VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Testing As A Service for Component-based Developgaen

Hien Le
Department of Telematics
Norwegian University of Science and Technology
hiennam@item.ntnu.no

Abstract— In this paper, we present an approach to model sting
as a service for component-based development. Thepapach is
based on the Service-oriented Architecture in whichtesting
services are modeled using UML collaboration struetre to
support the validation of components. We categorizewo types of
components: elementary and composite. Elementary cqronents
are non-decomposable and reusable computing unit€omposite
components are developed by composing existing cooments,
which can either be elementary or composite ones.ud main
contributions presented in this paper are: (1) to povide an
approach for modeling component testing as a seng¢and (2) to
provide a constructive mechanism for composing teisig services.
In this paper, testing services for railway controlsystem will be
used to illustrate our approach.

Keywords — software components; component testsging as
a service

l. INTRODUCTION

plays the role of the service providers, i.e., [ing
simulation environments and testing suites fordating the
new components. TestingServiceRegistryis where the
descriptions of testing services are publishedhst they can
be found by the service clients, i.e., @mponent Under Test
When a suitable testing service has been matchéd the
testing requirements of the new components, thelat&n
process (refereed as testing process in this papetese new
components can be carried out. The testing proegssh is
modeled and deployed as a service, emphasizedettiig
services are independently developed from the comente
based development view; and newly testing serviaes be
developed by composing existing testing servicethénsame
manner as service composition [9]. However, to bk do
apply the Service-oriented approach for supportioigponent
testing, we must answer two questions: (1) howmntdel
testing as a service; and (2) how to compose testmvices,
i.e., constructing new testing services as a coitiposof
existing ones. In this paper, we focus our disaussin these

A component, in general, may be defined as a réaisabyyg issues.

software or computing unit [1], which is designedpartially
or fully perform specific functionalities invokindghrough
component interfaces. The reusable components areally
verified, validated and stored in a repository. @oment-based
development is a software development approachiohanew
components are developed by composing existing oaes
retrieved from the component repository [2] to Sfgtinew

requirements. By this approach, on the one handy ne

components and software systems can be rapidiyiajme |3,
4] while reducing development efforts and costs.tlmother
hand, however, there are many challenges, for ebesmpow
to ensure that these newly developed component®tposse
any unusual behaviors [7, 8, 10] while fulfill theguirements.

development activities whose aim is to ensure thawly
created components fulfil the requirements
introducing any emerging or unexpected behaviordl(]. In
this paper, an approach to model testing as aceetwisupport
the component validation, also known as comporesting to
guarantee that the component fulfills its
functionalities when performing in the intended ieowment
[12], is presented. The approach is based on theicBe
oriented Architecture in which testing servicesmmeled and
composed using UML collaboration structure to supploe
validation of components.

As shown in Figure 1, th€omponentUnderTesepresents
the service clients, which are newly developed caomepts.
These components must be validat€dstingServiceProvider

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

Testing
Service
Registry

Find Publish

Component
UnderTest

Figure 1: SOA for testing services

Testing
Service
Provider

Testing

In the following discussion, we categorize two typef
components: elementary and composite

decomposed further. Composite components are cadpos

withoutfrom existing components, which can be either elgary or

composite one. Normally, an elementary componerfirss
designed, verified and validated and stored irpasiory to be
re-used [4]. The validation of components is emduby

eXriliafitedapplying test suites to the component interfaces simulation

environment [11].

The rest of the paper is organized as follows. tedlavork
is discussed in Section Il. Section Ill presents thodeling
approach which is based on UML collaboration stmectto
model testing as a service. Section IV discussestbccreate
new testing services by service compositions. Gmi@h and
future works are given in Section V. A railway cantsystem
which is built by component-based development agograwill

46

- S components.
Component verification and validation are softwareglementary components are the ones which can not be

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

be used to illustrate the applicability of our tegtservice
modeling approach.

In this section, we discuss the related work on elind
testing as a service for components and how to osmfesting
services. To our knowledge, there are many appesatimat
support the validation of elementary components, [143].
However, the current research which focuses ordattig of
composite components is very limited [7, 8]. Thesésting
approaches mainly focus on testing specificatiord],[1
generating test cases for component testing [plediormance
[11, 13]. Furthermore, these testing approaches ndo
differentiate the different between elementary a&ondhposite
components. In [11], a testing method which utdizéhe
Service-oriented architecture to support testingashplex and
safety-critical systems is presented. However, tigisting
approach focuses on the distribution and performanftesting
process, e.g., distributed testing among testingtshaather
than how to model testing as a service. Existing@gches for
designing test suites of elementary components nwmybe
applicable to composite components due to, for @kanthe

RELATED WORK

new dependencies between sub-components which hare t

results of composed behaviors of components. Funibre,
the question of how to re-use the test suites mulsition
environments, which have been used to validatelgmentary
components, in the new testing services for conbposi
components may not be fully addressed.

