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Abstract—Smart home automation systems aim to improve the
comfort and convenience of users in their living environment.
However, adapting automation to user needs remains a challenge.
Indeed, many systems rely on hand-crafted routines. This paper
presents an original smart home architecture leveraging Large
Language Models (LLMs) and user preferences to push the
boundaries of personalisation and intuitiveness in the home
environment. This article explores a human-centred approach
that uses the general knowledge provided by LLMs to learn and
facilitate interactions with the environment. The advantages of
the proposed model are demonstrated on a set of scenarios, as
well as a comparative analysis with various LLM implemen-
tations. Some metrics are assessed to determine the system’s
ability to maintain comfort, safety, and user preferences. The
paper details the approach to real-world implementation and
evaluation. The proposed approach shows up to 52.3% increase
in average grade, and with an average processing time reduced
by 35.6% on Starling 7B Alpha LLM. In addition, performance
is 26.4% better than the results of the larger models without
preferences, with almost 20 times faster processing time.

Keywords-Artificial Intelligence; Decision-making; Adaptivity;
Smart Home Automation System; Modelisation

I. INTRODUCTION

Networks of devices are deployed to assist human beings in
their daily activities, using notions of context and knowledge to
decide on the best actions to take [1][2]. Indeed, many houses
are covered by wireless and wired networks and equipped
with electronic devices allowing the occupants to control
their environment for comfort, entertainment, security, energy
management, and elderly care.

However, Smart Home Automation Systems are still missing
the aim of autonomously taking the best action in every
situation. Aligning automation routines to meet every need
for every home configuration, every set of devices, available
or not, functional or not, remains a challenge. In fact, most
systems today are configured for simple routines that occur
frequently. For instance, setting the home for wake-up or
departure time by playing music, ringing a bell, acting on
lights, shutters, heating, ventilation, and air conditioning. More
precise needs in less frequent situations are not covered.
Furthermore, if some devices are missing from a routine, no
decision is made to use alternative devices. While artificial
intelligence can play a role in learning about situations and

the associated actions taken by users [3], it still requires time
to understand users’ habits, and is never able to cover the wide
range of situations encountered at home.

One of the main technical challenges of ubiquitous comput-
ing is the ability to set up a system knowing the wide variety of
users’ potential needs, and how it can adapt to the wide range
of functions of existing devices, with devices and locations
whose configuration can be very different. As their execution
environment is particularly dynamic, applications need to be
aware of their context and act appropriately.

Large language models [4] have the potential to give this
general knowledge at once to applications, such as smart
home. In essence, these models have acquired a vast amount
of knowledge. They are trained on a diverse range of textual
sources, enabling them to cover a variety of topics, facts, and
concepts, here the expected actions of home devices to meet
user needs in a wide range of situations.

Retrieval-Augmented Generation (RAG) [5] is a technique
that improves the accuracy of LLMs (Large Language Mod-
els), by giving them access to more targeted and precise
information. This is achieved by using a retrieval component
that searches a specific database and introduces it into the
model, along with users’ query. To do this, an embedding
model is needed to represent the sentences in vector form, so
that we can find the results closest to the query.

This paper proposes a software architecture integrating the
general LLM knowledge available today into a smart home
automation system. The LLM is placed at the centre of
the home’s decision-making system and participates in the
reaction to every event to deduce the next best actions. This
paper investigates the inclusion of preferences with a LLM
for smart home automation, The contribution also includes a
user-centred representation of smart home states and actions
in natural language. Finally, experiments are carried out using
several LLMs with different prompting styles for decision-
making in the smart home.

Section II presents related work in the literature. The
proposed software architecture is detailed in Section III, in
particular the integration of LLMs for decision-making com-
bined with preferences. Afterwards, Section IV describes a
benchmark dedicated to LLMs and prompting styles with a
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set of home scenarios. The results are described in Section V
and discussed in Section VI. Finally, Section VII is devoted
to conclusion and future work.

II. RELATED WORK

This topic is recent and few papers have been published
on LLMs for smart homes. The following papers are selected
for their approaches using the knowledge of user preferences
on decision-making in smart home automation systems. This
section cannot be exhaustive in this larger domain.

