
Testing As A Service for Component-based Developments

Hien Le
Department of Telematics

Norwegian University of Science and Technology
hiennam@item.ntnu.no

Abstract— In this paper, we present an approach to model testing
as a service for component-based development. The approach is
based on the Service-oriented Architecture in which testing
services are modeled using UML collaboration structure to
support the validation of components. We categorize two types of
components: elementary and composite. Elementary components
are non-decomposable and reusable computing units. Composite
components are developed by composing existing components,
which can either be elementary or composite ones. Our main
contributions presented in this paper are: (1) to provide an
approach for modeling component testing as a service; and (2) to
provide a constructive mechanism for composing testing services.
In this paper, testing services for railway control system will be
used to illustrate our approach.

Keywords – software components; component testing; testing as
a service

I. INTRODUCTION

A component, in general, may be defined as a reusable
software or computing unit [1], which is designed to partially
or fully perform specific functionalities invoking through
component interfaces. The reusable components are normally
verified, validated and stored in a repository. Component-based
development is a software development approach in which new
components are developed by composing existing components
retrieved from the component repository [2] to satisfy new
requirements. By this approach, on the one hand, new
components and software systems can be rapidly developed [3,
4] while reducing development efforts and costs. On the other
hand, however, there are many challenges, for examples, how
to ensure that these newly developed components do not posse
any unusual behaviors [7, 8, 10] while fulfill the requirements.

Component verification and validation are software
development activities whose aim is to ensure that newly
created components fulfill the requirements without
introducing any emerging or unexpected behaviors [7, 10]. In
this paper, an approach to model testing as a service to support
the component validation, also known as component testing to
guarantee that the component fulfills its expected
functionalities when performing in the intended environment
[12], is presented. The approach is based on the Service-
oriented Architecture in which testing services are modeled and
composed using UML collaboration structure to support the
validation of components.

As shown in Figure 1, the ComponentUnderTest represents
the service clients, which are newly developed components.
These components must be validated. TestingServiceProvider

plays the role of the service providers, i.e., providing
simulation environments and testing suites for validating the
new components. TestingServiceRegistry is where the
descriptions of testing services are published so that they can
be found by the service clients, i.e., the Component Under Test.
When a suitable testing service has been matched with the
testing requirements of the new components, the validation
process (refereed as testing process in this paper) for these new
components can be carried out. The testing process, which is
modeled and deployed as a service, emphasizes that testing
services are independently developed from the component-
based development view; and newly testing services can be
developed by composing existing testing services in the same
manner as service composition [9]. However, to be able to
apply the Service-oriented approach for supporting component
testing, we must answer two questions: (1) how to model
testing as a service; and (2) how to compose testing services,
i.e., constructing new testing services as a composition of
existing ones. In this paper, we focus our discussion on these
two issues.

Figure 1: SOA for testing services

In the following discussion, we categorize two types of

components: elementary and composite components.
Elementary components are the ones which can not be
decomposed further. Composite components are composed
from existing components, which can be either elementary or
composite one. Normally, an elementary component is first
designed, verified and validated and stored in a repository to be
re-used [4]. The validation of components is ensured by
applying test suites to the component interfaces in a simulation
environment [11].

The rest of the paper is organized as follows. Related work
is discussed in Section II. Section III presents the modeling
approach which is based on UML collaboration structure to
model testing as a service. Section IV discusses how to create
new testing services by service compositions. Conclusion and
future works are given in Section V. A railway control system
which is built by component-based development approach will

46

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

be used to illustrate the applicability of our testing service
modeling approach.

II. RELATED WORK

In this section, we discuss the related work on modeling
testing as a service for components and how to compose testing
services. To our knowledge, there are many approaches that
support the validation of elementary components [13, 14].
However, the current research which focuses on validating of
composite components is very limited [7, 8]. These existing
approaches mainly focus on testing specification [14],
generating test cases for component testing [7] or performance
[11, 13]. Furthermore, these testing approaches do not
differentiate the different between elementary and composite
components. In [11], a testing method which utilizes the
Service-oriented architecture to support testing of complex and
safety-critical systems is presented. However, this testing
approach focuses on the distribution and performance of testing
process, e.g., distributed testing among testing hosts, rather
than how to model testing as a service. Existing approaches for
designing test suites of elementary components may not be
applicable to composite components due to, for example, the
new dependencies between sub-components which are the
results of composed behaviors of components. Furthermore,
the question of how to re-use the test suites or simulation
environments, which have been used to validate the elementary
components, in the new testing services for composite
components may not be fully addressed.

