
Is Mutation Testing Scalable for Real-World Software Projects?

Simona Nica, Franz Wotawa
Institute for Software Technology

Graz University of Technology
Graz, Austria

snica,wotawa@ist.tugraz.at

Rudolf Ramler
Software Competence Center Hagenberg GmbH

Hagenberg, Austria
rudolf.ramler@scch.at

Abstract—A significant amount of research has been con-
ducted in the area of mutation testing. It is a fault based
technique that has been intensively used, over the last decades,
as an efficient method to assess the quality of a given test
suite. In the literature different mutation tools are available,
corresponding to different programming languages or different
types of applications. Although mutation testing is a powerful
technique, limitations do exist. The most common problems are
represented by the increased computation time, necessary to
derive the entire mutation testing process, and the equivalent
mutants problem. Therefore a natural question arises: is
mutation testing really suitable in real-world environments?
Through the research we start here, we aim to come with an
accurate answer to this question.

Keywords-mutation testing; mutation tools; coverage tools;
eclipse project;

I. INTRODUCTION

Mutation testing is a test technique that has been used
to evaluate the test suite of an application, but also for the
test case generation process. It is a fault based technique
that makes use of a well determined set of faults for
measuring the efficiency of the test suites. The mutation
process involves the following steps:

1) Faults are introduced into a program resulting in
different faulty versions (mutants) of this program.

2) Each mutant is run against the provided set of test
suites. When a mutant fails to pass a test case, it is
said that the mutant is killed. Otherwise it is still alive
or it could not be detected - e.g., due to dead code or
because it is an equivalent mutant.

3) The mutation score (the ratio between the number
of killed mutants and the number of all mutants) is
computed. The mutation score is an indicator used to
evaluate the effectiveness of a test suite, i.e., its capa-
bility to detect the faults introduced through mutations,
and thus describes the test suite adequacy.

A mutant is said to be equivalent with the original
program when there is no way that a test case can detect
the modification - since the output will always be the same
with the output of the original program. Figure 1 presents
an example, the arithmetic operator replacement (AOR)
mutation. It is important to detect and avoid equivalent

mutants because they cause an artificially low mutation
score, as they cannot be killed.

Mutation testing is seen as a good metric for measuring
the coverage levels achieved through different test coverage
techniques. The authors in [1] prove that in some situations
coverage measure techniques do not represent the most
adequate measure in discovering all the faults an applica-
tion is prone to. For example, in the case of test driven
development, one first writes the tests and then starts writing
the source code. In most of these situations the programmer
obtains a good coverage of the code, but only those specific
faults may be detected, the ones the programmer had thought
of during the development of the tests. In contrast, mutation
testing can be taken as a good indicator for measuring
the coverage levels achieved through different test coverage
techniques.

In 1971, Richard Lipton introduced the concept of mu-
tation testing. The technique was further developed by De-
Millo, Lipton and Sayward [2]. The technique can be applied
at unit testing level [3], [4], [5], integration testing level[6],
[7] or it can be used to validate the specifications [8], [9],
[10], [11]. Several mutation testing tools were developed, for
different existing programming environments: Fortran [12],
[13], Java [14], [15], [16], [17], [18], C# [19], [20], C [21]
and SQL [22]

Although the mutation testing technique can be computa-
tionally very expensive and also time consuming, it has been
shown that mutation testing is stronger than coverage based
metrics [4]. Therefore a natural question arises: is mutation
testing worth the effort in a real life software project?

This paper is structured as follows. In Section 2 we give
a brief description of the working environment and the tools
used in our research. In Section 3, we present and discuss the
results. In Section 4 we discuss the related research. Finally,
in Section 5 we conclude the paper.

II. ENVIRONMENT SETTING

In this paper, we aim to assess the costs of applying
mutation testing on a real-life software system. Following
aspects have been investigated to answer the questions
whether mutation testing worth the effort in a real life
software project:

40

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

if(a == 2 && b == 2)
c = a * b;

−−−−−−−−−−−−−−−−−−→
Applying AOR operator

if(a == 2 && b == 2)
c = a + b;

Figure 1. Equivalent Mutant

• The time required for mutation testing,
• The results of mutation testing compared to coverage

analysis,
• The issues encountered in setting up and running se-

lected mutation testing tools.

In what follows, we briefly present the working environ-
ment configuration.

