
Attraction-Based Reinforcement Learning: A Real-Time Approach Using

Techniques Based on the Animal Behavior

Marcos A. M. Laia, Edimilson B. Santos, Wesley S.

Guimarães

Department of Computer Science

Federal University of São João del Rei (UFSJ)

São João del Rei, Minas Gerais - Brazil

e-mail: marcoslaia@ufsj.edu.br,

edimilson.santos@ufsj.edu.br

Márcio Mendonça, Rodrigo H. C. Palácios, Janaína F.

S. Gonçalves

PPG of Mechanical Engineering - CP/PG

Technological Federal University of Paraná (UTFPR)

Cornélio Procópio, Paraná - Brazil

e-mail: mendonca@utfpr.edu.br,

rodrigopalacios@utfpr.edu.br, janainaf@utfpr.edu.br

Abstract—Building a virtual world with simulated physical

phenomena based on attraction and repulsion rules offers a

unique opportunity to move agents according to these rules and

plan actions mimicking real-world animal behavior. This paper

presents an attraction-based algorithm using the Unscented

Kalman Filter (UKF) to learn and predict opponent behavior in

real time. The algorithm leverages attraction and repulsion

forces to simulate physical interactions, facilitating robust

predictions and learning accurately. Agents can optimize their

strategies through reinforcement learning by adjusting

attraction and repulsion parameters. Our results demonstrate

the algorithm's effectiveness in dynamic environments,

compared with traditional Q-learning methods, especially in

low-frame conditions.

Keywords: Unscented Kalman Filter; Animal Behavior; Machine

Learning; Autonomous Systems.

I. INTRODUCTION

Creating a virtual environment governed by attraction

and repulsion principles enables the simulation of agent

movements and decision-making processes that closely

resemble real-world animal behavior. Animal movement is a

dynamic spatio-temporal process where trajectory data

reflect the instantaneous animal position in space and time,

and other factors influence movement decisions between

these observed positions [1]. This framework allows for

accurate simulation of physical interactions and provides a

robust foundation for improving predictions and facilitating

learning.

By leveraging attraction and repulsion rules in the

simulation, we can achieve coherent and realistic modeling

of agent behavior. These rules can predict future states of the

system by simulating natural interactions and dynamics

observed in real-world scenarios. For instance, when an agent

(e.g., a robot) moves towards a target (e.g., a ball), the

attraction force guides its path, while repulsion forces from

obstacles ensure collision avoidance. This combination can

be fine-tuned to predict the agent’s trajectory accurately.

Each agent is assumed to move following a first-order

Newtonian law, distinguishing speed and orientation, which

results from the balance of behavioral stimuli defined by

direction and weight [2].

These rules can also be utilized for learning purposes. By

simulating various scenarios and observing the outcomes, the

system can iteratively adjust the parameters governing the

attraction and repulsion forces to optimize agents'

performance. This approach is particularly effective in

reinforcement learning, where agents learn optimal strategies

through trial and error within the simulated environment.

Interactive multi-agent simulation algorithms compute the

trajectories and behaviors of different entities in virtual

reality scenarios. However, current methods involve

considerable parameter tweaking to generate plausible

behaviors [3].

Integrating learning algorithms, such as Artificial Neural

Networks (ANN) or Kalman filters (KF), with these physical

rules can enhance the system's predictive and adaptive

capabilities. For example, a KF can estimate the state of the

system (e.g., the positions and velocities of agents) and

update predictions based on observed data. This iterative

process refines the model's accuracy over time,

accommodating both linear and nonlinear dynamics present

in the simulation. The KF is commonly applied with ANN for

chaotic systems identification [4].

Constructing a virtual world governed by attraction and

repulsion rules not only allows for realistic simulation of

physical phenomena but also provides a powerful tool for

improving predictions and facilitating learning. By

continuously refining the parameters and incorporating

learning algorithms, the system can evolve to exhibit

increasingly sophisticated and accurate behaviors akin to

those observed in the natural world [5].