Oliveira et al. [6] propose a multi-agent environment with a
Belief-Desire-Intention cognitive model, to support adaptivity
and preferences transparently in a smart home environment.
Any possible interaction could be modeled in such a way as
to allow alternative proposals, but this requires considerable
work in semantic representation to be fully complete.

Another paper takes advantage of general knowledge in-
formation to improve system adaptivity to preferences, [7]
proposes an approach using three Knowledge-Based systems,
one with general knowledge, one with skill knowledge, and
one with contextual information, such as device location, and
generating rule models for a middleware platform based on all
this information. This approach requires really strict semantic
modelling to handle most scenarios, and cannot take advantage
of some information that is implicitly given in context.

Shuvo [8] proposes an Actor-to-Critic (A2C)-based algo-
rithm adapted to decision-making in smart homes for energy
consumption. In this work, at each step, an A2C algorithm
is applied to each device to select the best action, using
as inputs the activity and price of electricity at that time.
A key element is that the set of actions for each appliance
depends on the category associated with the appliance, adding
initial knowledge to the model to ensure action based on the
importance of the appliance. This system requires learning,
and any change in device availability leading to different
optimal decisions will require many steps before adapting.
In addition, the larger the context, the more difficult it will
be to converge for each scenario to learn the best-suited
device state. Zhang et al. [9] also propose a system for energy
consumption in smart homes, it combines a set of control rules
and reinforcement learning to reduce the adaptation time.

Peng et al. [10] describe an approach for decision-making in
home automation using deep reinforcement learning. It showed
the ability to learn when to turn on a light but with a really
limited context supported, so the application is limited to
learning when to turn on a light with schedules of 15 minutes,
which is quite a large period for this application.

The first approach to smart home automation with LLM
[11][12] uses a JSON (JavaScript Object Notation) [13] data
representation from a smart home middleware platform and
experiments with an LLM to select an action based on a user
request. This approach is a first step towards the use of the
general knowledge provided by these models. However, it does
not support user preferences, and the idea is to select actions
based on an initial user request, rather than proactively. These
works have proposed ways of managing decision-making, but

are limited by the contextual data supported. Works using
symbolic AI methods can show great adaptability, but at the
cost of extensive semantic modelling and with requirements to
make them adaptable to future changes in preferences. A new
method is proposed to support contextual data while adding
preferences.

III. PROPOSED ARCHITECTURE

This study proposes a new architecture for decision-making
in smart home automation systems. The system uses Large
Language Models and proposes methods to add user prefer-
ences, in order to select an action according to context and
users. It aims to be a proactive system. At every event occur-
ring in the home, the system proposes actions on devices to
align the change home state with user needs and preferences.
The system supports different types of data thanks to LLMs
ability to process data while generating a textual representation
of the home based on device states and the action list. This
reason leads directly to the use of RAG or directly injecting the
knowledge into the prompts for retrieving updated preferences
at every execution time of the AI, instead of fine-tuning.

A home simulator is implemented, it takes information on
the configurations of sensors and then generates a textual
representation, it is also used to generate the list of actions
from its data.

This section details the main components designed for the
proposed system architecture. Figure 1 shows this architecture,
including the simulator.

Figure 1. The implemented architecture.

The system generates a user-centred text description of the
home and a list of actions, with control over connected devices.
It filters the number of relevant actions that can be taken in
every situation. For example, it limits some actions that may
be prohibited to guarantee user safety. This list of actions is
used by the model to select the optimal action.

Concerning contextual data representation editing:
• User positions are listed with their current activity and

the history of previous activities.
• The history of previous actions performed in the house

is supported.
• All rooms, sensors, and actuators are presented using their

names, which the user optionally gives.
• Some sensors and actuators give more global data and

control, e.g., temperature sensors, humidity sensors, air-
conditioning, etc.