A. Environment Configuration

We have chosen to use mutation testing on Eclipse
[23], a widely known and large open source project that
shows many parallels to commercial and industrial software
projects, especially those developed on the basis of the
Eclipse application framework. We retrieved the source code
Eclipse Release Build 3.0, from the Eclipse repository [23].

In Table I, the versions and configuration parameters of
the tools and test objects used throughout our research are
described. All of the presented work was conducted using
the virtual environment Oracle VM Virtual Box. The virtual
machine is configured to run on Windows XP SP2 operating
system, on an Intel Core 1.73 GHz with 2 GB of RAM. For
the Java Virtual Machine, we compile and run all the files
involved in the research with version 1.6, update 24. We
have chosen to work within a virtual environment, in order
to offer a fast portability and also an easy management for
our research. We aim at a fully automatized process, for all
the Eclipse plug-ins, which will run over a predefined period
of time, on different architectures.

We apply three of the most widely used mutation tools:
MuJava [3], Jumble [16] and Javalanche [15]. We run the
mutation testing technique and then compare the results with
the code coverage information provided by Clover [27] and
EclEmma [28].

B. Applied Mutation Tools

For computing the mutation score metric, we take into
account, throughout the research, the following mutation
tools:

Tool / System Version Location/Comment
Eclipse 3.0 [23]
MuJava 3 [24]
Jumble 1.1.0 [25]

Javalanche 0.3.6 [26]
Clover 3.0.2 [27]

EclEmma 1.5.1 [28]

Table I
OVERVIEW ENVIRONMENT CONFIGURATION

1) MuJava: MuJava is a Java based mutation tool, which
was originally developed by Offut, Ma, and Kwon
[14]. Its main three characteristics are:

• Generation of mutants for a given program.
• Analysis of the generated mutants.
• Running of provided test cases.

Due to the newly implemented add-ons, the tool sup-
ports a command line version for the mutation analysis
framework, which offers an easy integration into the
testing or debugging process. Offutt proved that the
computational cost for generating and executing a
large number of mutants can be expensive, and thus
he proposed a selective mutation operator set that is
used by the MuJava tool. It works with both types of
mutation operators:

• Method level mutation operators (also called tra-
ditional), which modify the statements inside the
body of a method;

• Class level mutation operators, which try to simu-
late faults specific to the object oriented paradigm
(for example faults regarding the inheritance or
polymorphism).

MuJava was not designed to work with JUnit test
cases, nor to compile with Java versions greater than
1.4; i.e., Java development kit 1.5 or 1.6. Due to the
fact that for most of the applications we use throughout
the research, we work with MuJava as the mutation
testing tool, we have implemented different add-ons to
support JUnit test cases and partial mutation of Java
source files compiled with JDK 1.5 or greater. We take
into account both the traditional mutation operators,
i.e., the method level, and the class level ones. MuJava
comes with a graphical user interface.

2) Jumble It is a class level mutation tool. Moreover, this
tool supports JUnit 3 and, recently, it was updated
to work with JUnit 4. Similar to MuJava, just one
mutation is possible at a time, over the source code
under test. First, the tool runs all the tests on the
original, unmodified, source file and checks whether
they pass or not, recording the time necessary for each
test. Then, it mutates the file according to different
mutations operators and runs the tests again. The pro-
cess is done when all the mutations have been tested.
Unlike MuJava, Jumble is able to mutate constants.

3) Javalanche This mutation testing tool should resolve
two major problems in mutation testing: efficiency
and equivalent mutants problem. Javalanche works on
byte code and can mutate very large programs. The

41

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

authors resolve the problem of equivalent mutants by
assessing the impact of mutations over the dynamic
invariants [29]. According to the authors of the tool,
Javalanche has an unique feature. The tool is able to
rate the mutations in accordance with their impact on
the behavior of program functions, i.e., the greater the
impact of an undetected mutation is, the lower the
possibility of an equivalent mutant.

We have chosen to conduct the research using the above
described tools, taken into account their usage inside the
experiments conducted in the mutation testing area.

III. RESULTS

In this section, we present the first results of our research,
by taking into consideration the three aspects that we follow
in our research work: time, mutation testing results, using
the JUnit tests provided on the Eclipse repository, and finally
we describe the issues encountered in setting up and running
the different mutation testing tools.