For concrete cases, consider Agre and Chapman's

approach, which addresses the complexity, uncertainty, and

immediacy of real-world situations. This approach was

applied using agents to play Pengo [6]. Agre describes that

Pengi, the implementation for playing Pengo, is part of a

cognitive architecture theory derived from theories by

Drescher, Minsky, and others. Mackworth proposed an

architecture aimed at providing solutions for intelligent

embedded systems using AI and robotics [7]. Sahota built on

10Copyright (c) IARIA, 2024. ISBN: 978-1-68558-191-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

UBICOMM 2024 : The Eighteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

mailto:marcoslaia@ufsj.edu.br
mailto:edimilson.santos@ufsj.edu.br
mailto:mendonca@utfpr.edu.br
mailto:rodrigopalacios@utfpr.edu.br
mailto:janainaf@utfpr.edu.br

the work of Agre, Chapman, and Mackworth, proposing a

simulator with two robots and a ball [8].

Robots can cooperate to perform specific tasks, such as

moving an object from one place to another [9]. For more

complex tasks, studying the natural behavior of animals

performing such tasks can be effective. Anderson and Donath

question how a robot can automatically act across various

tasks and environments, displaying diverse behaviors [10].

Observing animal behavior in nature for specific tasks

without excluding others is beneficial.

In their work, Anderson and Donath identify behaviors

of animals with evasion (repulsion) and attraction. Animals

may avoid certain locations through repulsion behavior to

prevent collisions with moving objects, evade predators, and

avoid unsuitable environments. Repulsion can be passive

(stopping to avoid collision, like freezing) or active (direct

commands to avoid approaching objects). Attraction

behavior is fundamental for a robot's movement toward a

goal [9].

Using the basic idea of animal instinct, where something

that captures attention exerts an attractive force, directs the

predator's actions similar to the brain's command to grasp an

object on a table. Rejection is also instinctual, where an

unwanted object causes repulsion. This behavior can be

expressed by attractive and repulsive potential fields [9].

Section II describes the KF and its variations used in this

work, while Section III discusses Q-learning and its variation

with ANN. Section IV presents the adopted methodology,

Section V shows the obtained results, and finally, the

conclusions are presented in Section VI.

II. KALMAN FILTER

The Kalman filter is a powerful tool for estimating the

state of a dynamic system from noisy measurements.

Designed for on-the-fly correction, it obtains precise

measurements through sample observations [11]. In its basic

form, it is an optimal linear estimator with constraints. The

necessary linear functions are:

{
xk = Fxk−1 + qk
zk = Hxk + rk

 (1)

Here, xk is the current state, qk is process noise (zero

mean, covariance Qk, and rk is observation noise (zero mean,

covariance Rk). F and H are transfer matrices. The state and

noise distributions are:

{

xk~N(x̅, Pk)

qk~N(0, Qk)

rk~N(0, Rk)
 (2)

The discrete KF involves prediction and update steps:

{

x̂k
− = Fxk−1

P̂k
− = FPk−1F

T + Q

Kk =
P̂k
−CT

CP̂k
−CT+R

x̂k = x̂k
− + Kk(zk − Hx̂k

−)

P̂k = (I − KkH)P̂k
−

 (3)

The EKF handles nonlinearities by approximating

models with linear functions around the current state [12]:

{
xk = f(xk−1) + qk
zk = h(xk) + rk

 (4)

Fk−1 =
∂f

∂x
 (5)

Hk =
∂h

∂x
 (6)

{

x̂k
− = f(xk−1)

P̂k
− = Fk−1Pk−1Fk−1

T + Q

Kk =
P̂k
−HT

HP̂k
−HT+R

x̂k = x̂k
− + Kk[zk − h(x̂k

−)]

P̂k = (I − KkHk)P̂k
−

 (7)

The EKF can train neural networks by treating weights

as states to be estimated. The nonlinear mapping g is

parameterized by the weight vector W:

yk = g(xk,W) (8)

The error is defined by:

ek = dk − g(xk,W) (9)

The state-space representation is:

{
Wk = Wk−1 + vk

yk = g(xk,Wk) + ek
 (10)

The UKF improves estimation for highly nonlinear

systems using the unscented transformation [13]. It

represents the state distribution with sigma points:

{

Xi = x

Xi = x + (√(L + λ)Px)i, para i = 1,… , L

X〉 = x − (√(L + λ)Px)i, para i = L + 1,… ,2L

Wo
(m) =

λ

L+λ

Wo
(c) =

λ

L+λ
+ (1 − α2 + β)

Wi
(m) = Wi

(c) = 1/{2(L + λ)}, para i = 1,… ,2L

 (11)

where λ is a scalar parameter defined by the equation:

𝜆 = 𝛼2(𝐿 + 𝜅) − 𝐿 (12)

11Copyright (c) IARIA, 2024. ISBN: 978-1-68558-191-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

UBICOMM 2024 : The Eighteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

where L is the state vector dimensionality. α determines the

spread of sigma points, κ influences the spread, and β

incorporates prior distribution knowledge.

KFs are used in navigation, tracking, signal processing,

and control systems. They provide robust state estimation and

improve accuracy in predictions and measurements. The

UKF's ability to handle nonlinearities without Jacobian

computations makes it suitable for complex dynamic systems

[14].

III. Q-LEARNING FOR REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a computational

approach where an agent learns to make decisions by

performing actions and receiving feedback from the

environment. One of the widely used algorithms in RL is Q-

learning, introduced by Watkins and Dayan [15]. Q-learning

is a model-free RL algorithm that seeks to learn the value of

the optimal policy, which guides the agent's actions to

maximize the cumulative reward.

Q-learning is an off-policy RL algorithm that learns the

value of an action in a particular state without requiring a

model of the environment. The core component of Q-learning

is the Q-table, which stores the value (Q-value) of each state-

action pair. The Q-value update rule is given by:

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠
′, 𝑎′) − 𝑄(𝑠, 𝑎)] (13)

where 𝑄(𝑠, 𝑎) is the Q-value for state s and action a. α is the

learning rate (0 < α ≤ 1). r is the immediate reward received

after performing action a in state s. γ is the discount factor

(0≤ γ < 1). s′ is the next state after taking action a.

𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠
′, 𝑎′) represents the maximum Q-value for the

next state s′ across all possible actions a′.

To approximate the Q-value function, we use a

feedforward neural network. The network takes the current

state as input and outputs the Q-values for all possible

actions. The network is trained to minimize the Temporal

Difference (TD) error:

𝛿 = 𝑟 + γ𝑚𝑎𝑥𝑎′ Q(s′, a′) − Q(s, a) (14)

The ANN architecture consists of an input layer with a

size equal to the state space dimension, one or more hidden

layers. An output layer with a number of neurons equal to the

number of actions.

IV. METHODOLOGY

A. Integrating the Atari Emulator for Reinforcement

Learning Algorithms

The first step was to find an emulator that could provide

the necessary structure to test the algorithms. We used the

Atari emulator available within the OpenAI framework.

OpenAI offers a comprehensive structure for reinforcement

learning within the Python environment; however, there is a

higher complexity associated with working with matrices and

equations in this environment. To simplify and facilitate the

visualization of states and images, we used the Octave

environment. To call functions and procedures from Python,

we used the pythonic library. The emulator is invoked with a

simple call specifying the name of the game, which is an

emulated ROM. The game chosen for testing was Boxing, a

boxing game between two players with an overhead view

where the player must press a button to punch and move to

dodge or hit the opponent's nose to score points. The players

are confined to the ring area. The first player to score 100

points before the time runs out wins by knockout.

B. Understanding Emulator Inputs and Outputs

The second step was to study what can be sent to the

emulator and what can be received from it. The emulator can

accept button inputs from the controller to move the player,

i.e., up, down, left, right, and an action button, which in this

case is to punch the opponent. It accepts binary values such

as 1 for pressed and 0 for released. By selecting the button

values, they can be sent to the emulator via the

set_button_mask function. Each iteration of the

emulator can be performed using the step() function. This

function runs one cycle of the game. Since a game runs at 60

frames per second, calling the step() function advances the

game by one frame.

The emulator provides various outputs, such as memory,

which can be utilized using the get_state() function.

This function returns the current state of the game, allowing

it to be saved and later restored using the

set_state(state) function. In this study, we used the

get_screen() function to capture the screen at the

current game state. This screen capture was used to visualize

the current state of the game.