The implementation supports some device categories with
a dedicated natural representation, to generate more natural
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Require: userid, devices_list
1: for all device_name, device_kind, device_location, device_state in

devices_list do
2: if device_kind = ”actuator” then
3: if user_location[userid] = device_location or device_state = 1

then
4: devices.append(device_name is device_state)
5: action_vector.append(1)
6: end if
7: end if
8: end for
9: devices.append("Interact with user")

10: action_vector.append(2)
11: devices.append("No action required")
12: action_vector.append(0)
13: return (action_vector, devices)

Figure 2. Dynamic Devices: Action builder Algorithm.

sentences adapted to some types of data: lights, CO2 sensors,
smart curtains, etc. It could also support any additional data
sensors with a generic representation template, using the
device name in the smart home environment and data status.
Using meaningful naming added by the users helps the system
to understand the usage of the device.

The action proposal Algorithm 2 considerably reduces the
set of possible actions. It assumes that only devices that are
in the room or global devices can be switched on, but that all
switched-on devices can be switched off. As far as the list of
possible actions is concerned, the idea is to filter the actions
supported according to some conditions and device types. This
approach is made possible by LLM’s native support for a
change in the output action space, without requiring training.

Any type of device can be easily supported: it simply has
to be added to the representation and the LLM will ingest the
data thanks to its internal knowledge, learned during model
pre-training. This knowledge allows the LLM to get a natural
human description of the home including biased contextual
data unlike many conventional home automation systems. The
latter do not take advantages of information, such as the names
of lights or rooms. This data is transmitted to the LLM using
one of the prompting styles, prompting being the way to call
the LLM with contextual arguments. The different styles of
prompts will be described in the following section.

A common aim for all the prompting styles is to take
advantage of the knowledge of the overall world provided by
this Large Language model, to handle changes or even new
types of sensors added to the representation.

The user preferences and rules block represents a database
containing information about the system’s basic rules, gener-
alities about human preferences and specific user preferences.

A benchmark is established with predefined context-aware
scenarios for evaluation purposes.

Regarding LLMs, recognized top-performing models (rela-
tive to their parameter count at the time of evaluation) from
reputable research labs were selected. Selected models were
run using a local inference engine backend.

IV. EXPERIMENTATION

Different objectives are defined for the experimentations.

• Evaluate the improvements provided by adding user pref-
erences, with various techniques of doing so.

• Evaluate the improvements of natural language represen-
tation of a smart home automation state over a JSON
representation, as LLMs are trained on natural language
corpus. Even if they contain other kinds of data like code.

In alignment with the objectives of experimentations, dif-
ferent metrics are used for these evaluations:

• Grades: The grade evaluates the response of a model
combined to a prompting style when running a scenario.
Grade values are defined in Table I.

• Processing time: Total runtime, including the construction
of the context data and action list representation, the
inferences with the prompting styles, the use of RAG
if the prompting style uses it, and the processing of the
formatted LLM response.

Eleven evaluation scenarios are defined as starting points,
with predefined actions graded 0-2 based on user satisfaction.
Table I presents the scenarios by name and associated reward
values. A category is associated with each scenario, the goal
being to group the scenario with the name of the main evalu-
ated ability. The database of preferences and rules is defined in

TABLE I. SCENARIO RESPONSES WITH GRADES, ASSOCIATED ANSWERS,
AND EVALUATION CATEGORIES.