A. Research Procedure

In our research we follow the next steps:
1) Check-out the project from the Eclipse repository;
2) Run the plug-in test cases associated to the checked

out project;
3) Download and install the coverage and mutation tools;
4) Set all the necessary class paths for each tool;
5) Run the tools over the original project and record the

results. This step is the one that consumes most of the
time, i.e., approximately 1 month and a half in case
of our chosen plug-in project. This is mainly due to
the different compilation exceptions encountered; for
the compilation and tools running tasks one human
resource was allocated.

As the research procedure is the same for each of the
Eclipse plug-ins, we conduct the first research steps with
the Eclipse Java development tools Core project. The JDT
[30] provides the tool plug-ins that implement the Java IDE,
which supports the development of any Java application,
including Eclipse plug-ins.

The JDT Core project, org.eclipse.jdt.core, has associated
three test projects:

1) org.eclipse.jdt.core.tests.builder
2) org.eclipse.jdt.core.tests.compiler
3) org.eclipse.jdt.core.tests.model

B. Time

Concerning the time necessary to derive this research, we
have to take into account:

• The time necessary to configure the tools; the effort
estimated was of approximately one week;

• The mutants generation time; for the selected plug-in,
it took us between 6 to 8 hours, i.e., a full working
day;

• The time needed to run the test cases against the set of
mutants. This is the most significant one, as we have a
huge number of mutants.

C. Mutation Results
For each test project from Table II, we computed the total

number of initial test cases NoTC, the initial time Torig, in
minutes, needed to run the tests, and the success rate Srate

which tells us the percentage of tests that initially passed.
In Table III, we show the detailed mutation test-

ing information for one of the three test projects,
org.eclipse.jdt.core.tests.compiler.regression. We record the
number of generated mutations NoMut, the necessary time
for generating all the mutations, TMut, the mutation score
MS and the total time for running the tests over the mutants,
i.e., TTCMut

. MuJava generated 123 class mutants and al-
most 31 000 method mutants, in approximately 360 minute,
i.e., 6 hours. We estimated the total time for running all
the generated mutants; we did not run all the method level
mutants, due to the increased time complexity. The average
mutation score recorded was around 65%. The computed
mutation score, for MuJava, is the average of all the mutation
scores computed for each run of the plug-in, in accordance
with the selected mutants.

As it can be observed from Table III, we were not able
to obtain any mutation points for Jumble and Javalanche.
By TNoTC

we denote the total number of test cases from a
specific test project. In Table IV, we record, the success rate
for the three plug-in projects, after running all the test cases
from each project, using the coverage tools. Concerning
the types of code coverage recorded by the tools we have
selected for our research, we know that:

• Clover measures statement, branch and method cover-
age;

• EclEMMA computes class, method, statement and basic
block code coverage.

In the research conducted so far, we have reported the
mutation score to the statement coverage level. Further code
coverage measures will be taken into account for the mature
stages of our research.

D. Encountered Issues
Up to now we were not able to generate mutants, for the

JTD Core project, with Jumble or Javalanche; this part of

Test Project NoTC Torig Srate

org.eclipse.jdt.core.tests.builder 79 161.312 100.00 %
org.eclipse.jdt.core.tests.compiler 2542 16.203 100.00%

org.eclipse.jdt.core.tests.regression 2622 387.735 100.00%
org.eclipse.jdt.core.tests.eval 350 65.562 100.00%
org.eclipse.jdt.core.tests.dom 1584 136.437 100.00%

org.eclipse.jdt.core.tests.formatter 486 21.109 100.00%
org.eclipse.jdt.core.tests.model 2084 293.782 100.00%

Table II
ECLIPSE JUNIT TEST RESULTS

42

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

Tool NoMut TMut MS TTCMut
MuJava 123/30947 174.69 min/185.7min app.65% est. 2 months
Jumble - - - -

Javalanche - - - -

Table III
MUTATION TESTING INFORMATION PER MUTATION TESTING TOOL

Project TNoTC
Clover EclEMMA

org.eclipse.jdt.core.tests.builder 79 100.00% 100.00%
org.eclipse.jdt.core.tests.compiler 16287 100.00% 100.00%

org.eclipse.jdt.core.tests.model 8639 99.97% 100.00%

Table IV
SUCCES RATE

our work is still in progress. The main problem we have
encountered was to run the test cases as plug-ins test, using
the different mutation tools. Besides time consuming, the
generation of mutants proved to be also very complex.