In our recent research [15], a service can be defined as “an
identified functionality aiming to establish some desired effects
among collaborating entities”. We have also shown that, based
on the collaborative service models, reusable components can
be automatically synthesized and such components can then be
composed together [16]. Based on this approach, we argue that
testing can also be modeled as a service, whose desired goal is
to validate the behavior of components, i.e., the two
collaborating entities are the component under test and the
testing component. From the service models and choreography
models of testing services, testing components will be
generated and deployed for testing process. Our approach
presented in this paper does not focus on issues related to
generate test suites for component testing or testing
specification (e.g., TTCN-3 [14]), but contributes to modeling
testing as a service at abstraction level and to support
composition of testing services. This way, the testing of
components can be specified at the early phase in the
component development lifecycle [2].

III. MODELING TESTING AS A SERVICE

In this section, we first present a railway control system,
which is built using a component-based development approach.
Second, we will discuss how to model testing as a service for
component testing.

A. Train control scenario

Figure 2 shows the overview of the train control system,
which is modelled using UML collaboration structure. The
operation of the train control system is described as follows.
While moving in a geographical region, a Train must always

be supervised by the Train Controller Center (TCC). The TCC
responsibility is to monitor and control all train movements in a
region.

• The train position on the railway track system is always
monitored by the TCC. The train, while moving, keeps
sending its position report to the TCC. This is modeled as
collaboration activity between the Train and the TCC (i.e.,
the PositionReport collaboration shown in Figure 2).

• The TCC validates the received position information of the
train and will issue successive movement authorities (MA)
to the train. The MA specifies a safe distance that the train
can travel. This is modeled by the Movement Authority
collaboration.

Figure 2: Collaboration structure of the train control system

Based on the collaboration models, the service models and
the behavior models of the train control system will be
developed and finally the components of the train control
system will be synthesized [15, 16]. Figure 3 shows the
architecture overview of components of the train control
system. The train control system will have the following
components.

• The Position Report component, which is a sub-
component of the TrainMovementControl component,
reads the location of the train from the external
environments, i.e., location indicator installed on the
railway tracks [5], and sends this information to the TCC
component at the control center.

• The Movement Authority component handles the
movement authority, which is send by the TCC to the
train. The Position Report and the Movement Authority
components also collaborate to ensure that the train will
not travel beyond the safe distance.

Train Movement Control

Position

Report

Movement

Authority

PR

MA

Train

Control

Center

PR

MA

Figure 3: Component view of the train control system

47

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

In order to validate the behavior of the
TrainMovementControl component, which is composed from
the PositionReport and MovementAuthority components, the
developer must carry out the following component testing:

• Testing of sub-components: in this case, both the Position
Report and Movement Authority components must be fully
tested. The testing of sub-components may in addition
require several simulation modules or components [11]
which represent the external environments, e.g., location
indicators on the railway track systems.

• Testing of the composite component: in this case, the
behavior of the composite TrainMovementControl
component must be verified and validated. In order to
validate the TrainMovementControl component, the TCC
counterpart must be available. By our approach to model
testing as a service, the corresponding TCC will be
replaced by a testing component, whose behavior is
equivalent to the real TCC component (i.e., the
TrainControlCenter component as shown in Figure 3)
during the testing process.

In order to support the testing process, a testing service for
components must first be modeled and developed. Next, we
present the approach to model testing as a service for
components.

B. Testing service for components

The objective of the testing service for components is to
support the validation of components at the early stage of
development, i.e., design step. Our testing service is based on
the concepts of services in which services are defined as a
collaboration activity among entities to achieve service goals
[6, 15]. Figure 4 shows the basic service structures of the
testing service for components.