Scenario
Name

Grade Associated Answer Category

Out of bed
at night

2 Turn on auxiliary light or main light with
reduced luminosity level

Safety

1 Turn on main light
0 Everything else

Watching
TV: late
evening

2 Turn on auxiliary light or main light with
reduced luminosity level

Comfort

1 Turn on main light, open curtains, discuss
0 Everything else

Out from
bed issue
with CO2

2 Inform user of risk Safety
1 Do an action and inform the user of risk
0 Everything else

Going back
to bed at
night

2 Turn on auxiliary light or main light with
reduced luminosity level

Safety

1 Turn on main light
0 Everything else

Evening
sleeping:
TV ON

2 Turn off TV Preference
1 Turn off anything on
0 Everything else

At dinner
watching
TV

2 Turn on auxiliary light or main light with
reduced luminosity level, open curtains

Preference

1 Turn off the main light, do nothing
0 Everything else

User out:
TV is on

2 Turn off TV, turn off HVAC Comfort
1 Turn off all lights
0 Everything else

Too low
temperature

2 Turn on HVAC Preference
1 Open Curtains
0 Everything else

Low
luminosity
day

2 Open curtains Preference
1 Turn on any light in the room
0 Everything else

Failed
curtains

2 Turn on any light of the room Comfort
1 Open curtains
0 Everything else

Forgot to
turn off
lights

2 Turn off any lights, or HVAC Preference
1
0 Everything else

a single file for all scenarios. These data are naturally written
sentences. At the end of each one, an information level is
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recorded: Rules, Preferences, Generality. The idea is to trans-
mit to the LLM the importance of each data through keywords.
Generality is considered the least important, Preferences the
second most important, and Rules the most important. The
database includes some preferences, generality and some rules.
It is designed to handle some scenarios, help in some others
but does not provide a solution for all scenarios. The data are
fed into a vector database so that RAG may be used instead of
prompts to convey them to the LLM. Four different prompting
styles are compared on all the scenarios:

• direct: A system prompt and a prompt to request direct
answers in the specified format.

• directPref: A system prompt with the preferences, rules
and generality from the database and a prompt to request
answers in the specified format.

• OpenQuestion: a two-steps chain. First a system prompt
and a prompt to request "a list of 3 main problems". For
each of the 3 problems, the LLM is invited to use RAG
to get the 3 closest preferences. Then a prompt to request
answers in the specified format.

• ThreeQuestion: a three-steps chain. First a system prompt
and a prompt to request "a list of 3 main problems". For
each of the 3 problems the LLM is invited to use RAG
to get the 3 closest preferences. Then a prompt to request
answers in the specified format (twice). Finally a prompt
to select the best answer in the specified format.

A common point between all the prompting styles is the
action expected in the output: as mentioned above, most sup-
ported devices, such as lights or HVAC systems, are considered
as switches in the action list; therefore, in the output of all
prompting styles in addition to a "reasoning" and an "action"
key, three optional keys are available: temperature, luminosity
and explanation. It enables the model to respectively modify
the temperature of an HVAC system when executing a related
action, modify the luminosity by dimming a light or give an
explanation to transmit a sentence to the user.

Two ways of representing the state of the house data are
implemented, both using the same input data:

• JSON: A JSON representation
• Textual: A fully natural textual representation
The implementation of the system is evaluated using various

open-sources LLMs, including:
• Starling Alpha 7B [14]- 8bpw (bits per weight)
• Qwen 1.5 14B [15] - 5bpw
• Qwen 1.5 72B [15] - 3.5bpw

The three models are selected for their performance and for
covering the three main open-source model sizes. They are
used to evaluate the impact of proposed prompting methods
and data representation.

Qwen 1.5 72B, with around 72 billion parameters, is cur-
rently one of the best models available open-source. Starling
7B Alpha, with around 7 billion parameters, is an excellent
smaller model. It is based on Mistral 7B, an efficient model
for its size on various benchmarks. Qwen 1.5 14B model,
a smaller version of Qwen 1.5 72B, is selected to add an

intermediary model.
All these models are used with versions that are quantized
[16], a technique used to reduce inference time and memory
footprint, the quantization chosen for each model is given in
bits per weight (bpw). With their quantization, they require
around 8GB, 12GB, and 44GB of memory respectively.

Every model is evaluated on local instances, served locally
with an engine-based API backend, using TabbyAPI [17],
based on ExLLamaV2 multiple GPUs (graphics processing
units) and without automatic splitting, using a workstation
equipped with a Ryzen 9 7950x, 96GB of DDR5 memory
running at 5600mhz and 2 Nvidia RTX 4090, each with 24
GB dedicated memory, running Ubuntu 23.10.

Experiments are carried out beforehand on various uncon-
trolled scenarios to define LLM parameters. With the sole aim
of reducing non-determinism from one cycle to the next, the
final parameters modified from the default engine parameters
are as follows:

• max_tokens, maximum number of tokens in output: 300
• min_p, minimum percentage value that a token must

reach to be considered (Value is scaled based maximum
token probability): 0.05

• temperature, parameter that regulates the randomness: 0.2

The RAG is implemented using Langchain [18] with an
inference engine from HuggingFace [19], to locally execute
an embedding model: BAAI/bge-large-en-v1.5 [20], and an
Elasticsearch [21], local instance is used as vector database,
both instances running on main processor and associated
memory.