C. Applying Computer Vision Techniques

The third step involved applying computer vision

techniques to extract important data for the algorithms. The

targets were four objects: the two player sprites and the two

score sprites. The player sprites were divided into three points

on a two-dimensional Cartesian plane, corresponding to the

fighter's head and the two boxing gloves. For the scoring

sprites, we used a change detector on the scoreboard to count

hits. The hits can be worth one or two points, depending on

the proximity of the strike. We used only the hit count as the

parameter.

D. Implementation of the Proposed Algorithm

The fourth step was the implementation of the algorithm.

For the first algorithm, which we propose in this work, we

developed an on-the-fly learning system that observes the

moves of the opponent. To achieve this, we mapped the

points of the players. Each player has three points, and we

created two additional points representing the position of the

gloves before throwing a punch. This is a good way to

determine if a fighter is approaching the head of the

opponent, regardless of whether they have thrown a punch.

12Copyright (c) IARIA, 2024. ISBN: 978-1-68558-191-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

UBICOMM 2024 : The Eighteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Using this visualization, we applied a Discrete Kalman

Filter (DKF) with three states to estimate the acceleration of

the points and thus predict future states, which are the future

positions of the players.

𝑎−𝑘 = 𝑎𝑘 (14)
𝑣−𝑘 = 𝑣𝑘 + a𝑘 (15)
𝑝−

𝑘
= 𝑝𝑘 + 𝑣

−
𝑘 (16)

[

𝑝𝑘
𝑣𝑘
 𝑎𝑘
] = [

1 δ𝑡 0
0 1 δ𝑡
0 0 1

] [

𝑝𝑘−1
 𝑣𝑘−1
 𝑎𝑘−1

] (17)

where a is acceleration, v is velocity and p is position.

A second nonlinear filter was used to estimate the

intention of the fighters. This algorithm utilizes the UKF to

determine the value of the attraction coefficient 𝑘 (repulsion

if the value is negative) between the points of player 1 and

player 2.

By observing the five points of each fighter, we obtain 𝑘

values for each point on each axis. This is because, to land a

precise hit, the fighter must align the glove with the

opponent's head and then deliver the punch in a straight line.

The algorithm was configured to run in real-time. The UKF

can map the attraction coefficient function:

𝑂𝑎
′ = 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑂𝑎 , 𝑂𝑏 , 𝑘) (18)

where Oa is the object attracted by object Ob and k is the

attraction coefficient. This is a global attraction defined at

any point on the field. In this work, the objects are the points

of each player. The attraction is process and observation

function is given by:

{
𝑘𝑘 = (𝑘𝑘−1) + 𝑞𝑘

𝑝1
′ = 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑝1 , 𝑝2, 𝑘𝑘) + 𝑟𝑘

 (19)

where 𝑘k is the actual attraction coefficient and the 𝑝1
′ is the

future observed state estimated by the DKF. 𝑝1 e 𝑝2 are the

states for actual position.

E. Comparative Techniques

To compare the results, we used two other machine
learning techniques commonly employed to control players.
Typically, these techniques are executed in offline systems,
where the player makes a move, and the reward is calculated.
The player can avoid low or negative rewards by retracing
steps and navigating through the best rewards. In our work,
these algorithms had to be adapted for real-time use.

For example, the Q-learning algorithm was modified to
remove the exploration rate and was fixed at 6 states,
corresponding to one button being pressed at a time or no
button pressed, representing a state of no action.

To test Q-learning with artificial neural networks in an on-
the-fly system, we used the Extended Kalman Filter (EKF).
The EKF was chosen because it requires less memory and
processing power compared to the UKF. With many states,

the nonlinear filter becomes heavy and slow due to the
computational cost of the sigma points.

V. RESULTS

To generate the results, we used the longest processing

time of the algorithms to set a standard for real-time

performance. The algorithm with the longest processing time

was the EKF with artificial neural networks used to train Q-

learning, followed by the UKF, and then Q-learning with

tables.

Another factor to note is that the Pythonic library does

not have an implementation to transfer a variable or matrix

directly from Python to Octave. Transferring matrices proved

to be very slow. Transferring an emulator image took about

1.3 seconds, involving a long and complex process. A much

faster alternative was to save the image within Python using

library calls and then read it in Octave. Using an SSD, the

task took about 0.003 seconds.