As shown in Figure 4, the testing service has two main
structures, which are specified based on the UML collaboration
structure [5], Simulating and Inspecting. The objective of the
Simulating is to provide a structural view if the component
under test (CUT) requires additional simulation modules. The
Component role represents the component under test (CUT),
and the EnvSimulator represents the simulation environment
which is required so that thorough test on the component can
be performed. The Inspecting structure presents the actual
testing activity applied on the component, i.e., test suites
execution via the Inspector role.

Figure 4: Testing service structures for components

Figure 5 shows the structure of the Testing Service, which
is the composition of the two testing services, i.e., the Testing
Service is the composition of Simulating and Inspecting. The
Testing Service collaboration includes two main roles: the
ComponentUnderTest (CUT) role and the Tester role. When
the testing is performed, the role ComponentUnderTest will be

dynamically binding to the actual component which will be
tested. The main operation of the Tester role is to play the role
of the testing component which includes the environment
simulator (i.e., EnvSimulator role) and generated test suites,
i.e., to submit test cases to the ComponentUnderTest via the
Inspector role in an intended operation environment. In other
words, the Tester will implement the interface of the
complement testing component. Based on this model, we can
identify the structure and specify the test services which take
into account the correlation between the required simulation
modules and test cases executors.

Figure 5: Test model for components

Figure 6(a) illustrates how the Testing Service is applied for
testing the Position Report component. The role CUT of the
Testing Service will be performed by the Position Report
component, and the Tester role will be executed by the
PR_Tester component, whose functionalities includes both the
environment simulation and inspector. Figure 6(b) shows the
involved components in the testing process: the Position
Report is the developed component, and the PR_Tester
component is synthesized from the testing service model.

(a)

(b)

Figure 6: Testing service for Position Report component

IV. COMPOSITION OF TESTING SERVICES

In this section, we present our approach to create testing
services which are applied to composite components. In this
approach, we discuss an integrated testing service to generate
required composite testing services which are composed based
on the existing testing services (i.e., of existing components).
To simplify our discussion without losing the general
discussion details, we assume that all the sub-components of
the train control systems have been verified and validated.

Train

Movement

Control

TCC

PositionReport

MovementAuthority

Figure 7: Composite component testing

48

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

A. Integrating testing services for composite components

As described in Section III, based on the information of the
position of the train, the TCC will issue movement authority to
the train so that the train can safely continue to travel. This
means that, for testing the composite component
TrainMovementControl, the Tester role now will be performed
by the composite testing component TCC which includes both
PR_Tester and MA_Tester roles (as shown in Figure 7). In
other words, the output of the PR_Tester testing will be
validated before the testing of movement authority
functionality, i.e., the MA_Tester, can be performed. In order to
handle the dependency of testing services, we propose an
Integrating Test Service which provides a mechanism so that
the two sub-roles of the Tester, i.e., PR_Tester and MA_Tester,
can collaborate. The structural model of the Integrating Test
Service is shown in Figure 8(a). There are two main roles:
outTester and inTester which perform the sending results from
the previous testing service, i.e., testing of the Position Report
component, and initiating the next testing service, i.e., testing
of the Movement Authority component.

:outTester :inTester

Integrating Testing Service

(a)

(b)

Figure 8: Integrating testing service for Train Movement Control component

Figure 8(b) shows how the Integrating Testing Service is
re-used and composed to the composite testing service,
explained as follows:

• The pr:TestingService collaboration is the original testing
service for the Position Report component and involves
two roles CUT and Tester.

• The ma:TestingService collaboration is the original testing
service of the Movement Authority component and
involves two roles CUT and Tester.

• The IntegratingTestingService is re-used to integrate the
two existing testing services pr:TestingService and
ma:TestingService. In this situation, the role outTester and
inTester is binding to the PR_Tester and MA_Tester,
respectively.

There are several advantages of our Integrating Testing
Service. First, the testing service provides a flexible mechanism
to support the integration of testing services which have been
applied to existing components. Second, the integrating test
service focuses on describing the integration of testing services
at the design stages while components are being developed.
This ways, the testing of composite component can be early
specified and carried out.