Concerning the first mutation tool, MuJava, there are some
limitations we have to take into consideration:

• MuJava is not able to generate any mutants in case of
constants (it does not mutate constant values);

• Also, missing statements are another limitation of the
tool. We are not able to generate mutants, by statement
deletion nor insertion;

• In case of multiple bugs in one statement, the MuJava
tool is not able to mutate more than one variable or
operator per statement and mutant, i.e., each mutant
contains only one change when compared with the
original program (this limitation is however easy to
overcome);

• In order to support execution of JUnit tests, the nullary
constructor has to be added to each test class file. Also,
the private methods setUp() and tearDown() must have
public access;

• The last problem regarding mutation is that sometimes
equivalent mutants are generated.

Regarding MuJava, as it can be already observed from
Table III, the majority of mutants was represented by the
method ones. From this large pool of traditional mutants,
the three most commonly encountered were:

1) AOIS, i.e., Arithmetic Operator Insertion, with 13654
mutants,

2) LOI, i.e., Logical Operator Insertion, with 4698 mu-
tants, and

3) ROR, i.e., Relational Operator Replacement, with
3980 mutants.

Javalanche is of real interest in our approach, as it should
deal with the equivalent mutant problem. This would allow
us to reduce the high number of generated mutants and
thus reduce the effort. Therefore, we further try to run the
research and, together with the people involved in Javalanche
development, come with a solution.

We have to mention that on small and simple projects,
i.e., no more than 200 lines of code and which have the test
sets in the same project as the mutated classes, we were able
to configure and successfully use with success Jumble and
Javalanche.

In what follows, we briefly describe the experience
recorded for configuring and running the mutation tools we
have used in this paper. We denote by ToolConfig, i.e., tool
configuration, the knowledge accumulated when configuring
all the paths; by MutGen we present the mutants generation
step and by RunningTC the observations when running the
mutants.

1) MuJava
• ToolConfig: The graphical user interface, but also

the command line version, are intuitive and easy
to use.

• MutGen: The tool must have access to the class
files corresponding to each file to be mutated;
also, the user can select which mutation operators
to apply, both from the set of traditional mutants
and also from the class level ones.

• RunningTC: MuJava requires the tests to have
the nullary constructor. Also, the methods setUp()
and tearDown() must have public access (default
is protected). This was time consuming, as we
had to update all the test classes with the nullary
constructor and the public access for the two
methods.
Both for generating the mutants and then running
them it takes a lot of time. A solution may be the
integration into an ant script, which is to be run
on a monthly basis without any user interaction.

2) Jumble
• ToolConfig: A readme.txt file is available, where

the steps to take are quite easy to follow. Never-
theless, after following the instructions and setting
the classpath, we were not able to derive a running
configuration.

• MutGen: We were not able to get any mutants,
due to execution errors.

• RunningTC: Not reachable.
3) Javalanche

• ToolConfig: The javalanche.xml file has to be
copied to the current user directory, where it is
located the project to be mutated. Then an easy
configuration follows, i.e., change the paths to the
installation folder and for the working project into
the xml file.

• MutGen: Javalanche instruments the byte code
and then needs to take control over the test
execution. For test execution Javlanche relies on
JUnit test suites. If a test suite is not supplied,
Javalanche just mutates the code, but it can not

43

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

take over the control of the test execution.
• RunningTC: We did not manage to reach this

step.
Regarding the two coverage tools we have used, we found

it easy to setup and integrate them into a daily ant script,
but also as an Eclipse plug-in (both Clover and EclEmma
can be used as Eclipse plug-ins).

IV. RELATED RESEARCH

As mutation testing has proven to be an efficient technique
in assessing the quality of the test pool, the attention was
focused on whether or not mutation can be used in large
scale software applications. In [4], the authors try to answer
this problem by running mutation testing over a set of
software programs, written in C language, each the size of
more than 200 lines of code, and with a large pool of test
cases. All the programs had available a pool of faults. The
authors were able to show that, when carefully used, the
mutation testing technique can provide good results in fault
detection.

In [31], the authors proposed a new mutation testing tool,
developed in Java and AspectJ for Java programs. They run
a research study on real-world open source Java projects,
randomly selected, and compare the results with Jumble and
MuJava.