To evaluate system performance, each scenario is executed
10 times with each prompting style, and a grade is given to
each response. Results then count the total number of points
for each prompting category in general, and also for each
defined metric associated with each question. The system’s
complete processing time is also measured, in order to estimate
the average latency of the different prompting styles.

The theoretical random action grade for each scenario is
calculated as a baseline using the following (1).

grades =
num_actions_graded_1s + 2× num_actions_graded_2s

total_number_of_actionss
(1)

With num_actions_graded_X the number of actions associated
with grade X. Figure 3 shows an example of a scenario
data representation using proposed natural language textual
representation, it shows an example of the generated contextual
representation transmitted to the LLM on scenario 1.

As previously mentioned, several data types have been
included in the representations: numerical values, boolean
values, and character strings. Using an LLM to process context
allows the system to support all these data types.
Regarding the action list building algorithm, in one of the
scenarios for example, it reduces the set of actions from more
than 18 to 6 actions, which represents a 3-fold reduced set
in this case. This reduced set takes into account the fact that
lighting appliances are basic switches and cannot be set with
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C u r r e n t S t a t e o f t h e House :
User 1 i s i n t h e Liv ingroom . User i s w a t c h i n g TV .
P r e v i o u s l y : User was w a t c h i n g TV

Livingroom : C u r t a i n s a r e Closed .
L i g h t s : main , f l o o r lamp a r e r e s p e c t i v e l y Off , Off .
There i s a TV i n t h e room and i t s s t a t e i s on .
CO2 l e v e l i n room i s 513ppm .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

House was c l e a n e d today , e x p e c t e d c l e a n i n g one t ime a week .
C e n t r a l i z e d HVAC sys tem i s on wi th o b j e c t i v e t o 20◦C .
E n t r a n c e s m a r t Door i s l o c k e d .
Time : 10 :21 PM
Gl ob a l house t e m p e r a t u r e i s 20◦C , o u t s i d e t e m p e r a t u r e i s 5◦C .

Figure 3. Extract of natural data representation on the scenario "Out of bed
at night".

different luminosity levels. No further studies assessed the
improvement provided by the action filtering for the LLMs.

This limited set of actions makes it interesting to use a
model randomly selecting one action from the set as a baseline.
With a reduced action space, a random answer may be good.

V. RESULTS

This section will present the results of our simulations,
focusing on various aspects. Initially, we will explore the
impact of data representation, followed by an analysis of the
results concerning user preferences.

A. Data representation

The first analysis of the results focuses on the advantage of
using a natural representation versus a JSON representation.
Table II shows an average difference between results using

TABLE II. COMPARING THE TWO CONTEXTUAL REPRESENTATIONS:
AVERAGE GRADE OF MODELS PER EXECUTION PER SCENARIO.

Model JSON Natural
Qwen 1.5 72B 1.25 1.18
Qwen 1.5 14B 0.63 0.99

Starling Alpha 7B 1.03 1.18

JSON representation, or the most natural representation. It
shows that the larger models are almost stable independently
of the contextual representations, and on average even slightly
better using JSON representation, by around 5.9%. However,
on smaller models, the natural language representation greatly
improves performances, with a 14.6% increase in average
performance using Starling 7B, and a 57.1% increase using
Qwen 1.5 14B. In terms of processing time, results are
quite similar on average for models with both representations.
On average, accross all models, it leads to an increase in
performance of 21.9%, despite the results on the larger Qwen
model, making the natural representation more efficient.

B. User preferences

Figure 4 depicts the average grades obtained by the 3 chosen
models on their responses to scenarios with the 4 different
prompting styles and the 2 distinct representation types.

It first shows that Qwen 72B model is much more stable
than the other two and that the prompting style does not have

as much impact on response quality. Regarding the two smaller
models, larger inconsistency in results can be noted as varying
with the chosen prompting styles, particularly with Qwen 14B
model. The results of LLMs are compared with a baseline
corresponding to the random choice of an action. The results
remain on average behind any model without preferences
(37.1% below the worst result with the "direct" prompting
style). However, thanks to the algorithm reducing the set of
actions and the fact that multiple responses are acceptable on
each scenario, the random baseline obtains grades that are
sometimes better than LLMs.