In our recent research [15], a service can be eéfas an
identified functionality aiming to establish sonesied effects
among collaborating entiti€&sWe have also shown that, based
on the collaborative service models, reusable compis can
be automatically synthesized and such componentshem be
composed together [16]. Based on this approactargee that
testing can also be modeled as a service, whosedempal is
to validate the behavior of components, i.e., theo t
collaborating entities are the component under &t the
testing component. From the service models andedgoaphy
models of testing services, testing components \uidl
generated and deployed for testing process. Ouroapp
presented in this paper does not focus on issuatedeto
generate test suites for component testing or ngpsti
specification (e.g., TTCN-3 [14]), but contribut@smodeling
testing as a service at abstraction level and tppat
composition of testing services. This way, the itgstof
components can be specified at the early phasehén t
component development lifecycle [2].

In this section, we first present a railway contsgktem,
which is built using a component-based developrapptoach.
Second, we will discuss how to model testing asraice for
component testing.

MODELING TESTING AS A SERVICE

A. Train control scenario

Figure 2 shows the overview of the train contradtemn,
which is modelled using UML collaboration structurehe
operation of the train control system is describsdfollows.
While moving in a geographical region,Taain must always

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

be supervised by thErain Controller Cente(TCC). The TCC
responsibility is to monitor and control all traimovements in a
region.

The train position on the railway track system lisags
monitored by theTCC The train, while moving, keeps
sending its position report to the TCC. This is &led as
collaboration activity between thigain and theTCC (i.e.,
the PositionReportollaboration shown in Figure 2).

The TCC validates the received position informatidthe
train and will issue successive movement authsr{fi¢A)
to the train. The MA specifies a safe distance thatrain
can travel. This is modeled by tidovement Authority
collaboration.

—_ - -

—

N
s e
e - \
/ { PositionReport ..

[TRa . Tcca \
\ :': 3| Tee /'
N\ TRm /lilrltr)vem:a;nl"\‘x\ _~“Tcem /

N ¥ -

4 Authority .~
~ T —~

—_—— e

Figure 2: Collaboration structure of the train cohsystem

Based on the collaboration models, the service taatel
the behavior models of the train control systeml voié
developed and finally the components of the traimtiwl
system will be synthesized [15, 16]. Figure 3 shahs
architecture overview of components of the traimtam
system. The train control system will have the daihg
components.

The Position Report component, which is a sub-
component of theTrainMovementControlcomponent,
reads the location of the train from the external
environments, i.e., location indicator installed ¢me
railway tracks [5], and sends this information ke TCC
component at the control center.

The Movement Authority component handles the
movement authority, which is send by tR€C to the
train. The Position Reportand theMovement Authority
components also collaborate to ensure that the Wil
not travel beyond the safe distance.

£]

Train Movement Control

Position g]
Report

PR

]

Train
Control
Center

Movement‘%:‘

N]
Authority 1 MA

Figure 3: Component view of the train control syste

47

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

In order to \validate the behavior of the dynamically binding to the actual component whichl e
TrainMovementControtomponent, which is composed from tested. The main operation of tiiesterrole is to play the role
the PositionReportand MovementAuthoriticomponents, the of the testing component which includes the envirent

developer must carry out the following componestiitg:

Testing of sub-components: in this case, bothPbsition
ReportandMovement Authoritgomponents must be fully
tested. The testing of sub-components may in aaditi
require several simulation modules or component§ [1
which represent the external environments, e.gation
indicators on the railway track systems.

Testing of the composite component: in this cabe, t
behavior of the composite TrainMovementControl
component must be verified and validated. In ortber
validate theTrainMovementControtomponent, th&CC
counterpart must be available. By our approach adeh
testing as a service, the correspondinGC will be

replaced by a testing component, whose behavior is

equivalent to the realTCC component (i.e., the
TrainControlCentercomponent as shown in Figure 3)
during the testing process.

In order to support the testing process, a testergice for
components must first be modeled and developedt, Nex
present the approach to model testing as a serface
components.

B. Testing service for components

The objective of the testing service for componéstto
support the validation of components at the eathges of
development, i.e., design step. Our testing sengidesed on
the concepts of services in which services arenddfias a
collaboration activity among entities to achieveviee goals
[6, 15]. Figure 4 shows the basic service strusturé the
testing service for components.