B. Realization and deployment of testing services

The Integrating Testing Service provides a mechanism for

composing testing services for composite components. This
testing service can be deployed in either centralized or
distributed testing systems. For example, a centralized testing
system can be deployed if both outTester and inTester roles
are realized, i.e., implemented, as testing sub-components of
the Tester component. In other words, the Tester will now
perform both PR_Tester and MA_Tester roles. Figure 9
illustrates a distributed testing scenario in which the sub-
components Position Report and Movement Authority are
tested in different systems. In this case, both the distributed
testing sub-components PR_Tester and MA_Tester must
implement the Integrating Testing Service interface, i.e.,
outTester and inTester roles, respectively.

Figure 9: Distributed testing scenario

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an approach to model
testing as a service for component-based development
approach. An Integrating Testing Service which supports the
composition of testing services, i.e., to support the integration
and re-usability testing services of existing components, is also
presented. This ways, new testing services for composite
components can be quickly composed and deployed in either
centralized or distributed testing systems.

In future work, we plan to further using the Model-Driven
Development approach to automatically synthesize the testing
components. A full testing framework, which includes both
service models [15] and component-based approach [16], can
be developed to dynamically discover and compose for testing
of composite components.

REFERENCES

[1] Clemens Szyperski. Component Software: Beyond Object- Oriented

Programming. Addison-Wesley Longman Publish- ing Co., Inc., Boston,
MA, USA, 2002.

49

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

[2] Ivica Crnkovic, Stig Larsson, and Michel R. V. Chaudron. Component-
based Development Process and Component Lifecycle. CIT 13(4), 321-
327, 2005.

[3] Jisa Dan Laurentiu. Component based development methods:
comparison, Computer systems and technologies, 1-6, 2004.

[4] Kung-Kiu Lau and Zheng Wang. Software Component Models. IEEE
Trans. Software Eng. 33(10): 709-724, 2007.

[5] Surya Bahadur Kathayat, Rolv Bræk, and Hien Le. Automatic derivation
of components from choreographies - a case study. International
conference on Software Engineering, 2010.

[6] Surya Bahadur Kathayat and Rolv Bræk. From flow- global
choreography to component types. In System Analysis and Modeling
(SAM), LNCS 6598, 2010.

[7] Camila Ribeiro Rocha and Eliane Martins. A Method for Model Based
Test Harness Generation for Component Testing. 14(1): Journal of the
Brazilian Computer Society (JBCS), 7-23, 2008.

[8] Gerardo Padilla, Carlos Montes de Oca, and Cuauhtemoc Lemus Olalde.
An Execution-Level Component Composition Model Based on
Component Testing Information. 10th International Symposium on
Component-Based Software Engineering, 2007.

[9] Surya Bahadur Kathayat, Hien Le, and Rolv Bræk. A Model-Driven
Framework for Component-based Development, SDL forum 2011 (to
appear).

[10] Jerry Gao and Ming-Shih Shih. A Component Testability Model for
Verification and Measurement. International Computer Software and
Applications Conference (COMPSAC), 2005.

[11] Renato Donini, Stefano Marrone, Nicola Mazzocca, Antonio Orazzo,
Domenico Papa, and Salvatore Venticinque. Testing Complex Safety-
Critical Systems in SOA Context. International Conference on Complex,
Intelligent and Software Intensive Systems (CISIS), 2008.

[12] 7CMU/SEI-2000-TR-028, CMMISM for Systems Engineering/Software
Engineering, Version 1.02, Software Engineering Institute, 2000.

[13] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov, and
George Candea. Cloud9: a software testing service. Operating Systems
Review 43(4), 5-10, 2009.

[14] Bernard Stepien, Liam Peyton, and Pulei Xiong. Framework testing of
web applications using TTCN-3. Journal on Software Tools for
Technology Transfer (STTT), 10(4), 371-381, 2008.

[15] Surya Bahadur Kathayat, Hien Le and Rolv Bræk. Collaboration-based
Model-Driven Approach for Business Service Composition. Book
chapter in Handbook of Research on E-Business Standards and
Protocols: Documents, Data and Advanced Web Technologies, Ejub
Kajan, Frank-Dieter Dorloff, Ivan Bedini, IGI, 2011 (to appear).

[16] Surya Bahadur Kathayat, Hien Le and Rolv Bræk. A Model-Driven
Framework for Component-based Development, SDL 2011 (to appear).

50

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