The sequence of multiple questions requires the model to
be consistent and to respect the expected instruction format.
Furthermore, given that only prompt engineering is used
to ensure the format, some prompting styles with multiple
questions may lead to invalid responses, forcing the model
to take a default action in the proposed setting. This default
action is set to do nothing and to inform the user that it has
failed to act. This reduces the performance of some models
with some prompting styles. In Figure 4, failure ratio measures
the ratio of invalid responses. Qwen 14B results are especially
below this baseline because they failed to answer in a large
number of scenarios

On average, "directPref" prompt models achieved a gain of
11.3% over basic prompt with natural representation, and even
20.0% with JSON representation.

The best results are achieved with JSON representation
for "OpenQuestion" and "ThreeQuestion", leading to a 28.6%
improvement over the "direct" prompting style.

With the natural representation, Qwen 14B model gives
almost stable results with all prompting styles except "Open-
Question". The main difference with "OpenQuestion" seems
to be linked to a high failure rate, as shown in Figure 4. With
JSON representation, failures are so high with all advanced
prompting styles that the best results are obtained with the
most basic prompt. In this case, "direct" prompting style is
30.7% more efficient than the "directPref" prompting style.

On Starling 7B, with both representations, the best results
are obtained with "directPref", on the Starling representation,
its results are 52.3% better than the direct representation and
respectively 8.1% and 6.3% better than "OpenQuestion" and
"ThreeQuestion" prompting styles.

In addition, the average processing time is reduced by 35.6%
on Starling 7B Alpha using the "directPref" prompting style
instead of "direct".

With JSON representation, the averaged grade results follow
the same trend, but with lower overall values.

Table 4 shows that RAG-based prompting models can lead
to better results than a single prompt containing all the data,
as it is visible Qwen 72B. However, to date, LLM inference
is still slow, and the use of complex prompts leads to a loss
of accuracy in the test scenarios with smaller models.

Adding inference time to the balance with Table III high-
lights Starling 7B Alpha results with "directPref". It out-
performs almost all others except Qwen 72B with JSON
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Figure 4. Average grades by model, data representation, and prompting styles.

TABLE III. COMPARISON OF AVERAGE GRADES FOR EACH PROMPTING
STYLE AND MODELS WITH INFERENCE TIME.

Model Prompting Style Average grade Proces. time (s)

Qwen 72

direct 1.06 9.04
directPref 1.22 7.01
OpenQuestion 1.18 24.43
ThreeQuestion 1.26 42.13

Qwen 72 JSON

direct 1.05 9.02
directPref 1.26 6.71
OpenQuestion 1.35 25.20
ThreeQuestion 1.35 41.47

Qwen 14

direct 1.09 1.22
directPref 1.09 1.16
OpenQuestion 0.65 8.83
ThreeQuestion 1.11 15.54

Qwen 14 JSON

direct 0.98 1.28
directPref 0.75 1.21
OpenQuestion 0.47 9.39
ThreeQuestion 0.32 16.62

Starling

direct 0.88 0.73
directPref 1.34 0.47
OpenQuestion 1.24 3.98
ThreeQuestion 1.26 6.23

Starling JSON

direct 0.85 0.48
directPref 1.15 0.48
OpenQuestion 1.08 3.77
ThreeQuestion 1.02 6.20

representation and prompt chaining, but is 53.6 times faster,
with a lower grade of just 0.7%.

With Qwen 72B, the use of more complex models (Open-
Question, ThreeQuestion) can lead to better results, as seen
previously in particular with JSON representation, but this
comes with a trade-off: inference time. Qwen 72B model
is already much slower due to its number of parameters,
and due to the number of operations required to produce a
single token. For instance, an inference with "directPref" takes
6.86 seconds on average (JSON and textual representation),
whereas using "OpenQuestion" (which is around 60% faster
than "ThreeQuestion") is 3.6 times slower.