As shown in Figure 4, the testing service has twainm
structures, which are specified based on the UMlalooration
structure [5],Simulatingand Inspecting The objective of the
Simulatingis to provide a structural view if the component
under test (CUT) requires additional simulation mied. The

Componentole represents the component under test (CUT),

and theEnvSimulatorrepresents the simulation environment
which is required so that thorough test on the comept can
be performed. Thdnspecting structure presents the actual
testing activity applied on the component, i.est tsuites
execution via thénspectorole.

""" Inspecting ...
! ‘ Component ’—‘ Inspector ‘

Figure 4: Testing service structures for components

Figure 5 shows the structure of thiesting Servigewhich
is the composition of the two testing services, tle Testing
Serviceis the composition oSimulatingand Inspecting The
Testing Servicecollaboration includes two main roles: the
ComponentUnderTegCUT) role and theTesterrole. When
the testing is performed, the radlmmponentUnderTestill be

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

simulator (i.e.,EnvSimulatorrole) and generated test suites,
i.e., to submit test cases to tG@mponentUnderTestia the
Inspectorrole in an intended operation environment. In othe
words, the Tester will implement the interface of the
complement testing component. Based on this medelcan
identify the structure and specify the test sewviahich take
into account the correlation between the requireduigtion
modules and test cases executors.

Componeﬂpl«’: izInspecting

-~ Inspector

\::: ‘j

N EnvSimulator

Figure 5: Test model for components

Figure 6(a) illustrates how thiesting Services applied for
testing thePosition Reportcomponent. The rol€UT of the
Testing Servicewill be performed by thePosition Report
component, and th&ester role will be executed by the
PR_Testecomponent, whose functionalities includes both the
environment simulation and inspector. Figure 6{ves the
involved components in the testing process: Bwsition
Report is the developed component, and tRR_Tester
component is synthesized from the testing servicdah

H- ,,,{\ pr:TestingService

pr:Position
Report

Position = |
Report
(b)

Figure 6: Testing service for Position Report congra

V.

In this section, we present our approach to cresggng
services which are applied to composite componéntshis
approach, we discuss an integrated testing setoicenerate
required composite testing services which are caepdased
on the existing testing services (i.e., of existammponents).
To simplify our discussion without losing the gealer
discussion details, we assume that all the sub-ooegs of
the train control systems have been verified afidatzd.

t:PR_Tester

EnvSimPR

% PR_Tester E

PositionReport

COMPOSITION OF TESTING SERVICES

PositionReport
Train $j $j
Movement TCC
Control
MovementAuthority
Figure 7: Composite component testing
48

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

A. Integrating testing services for composite comptsen There are several advantages of dmeegrating Testing
As described in Section Ill, based on the inforovatf the Service First, the testing service provides a flexiblechenism
position of the train, th&CC will issue movement authority to O Support the integration of testing services Wtave been
the train so that the train can safely continudravel. This @pplied to existing components. Second, the integraest
means that, for testing the composite component€rvice focyses on descrlplng the integration stfng services
TrainMovementControlthe Tester role now will be performed &t the design stages while components are beinglafed.
by the composite testing compondi€C which includes both ~ TNiS ways, the testing of composite component caredrly
PR_Testerand MA_Testerroles (as shown in Figure 7). In SPecified and carried out.
other words, the output of thPR_Testertesting will be o])
validated before the testing of movement authorityB. Realization and deployment of testing services
functionality, i.e., theMA_Testercan be performed. In order to
handle the dependency of testing services, we peoEn The Integrating Testing Servicprovides a mechanism for
Integrating Test Servicehich provides a mechanism so that composing testing services for composite componeFss
the two sub-roles of theester i.e.,PR_TesteandMA_Testel testing service can be deployed in either cengdlior
can collaborate. The structural model of theegrating Test gisyriputed testing systems. For example, a cénémltesting
Serviceis shown in Figure 8(a). There are two main rolesgyqiom can be deployed if bottTesterand inTesterroles
outTesterandinTesterwhich perform the sending results from

. ; R : o are realized, i.e., implemented, as testing subpoovants of
the previous testing service, i.e., testing of Blosition Report ' ' ' .
component, and initiating the next testing serviee, testing the Tester component. In other words, thiesterwill now

of theMovement Authoritgomponent. perform both I_DR._Testerand. MA_Testgr rc_)les. .Figure 9

illustrates a distributed testing scenario in whitle sub-
componentsPosition Reportand Movement Authorityare
)) tested in different systems. In this case, bothdistributed
testing sub-component®R_Tester and MA_Tester must

\ [Couttester | implement theIntegrating Testing Servicenterface, i.e.,

outTesterandinTesterroles, respectively.