To simulate a real system, we assumed that out of 60

frames per second (fps) (Figure 1), only 4 frames are

received, meaning one frame is received every 15 frames

(Figure 2), or 4 fps. For this type of task, not all systems are

suitable for tracking, and many details are lost, limiting the

results.

Figure 1. Sprite movement in 60 fps.

Figure 2. Sprites movement in 4 fps.

For the machine learning approach proposed in this

work, we first used the DKF with the variance values

x=[0;0;0], Q=10, R=1 and P=100 with Δt set to 4. We then

applied the value x twice using y=F⋅(F⋅x) to obtain a

prediction given the anterior states. This was done with the 5

points of each fighter. The DKF is used to provide a

prediction of the movement in order to calculate the degree

of attraction of the adversary to a position. Afterward, we

applied the UKF with the values x=[0;0], Q=10, R=1 and

P=100.

13Copyright (c) IARIA, 2024. ISBN: 978-1-68558-191-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

UBICOMM 2024 : The Eighteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

The algorithm for Q-learning was tested in a simulated

environment with six predefined states. The Q-table was

initialized, and the agent's performance was evaluated over

multiple episodes. The learning parameters were set as

follows: learning rate α=0.1, discount factor γ=0.9, and

exploration rate ϵ=0.

The Q-learning algorithm with EKF and ANN was tested

using the following parameters: Q=0.01, R=0.001, and P=1,

with pre-defined, randomly initialized weights. The neural

network architecture consisted of Input Layer: 12 neurons

representing the 3 points of each fighter, Hidden Layer: 13

neurons, Output Layer: 5 neurons for the buttons. The

transfer functions used were sigmoid for the hidden layer and

linear for the output layer. For the Q-learning prediction

values, we used a learning rate α of 0.1 and the following

prediction equation:

𝑜 = 𝑝 + 𝛼(𝑟 − 𝑝) (20)

where o is the observed state for EKF, p is the predicted state

(the buttons for controller), r is the reward. The agent

successfully learned to navigate the environment and

maximize cumulative rewards. The Q-values converged to

stable values, indicating the agent had effectively learned the

optimal policy.

The reward calculation in the Q-learning algorithm is

critical for guiding the agent towards the optimal policy. In

this work, the reward function is defined to balance the time

spent in the game, the effectiveness of the player's punches,

and the actions taken by the player. The reward function is

given by:

𝑟 = −1𝑡𝑔 + ℎ𝑖𝑡1ℎ𝑖𝑡1𝑎𝑐𝑐 − ℎ𝑖𝑡2ℎ𝑖𝑡𝑎𝑐𝑐2 + 5 ∗ 𝐵 (21)

ℎ𝑖𝑡1𝑎𝑐𝑐 = ℎ𝑖𝑡1𝑎𝑐𝑐 + 7 (22)

ℎ𝑖𝑡2𝑎𝑐𝑐 = ℎ𝑖𝑡2𝑎𝑐𝑐 + 3 (23)

where 𝑡𝑔 is the time counter of the game, ℎ𝑖𝑡1 and ℎ𝑖𝑡2 are

the hit detection for player 1 and 2, ℎ𝑖𝑡1𝑎𝑐𝑐 and ℎ𝑖𝑡2𝑎𝑐𝑐 are

the accumulative hit (each time, the hit value increase) and B

is equal a 1 is for players' movement.

To test the inputs and the capability of the emulator, an

agent was created with three actions: Approach, Retreat, and

Attack. The player approaches the opponent's head, and when

within a certain distance from either the left glove or the right

glove, the attack button is pressed. If the opponent's glove is

close before the player makes an attack, the player retreats to

the upper or lower diagonal, depending on which of the

opponent's gloves is closer.

In TABLE I, the results of the interactions are presented.

The proposed algorithm can generate both actions and

possible new positions for other algorithms. In this work, the

actions were combined with Q-learning while the positions

were passed to the EKF as states for the input of the Neural

Network.

With the programmed player, the game time functions

well because decisions are made at 60 frames per second,

providing ample time to make decisions. The implementation

was kept simple to test the use of buttons and the integration

of the emulator into the Octave environment.