What distinguishes our work from the previous ones,
is the fact that we take a huge, well known and widely
used software project, i.e., Eclipse, and start to record
different software metrics. The most important of them is the
mutation score metric. For Eclipse we can track the faults
database and therefore derive a realistic and practical report
of the mutation testing technique, together with other quality
software metrics, in order to depict real software bugs. One
of the work we report to is the research conducted by Zeller
[32].

V. CONCLUSION

Mutation testing is an efficient method to detect errors
inside the software projects. Unfortunately, the available
open source mutation testing tools we have used so far in
our research work, have proven to take a lot of time in order
to derive all the configuration settings. Although mutation
testing can assist in revealing many errors, not all of them
represent real actual software failures. The problems mostly
encountered with this technique are the complexity to derive
the process (as higher the number of generated mutants is, as
higher the computation time) and also the equivalent mutant
problem.

Each of the above described mutation tools requires
different configuration settings. The time effort we have
invested just in configuring each tool and then deriving the
entire mutation testing technique is now of several months.
From the results obtained during the research work, we
state that mutation can be regarded as a good software

quality metric, but special attention should be given to the
drawbacks presented above and, also, to the total amount
of time. Meanwhile, setting up the configuration and then
running the code coverage tools has proven to be easy to
conduct. Based on other previous works, we compare the
results given by code coverage with the ones obtained from
the mutation testing process.

Through this current research work we start a study, trying
to answer the title question: is Mutation Testing Scalable for
Real-World Software Projects?. We aim to further develop
this work, trying also to benefit from the advantage offered
by Javalanche: equivalent mutant detection.

ACKNOWLEDGMENT

The research herein is partially conducted within the
competence network Softnet Austria II (www.soft-net.at,
COMET K-Projekt) and funded by the Austrian Federal
Ministry of Economy, Family and Youth (bmwfj), the
province of Styria, the Steirische Wirtschaftsfrderungsge-
sellschaft mbH. (SFG), and the city of Vienna in terms of
the center for innovation and technology (ZIT).

REFERENCES

[1] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin,
“Using Mutation Analysis for Assessing and Comparing
Testing Coverage Criteria,” vol. 32, no. 8, August 2006, pp.
608–624.

[2] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Program
Mutation: A New Approach to Program Testing,” in Infotech
State of the Art Report, Software Testing, 1979, pp. 107–126.

[3] Y.S.Ma, J. Offutt, and Y. R. Kwon, “MuJava : An Automated
Class Mutation System,” vol. 15, 2005, pp. 97–133.

[4] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is Mutation an
Appropriate Tool for Testing Experiments?” in Proceedings
of the 27th International Conference on Software Engineering
(ICSE’05), St Louis, Missouri, 15-21 May 2005, pp. 402–411.

[5] A. J. Offutt, “A Practical System for Mutation Testing: Help
for the Common Programmer,” in Proceedings of the IEEE
International Test Conference on TEST: The Next 25 Years,
2-6 October 1994, pp. 824–830.

[6] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur, “Inter-
face Mutation: An Approach for Integration Testing,” vol. 27,
no. 3, 2001, pp. 228–247.

[7] U. Praphamontripong and A. J. Offutt, “Applying Mutation
Testing to Web Applications,” in Proceedings of the 5th In-
ternational Workshop on Mutation Analysis (MUTATION’10),
Paris, France, 6 April 2010, pp. 132–141.

[8] W. Krenn and B. Aichernig, “Test Case Generation by Con-
tract Mutation in Spec#,” in Proceedings of Fifth Workshop
on Model Based Testing (MBT’09), York, UK, March 2009,
pp. 71–86.

44

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

[9] S. C. P. F. Fabbri, J. C. Maldonado, T. Sugeta, and P. C.
Masiero, “Mutation Testing Applied to Validate Specifica-
tions Based on Statecharts,” in Proceedings of the 10th
International Symposium on Software Reliability Engineering
(ISSRE’99), Boca Raton, Florida, 1-4 November 1999, pp.
210 –219.

[10] V. Okun, “Specification Mutation for Test Generation and
Analysis,” PhD Thesis, University of Maryland Baltimore
County, Baltimore, Maryland, 2004.

[11] W. Ding, “Using Mutation to Generate Tests from Specifica-
tions,” Master Thesis, George Mason University, Fairfax, VA,
2000.