@ "
Position £ | PositionReport PR Tester%j]
— Report -

IntegratingTest

Movementgj

Authority MA_TesteE:‘

Train e e
Movement |~ CUT Tester'| PR_Tester

Control
CUT ,,,,,,,,,, < Figure 9: Distributed testing scenario

MovementAuthority

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an approach tcelmod
testing as a service for component-based develdpmen
approach. Anintegrating Testing Servicathich supports the
) . . o composition of testing services, i.e., to suppbet integration

Figure 8(b) shows how thimtegrating Testing Servics and re-usability testing services of existing comgnts, is also
re-used and composed to the composite testing C8ervi presented. This ways, new testing services for cisite
explained as follows: components can be quickly composed and deployesittier
centralized or distributed testing systems.

(b)

Figure 8: Integrating testing service for Train Mawent Control component

» The pr:TestingServiceollaboration is the original testing
service for thePosition Reportcomponent and involves In future work, we plan to further using the Modliven
two rolesCUT andTester Development approach to automatically synthesizetéisting

components. A full testing framework, which inclsdboth

service models [15] and component-based approa&jh ¢an
be developed to dynamically discover and composéekiing
of composite components.

* The IntegratingTestingServices re-used to integrate the
two existing testing servicegr:TestingService and REFERENCES
ma:TestingServicdn this situation, the roleutTesterand
inTester is binding to thePR_Testerand MA_Tester
respectively. (1

 Thema:TestingServiceollaboration is the original testing
service of the Movement Authoritycomponent and
involves two roleCUT andTester

Clemens Szyperski. Component Software: Beyond ®bjeciented
Programming. Addison-Wesley Longman Publish- ing, @w., Boston,
MA, USA, 2002.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7 49

(2

(3]
(4]
(5]

(6l

(7]

8l

[9]

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Ivica Crnkovic, Stig Larsson, and Michel R. V. CHaan. Component-
based Development Process and Component Lifec@tle13(4), 321-
327, 2005.

Jisa Dan Laurentiu. Component based developmenthaust
comparison, Computer systems and technologies20@8].

Kung-Kiu Lau and Zheng Wang. Software Component &edIEEE
Trans. Software Eng. 33(10): 709-724, 2007.

Surya Bahadur Kathayat, Rolv Braek, and Hien Leo/atic derivation
of components from choreographies - a case studternational
conference on Software Engineering, 2010.

Surya Bahadur Kathayat and Rolv Breek. From flow-obgl
choreography to component types. In System Analgsid Modeling
(SAM), LNCS 6598, 2010.

Camila Ribeiro Rocha and Eliane Martins. A Method Model Based
Test Harness Generation for Component Testing.)14¢lrnal of the
Brazilian Computer Society (JBCS), 7-23, 2008.

Gerardo Padilla, Carlos Montes de Oca, and Cuawtérmmus Olalde.
An Execution-Level Component Composition Model Bhsen

Component Testing Information. 10th Internationgimosium on
Component-Based Software Engineering, 2007.

Surya Bahadur Kathayat, Hien Le, and Rolv Braek. Adbl-Driven

Framework for Component-based Development, SDLnfo@011 (to
appear).

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Jerry Gao and Ming-Shih Shih. A Component Testigbillodel for
Verification and Measurement. International Compuseftware and
Applications Conference (COMPSAC), 2005.

Renato Donini, Stefano Marrone, Nicola MazzoccatoAio Orazzo,
Domenico Papa, and Salvatore Venticinque. Testiomlex Safety-
Critical Systems in SOA Context. International Gaehice on Complex,
Intelligent and Software Intensive Systems (CISEB)8.

7CMU/SEI-2000-TR-028, CMMISM for Systems EngineefiBoftware
Engineering, Version 1.02, Software Engineeringituiz, 2000.

Liviu Ciortea, Cristian Zamfir, Stefan Bucur, VialChipounov, and
George Candea. Cloud9: a software testing ser@perating Systems
Review 43(4), 5-10, 2009.

Bernard Stepien, Liam Peyton, and Pulei Xiong. FEanrk testing of
web applications using TTCN-3. Journal on Softwareols for
Technology Transfer (STTT), 10(4), 371-381, 2008.

Surya Bahadur Kathayat, Hien Le and Rolv Breek. dbaltation-based
Model-Driven Approach for Business Service Composit Book
chapter in Handbook of Research on E-Business 8&tdsdand
Protocols: Documents, Data and Advanced Web Teobied, Ejub
Kajan, Frank-Dieter Dorloff, Ivan Bedini, IGI, 20Xfo appear).

Surya Bahadur Kathayat, Hien Le and Rolv Braek. AdMdriven
Framework for Component-based Development, SDL Zilappear).

50