TABLE I. RESULTS OF THE ALGORITHMS IMPLEMENTED

Algorithms Score Remaining

Time

Total

Rewards

Programmed KO x 74 34 s 45,422

UKF 79 x 78 0 s 27,670

Q-learning KO x 97 3 s 33,361

EKF 24 x 58 0 s -18,241

UKF + Q-learning 95 x 96 0 s 30,871

UKF + EKF 13 x 59 0 s -42,262

By integrating these filtering techniques, we improved

the prediction accuracy of the fighters' movements, which

subsequently enhanced the performance of our reinforcement

learning algorithm.

The implementation with the proposed algorithm of

learning from intentions based on the attraction force

between various points of the player proved to be a robust

technique. This approach allowed the agent to learn

intentions and use them to predict the opponent's attacks.

Another positive aspect is that the agent did not have a

predefined objective; it inferred that its objective was the

same as the opponent's.

This capability highlights the algorithm's effectiveness

in understanding and adapting to the game's dynamics,

enhancing its predictive power and decision-making process

in real-time scenarios.

The combination of the DKF and the UKF allowed us to

effectively model the dynamic behavior of the fighters in

real-time. The DKF provided a robust initial prediction, while

the UKF refined these predictions by estimating the nonlinear

effects, such as the attraction coefficient k between the

fighters' points.

The defined reward function successfully guided the

agent towards learning effective strategies in the game. By

incorporating both the immediate rewards from actions and

the long-term impact of hits landed by the players, the agent

learned to balance between offensive and defensive

strategies.

The use of EKF provided a robust method for state

estimation, enhancing the performance of the Q-learning

algorithm. The neural network effectively approximated the

Q-values, allowing the agent to make informed decisions in

real-time. The EKF algorithm exhibited issues with delayed

positions, which theoretically should be better handled.

Testing at 60 frames per second (fps) showed better results

compared to other Q-learning techniques. However, when

reduced to 4 fps, the EKF algorithm demonstrated

weaknesses.

This indicates that while the EKF algorithm performs

well under high frame rate conditions, its performance

degrades with lower frame rates due to the increased latency

in position updates. This latency impacts the algorithm's

14Copyright (c) IARIA, 2024. ISBN: 978-1-68558-191-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

UBICOMM 2024 : The Eighteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

ability to accurately predict and respond to the dynamic

changes in the environment.

The limitation of using Q-learning with 6 states resulted

in less natural movement of the player. However, with fewer

directions, the algorithm performed better compared to using

9 states (8 directions plus attack). The issue with using Q-

learning is that the reward must be known beforehand, and a

function must be produced to achieve the optimal value.

By incorporating movement into the reward function, the

player is discouraged from standing still and continuously

punching. The idea of earning more points through successful

attacks encourages the player to be more aggressive and

proactive rather than merely avoiding the opponent.

The higher reward for attacking actions motivates the

player to engage with the opponent actively. By rewarding

movement, the player is incentivized to maneuver

strategically rather than remain stationary. The penalty for

being hit encourages the player to avoid attacks while

planning their own.

VI. CONCLUSIONS

Both implementations have their strengths and

limitations. The EKF with neural networks showed potential

in understanding and predicting dynamic game scenarios,

while Q-learning with fewer states proved to be more

efficient in specific conditions. Future work should focus on

improving the robustness of these algorithms, particularly in

handling lower frame rates and refining the reward structures

for better performance.

The reward function was integral in shaping the player's

behavior, promoting a balance between offensive and

defensive strategies while maintaining an active and

engaging playstyle. The careful design of the reward structure

ensured that the player optimized both movement and attack

to achieve the best results.

This work presents an attraction-based algorithm as a

more intuitive solution utilizing the UKF with attraction

functions. The initial idea behind this algorithm was to learn

the behavior of opponents to predict future positions and

actions. However, it proved capable of learning in real-time

within a limited sampling state, which would be impractical

for humans.

The algorithm's ability to learn and predict in real-time,

even with limited sampling data, demonstrates its potential

for practical applications in dynamic environments. By

modeling attraction forces between key points of the players,

the algorithm effectively learns and anticipates opponent

behavior, enabling strategic decision-making.