[12] B. J. Choi, R. A. DeMillo, E. W. Krauser, R. J. Martin,
A. P. Mathur, A. J. Offutt, H. Pan, and E. H. Spafford, “The
Mothra Tool Set,” in Proceedings of the 22nd Annual Hawaii
International Conference on System Sciences (HICSS’22), 3-6
January 1989, pp. 275–284.

[13] K. N. King and A. J. Offutt, “A Fortran Language System
for Mutation-Based Software Testing,” vol. 21, no. 7, October
1991, pp. 685–718.

[14] Y. Ma, A. J. Offutt, and Y. Kwon, “MuJava: a Mutation
System for Java,” in Proceedings of the 28th international
Conference on Software Engineering (ICSE ’06), Shanghai,
China, 20-28 May 2006, pp. 827–830.

[15] D. Schuler and A. Zeller, “Javalanche: Efficient Mutation
Testing for Java,” in Proceedings of the 7th joint meeting
of the European Software Engineering Conference and the
International Symposium on Foundations of Software Engi-
neering, Amsterdam, Netherlands, 24-28 August 2009, pp.
297–298.

[16] S. A. Irvine, T. Pavlinic, L. Trigg, J. G. Cleary, S. J.
Inglis, and M. Utting, “Jumble Java Byte Code to Measure
the Effectiveness of Unit Tests,” in Proceedings of the 3rd
Workshop on Mutation Analysis (MUTATION’07), Windsor,
UK, 10-14 September 2007, pp. 169–175.

[17] I. Moore, “Jester - a JUnit test tester,” in Proceeding of
eXtreme Programming Conference (XP’01), 2001.

[18] PIT Mutation Testing, “http://pitest.org/,” 2011.

[19] A. Derezinska and A. Szustek, “CREAM- A System for
Object-Oriented Mutation of C# Programs,” Warsaw Uni-
versity of Technology, Warszawa, Poland, Technical Report,
2007.

[20] Nester, “http://nester.sourceforge.net/,” 2011.

[21] Y. Jia and M. Harman, “MILU: A Customizable, Runtime-
Optimized Higher Order Mutation Testing Tool for the Full
C Language,” in Proceedings of the 3rd Testing: Academic
and Industrial Conference Practice and Research Techniques
(TAIC PART’08), Windsor, UK, 29-31 August 2008, pp. 94–
98.

[22] J. Tuya, M. J. S. Cabal, and C. de la Riva, “SQLMutation:
A Tool to Generate Mutants of SQL Database Queries,”
in Proceedings of the 2nd Workshop on Mutation Analysis
(MUTATION’06), Raleigh, North Carolina, November 2006,
p. 1.

[23] Eclipse, “:pserver:anonymous@dev.eclipse.org:/cvsroot/eclipse,”
2011.

[24] M. D. Site, “http://cs.gmu.edu/∼offutt/mujava/,” 2011.

[25] Jumble, “http://jumble.sourceforge.net/,” 2011.

[26] Javalanche, “http://www.st.cs.uni-saarland.de/∼schuler/
javalanche/download.html,” 2011.

[27] Clover, “http://www.atlassian.com/software/clover/,” 2011.

[28] EclEmma, “http://www.eclemma.org/,” 2011.

[29] D. Schuler and A. Zeller, “(Un-)Covering Equivalent Mu-
tants,” in ICST ’10: Proceedings of the 3rd International
Conference on Software Testing, Verification and Validation.
IEEE Computer Society, April 2010, pp. 45–54.

[30] JDT, “http://www.eclipse.org/jdt/,” 2011.

[31] L. Madeyski and N. Radyk, “Judy a mutation testing tool
for java.”

[32] R. Premraj and A. Zeller, “Predicting Defects for Eclipse,” in
Proceedings of the Third International Workshop on Predictor
Models in Software Engineering, ser. PROMISE ’07, 2007,
p. 9.

45

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

http://cs.gmu.edu/~offutt/mujava/
http://www.st.cs.uni-saarland.de/~schuler/javalanche/download.html
http://www.st.cs.uni-saarland.de/~schuler/javalanche/download.html

	Introduction
	Environment Setting
	Environment Configuration
	Applied Mutation Tools

	Results
	Research Procedure
	Time
	Mutation Results
	Encountered Issues

	Related research
	Conclusion
	References

