the results of the interactions are presented. 

The proposed algorithm can generate both actions and 

possible new positions for other algorithms. In this work, the 

actions were combined with Q-learning while the positions 

were passed to the EKF as states for the input of the Neural 

Network. 

With the programmed player, the game time functions 

well because decisions are made at 60 frames per second, 

providing ample time to make decisions. The implementation 

was kept simple to test the use of buttons and the integration 

of the emulator into the Octave environment. 

 
TABLE I. RESULTS OF THE ALGORITHMS IMPLEMENTED 

Algorithms Score Remaining 

Time 

Total 

Rewards 

Programmed KO x 74 34 s 45,422 

UKF 79 x 78 0 s 27,670 

Q-learning KO x 97 3 s 33,361 

EKF 24 x 58 0 s -18,241 

UKF + Q-learning 95 x 96 0 s 30,871 

UKF + EKF 13 x 59 0 s -42,262 

 

By integrating these filtering techniques, we improved 

the prediction accuracy of the fighters' movements, which 

subsequently enhanced the performance of our reinforcement 

learning algorithm. 

The implementation with the proposed algorithm of 

learning from intentions based on the attraction force 

between various points of the player proved to be a robust 

technique. This approach allowed the agent to learn 

intentions and use them to predict the opponent's attacks. 

Another positive aspect is that the agent did not have a 

predefined objective; it inferred that its objective was the 

same as the opponent's. 

This capability highlights the algorithm's effectiveness 

in understanding and adapting to the game's dynamics, 

enhancing its predictive power and decision-making process 

in real-time scenarios. 

The combination of the DKF and the UKF allowed us to 

effectively model the dynamic behavior of the fighters in 

real-time. The DKF provided a robust initial prediction, while 

the UKF refined these predictions by estimating the nonlinear 

effects, such as the attraction coefficient k between the 

fighters' points. 

The defined reward function successfully guided the 

agent towards learning effective strategies in the game. By 

incorporating both the immediate rewards from actions and 

the long-term impact of hits landed by the players, the agent 

learned to balance between offensive and defensive 

strategies. 

The use of EKF provided a robust method for state 

estimation, enhancing the performance of the Q-learning 

algorithm. The neural network effectively approximated the 

Q-values, allowing the agent to make informed decisions in 

real-time. The EKF algorithm exhibited issues with delayed 

positions, which theoretically should be better handled. 

Testing at 60 frames per second (fps) showed better results 

compared to other Q-learning techniques. However, when 

reduced to 4 fps, the EKF algorithm demonstrated 

weaknesses. 

This indicates that while the EKF algorithm performs 

well under high frame rate conditions, its performance 

degrades with lower frame rates due to the increased latency 

in position updates. This latency impacts the algorithm's 
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ability to accurately predict and respond to the dynamic 

changes in the environment.  

The limitation of using Q-learning with 6 states resulted 

in less natural movement of the player. However, with fewer 

directions, the algorithm performed better compared to using 

9 states (8 directions plus attack). The issue with using Q-

learning is that the reward must be known beforehand, and a 

function must be produced to achieve the optimal value. 

By incorporating movement into the reward function, the 

player is discouraged from standing still and continuously 

punching. The idea of earning more points through successful 

attacks encourages the player to be more aggressive and 

proactive rather than merely avoiding the opponent. 

The higher reward for attacking actions motivates the 

player to engage with the opponent actively. By rewarding 

movement, the player is incentivized to maneuver 

strategically rather than remain stationary. The penalty for 

being hit encourages the player to avoid attacks while 

planning their own. 

VI. CONCLUSIONS 

Both implementations have their strengths and 

limitations. The EKF with neural networks showed potential 

in understanding and predicting dynamic game scenarios, 

while Q-learning with fewer states proved to be more 

efficient in specific conditions. Future work should focus on 

improving the robustness of these algorithms, particularly in 

handling lower frame rates and refining the reward structures 

for better performance. 

The reward function was integral in shaping the player's 

behavior, promoting a balance between offensive and 

defensive strategies while maintaining an active and 

engaging playstyle. The careful design of the reward structure 

ensured that the player optimized both movement and attack 

to achieve the best results. 

This work presents an attraction-based algorithm as a 

more intuitive solution utilizing the UKF with attraction 

functions. The initial idea behind this algorithm was to learn 

the behavior of opponents to predict future positions and 

actions. However, it proved capable of learning in real-time 

within a limited sampling state, which would be impractical 

for humans. 

The algorithm's ability to learn and predict in real-time, 

even with limited sampling data, demonstrates its potential 

for practical applications in dynamic environments. By 

modeling attraction forces between key points of the players, 

the algorithm effectively learns and anticipates opponent 

behavior, enabling strategic decision-making. 

In future work, we plan to extend the application of this 

algorithm by analyzing video footage, applying the algorithm 

to analyze videos of players to learn their tactics. This would 

involve extracting key movement patterns and strategies 

from recorded gameplay. Testing with different players 

evaluating the learned strategies against both the 

implemented player and other players to assess the robustness 

and adaptability of the algorithm, enhancing the model 

improving the attraction model to incorporate more complex 

behaviors and interactions, potentially including 

environmental factors and varying opponent skill levels. 

The proposed algorithm has potential applications 

beyond gaming, such as in sports analytics, where 

understanding and predicting player movements can provide 

significant strategic advantages. Additionally, it can be 

applied in robotics for real-time path planning and obstacle 

avoidance by learning dynamic environments. 
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