In future work, we plan to extend the application of this

algorithm by analyzing video footage, applying the algorithm

to analyze videos of players to learn their tactics. This would

involve extracting key movement patterns and strategies

from recorded gameplay. Testing with different players

evaluating the learned strategies against both the

implemented player and other players to assess the robustness

and adaptability of the algorithm, enhancing the model

improving the attraction model to incorporate more complex

behaviors and interactions, potentially including

environmental factors and varying opponent skill levels.

The proposed algorithm has potential applications

beyond gaming, such as in sports analytics, where

understanding and predicting player movements can provide

significant strategic advantages. Additionally, it can be

applied in robotics for real-time path planning and obstacle

avoidance by learning dynamic environments.

REFERENCES

[1] R. W. Loraamm, “Incorporating Behavior Into Animal
Movement Modeling: A Constrained Agent-Based Model For
Estimating Visit Probabilities In Space-Time Prisms”,
International Journal Of Geographical, 2019.

[2] S. Bernardi and M. Scianna, “An agent-based approach for
modelling collective dynamics in animal groups distinguishing
individual speed and orientation”. Phil. Trans. R. Soc. B 375:
doi.org/10.1098/rstb.2019.0383, 2020.

[3] J. Ren, W. Xiang, Y. Xiao, R. Yang, D. Manocha and X. Jin,
“Heter-Sim: Heterogeneous Multi-Agent Systems Simulation
by Interactive Data-Driven Optimization”. IEEE Transactions
on Visualization and Computer Graphics.
doi:10.1109/tvcg.2019.2946769, 2019.

[4] R. J. de Jesus, “Stable Kalman filter and neural network for the
chaotic systems identification”, Journal of the Franklin
Institute, doi: 0.1016/j.jfranklin.2017.08.038, 2017.

[5] Y. Tanaka, “Machine Learning That Reproduces Physical
Phenomena from Data”, NTT Technical Review, vol. 21, no.
10, pp. 15-19, Oct., 2023.

[6] P. Agre and D. Chapman, “Pengi: An implementation of a
theory of activity”. In Proceedings of AAAI-87, pp. 196-201,
1987.

[7] A. K. Mackworth, “On seeing robots”, in: Computer Vision:
Systems, Theory, and Applications. Singapore World
Scientific, pp. 1–13, 1993.

[8] M. K. Sahota and A. K. Mackworth, “Can situated robots play
soccer?”, in Artificial Intelligence 94, pp. 249–254. Banff,
Alberta, 1994.

[9] J. T. Weigel, S. Gutmann, M. Dietl, A. Kleiner, and B. Nebel,
“CS Freiburg: Coordinating Robots for Successful Soccer
Playing”. IEEE Transactions on Robotics and Automation, vol.
18, no. 5, pp. 685-699, 2002.

[10] T. L. Anderson and M. Donath, “Animal behavior as a
paradigm for developing robot autonomy”. Robotics and
Autonomous Systems, vol. 6(1-2), pp. 145–168.
doi:10.1016/s0921-8890(05)80033-8, 1990.

[11] R. E. Kalman, "A new approach to linear filtering and
prediction problems," Journal of Basic Engineering, vol. 82,
no. 1, pp. 35-45,1960.

[12] S. J. Julier and J. K. Uhlmann, "A new extension of the Kalman
filter to nonlinear systems", Proceedings of AeroSense: The
11th International Symposium on Aerospace/Defense Sensing,
Simulation and Controls, 1997.

[13] S. J. Julier and J. K. Uhlmann, "Unscented filtering and
nonlinear estimation", Proceedings of the IEEE, vol. 92, no. 3,
pp. 401-422, 2004.

[14] R. van der Merwe and E. Wan, "Sigma-point Kalman filters for
probabilistic inference in dynamic state-space models",
Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2001.

[15] C. J. C. H. Watkins and P. Dayan, Q-learning. Mach Learn 8,
pp. 279–292. Doi: 10.1007/BF00992698, 1992.

15Copyright (c) IARIA, 2024. ISBN: 978-1-68558-191-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

UBICOMM 2024 : The Eighteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