In the current state of this type of hardware, it is impossible
to consider them as a viable alternative for managing a smart
home automation system, with such reaction times.

VI. DISCUSSION

This section mainly discusses the results of the LLMs and
prompting techniques chosen in order to make choices for real
experiments. The advantages of this study are highlighted as
well as the new challenges that are raised.

As seen previously, using larger LLM, such as Qwen 72B,
allows greater stability in preference-free scenarios. Indeed,
Qwen 72 is 19.9% better than Starling 7B in this case.
However there are drawbacks, the first being the inference time
as mentioned, and the second being the hardware infrastructure
required. The quantized version of Qwen 1.5 72B requires
44GB of memory compared with around 8GB for Starling
7B Alpha with lower quantization. Compared with Qwen
72B model using JSON representation, Starling 7B Alpha
with "directPref" takes advantage of natural representation and
achieves almost similar performances with much more com-
plex prompting techniques. This makes the approach of using
Starling 7B Alpha with this prompting style a good choice for
future work. It gives similar performances concerning grades,
and has a relatively low inference time (Average: 0.47s). In
addition, compared to Qwen 1.5 72B with natural representa-
tion and no preferences, Starling 7B Alpha’s performance is
26.4% better using "directPref", with a processing time almost
20 times faster.

The results show the advantage of adhering to prefer-
ences. Drawbacks appear, however, with the additional average
computation time for "OpenQuestion" and "ThreeQuestion"
prompting styles, which use RAG. Using RAG brings no
advantage in most cases. This is certainly due to the relatively
small database. If the system required a larger database of
preferences and rules, the results might have been different as
it would not have been possible to give them directly through
"directPref" prompting style. Based on current results, the best
choice for a use case with a larger database would remain
Starling 7B Alpha, with "OpenQuestion" prompting style and
natural representation, as it provides results that are aligned
with users preferences, with only 8.1% less average grade than
Qwen 1.5 72B, while keeping an acceptable average inference
time (3.98 seconds vs 25.20 seconds).

The use of smaller models poses the challenge of enforcing
the output format. New methods have recently been proposed,
such as Outlines [22], to strengthen the output grammar. They
should be tested soon in order to analyze the cost in inference
time and the improvement of the results of this paper.

Another approach is fine-tuning. Applying it to user prefer-
ences is impractical as they are constantly changing. Applying
it to smart home domain would improve the analysis of
contextual data while allowing the system to ensure the output
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format.
Although the proposed system is not comparable to other

works due to its completely new approach, it has the advan-
tages of its nature, as well as drawbacks. Firstly, it is not
deterministic. Each configuration has been run 10 times, but
some results are different each time, which means that the
results of the system cannot be certified and a safety layer must
be developed to secure some actions. Secondly, LLM queries
are slow and require significant computating and memory
resources: adaptability without training comes at a cost.

VII. CONCLUSION AND FUTURE WORK

This paper presents a new architecture for a smart home
automation system, using LLMs with user preferences to en-
hance personalised user experiences. This approach leverages
the general knowledge provided by LLMs and combines it
with naturally written rules and preferences to make contex-
tually relevant decisions in line with user preferences. This
architecture is proactive, able to adapt to any change in the
environment thanks to the robustness provided by LLMs.

The experimental results demonstrate the potential of this
architecture to improve alignment with user preferences com-
pared with an implementation without user preferences, show-
ing up to 52.3% performance increase, with an average
processing time reduced by 35.6% on Starling 7B Alpha
LLM using "directPref" prompt style compared to "direct".
Additionally, the performance is 26.4% better than that of
the largest models evaluated without preferences, while also
achieving a processing time that is nearly 20 times faster.

The study showed that, particularly with small models,
using a natural representation instead of a JSON one leads to
an increase in performance, with an average 21.9% increase.

Although the system shows promising results on a set of
defined scenarios, it also presents challenges due to stochastic
behaviour and a slower inference time compared to traditional
machine learning methods. These drawbacks are offset by the
system’s ability to adapt dynamically - without retraining - to
changes in preferences, appliances, and home configuration.

Future work will focus on implementing the system in a
real-world smart home middleware system, such as OpenHAB
to evaluate its performance with real users.
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