
Retrospective Project Analysis Using the Expectation-Maximization Clustering
Algorithm

Steffen Herbold, Jens Grabowski, Stephan Waack
Institute of Computer Science

Georg-August-Universität Göttingen, Germany
Email: {herbold, grabowski, waack}@cs.uni-goettingen.de

Abstract—Schedule slips are often the reason for failed
projects or low-quality software. Therefore, investigation if a
project was on schedule is an important task when analyzing
software projects in retrospective. In this paper, we present
a data-driven approach for the retrospective determination of
project phases through a clustering algorithm. The analysis
is based on software metrics measured at different points of
time during the project execution. We will describe how the
data can be collected, prepared and analyzed. Our findings are
validated through a case study where we analyzed two large-
scale open-source projects. The results show that it is possible
to successfully identify the final phase of a project using our
approach.

Keywords-EM clustering, project analysis, repository mining

I. INTRODUCTION

One of the biggest challenges of software projects other
than the task at hand is the project plan. Often, time seems
too short and schedule slips occur, or features have to be
removed to remain on schedule with milestones and release
candidates. On the other hand, this can also cause developers
to ignore parts of the schedule, e.g., they add features after a
feature freeze, instead of focussing on stabilizing the project.
This increases the risk of producing low-quality software,
which will reduce costumer satisfaction and increase the
maintainance costs. It is the task of good software devel-
opment processes to prevent this. To improve the current
process, the retrospective analysis of past projects with
respect to their schedule is an important means. This is often
performed using experts intuition, based on tangible data
consciously and unconsciously taken into account. This can
include knowledge about the project environment as well
as information about the project itself, e.g., the size or the
number of unresolved bugs.

In our previous work [1], we have successfully used the
k-means algorithm [2] to identify feature freezes during a
project. The approach is based on software metric data about
the project’s milestones mined from the projects repository.
The contribution of this paper is an extension of this ap-
proach. First, we extend the points of time for the measure-
ment from milestones to arbritrary points of time t1, . . . , tn,
e.g., the milestones but also weekly measurements. This
allows steering of the coarseness of the analysis. For the

clustering, we propose the Expectation-Maximization (EM)
clustering algorithm [3], because it is more powerful than k-
means. The assumption of the approach is that metric values
are similar if they are measured during the same phase of a
project and different, if they are from different phases. For
that reason, we use clusters as indicators about the actual
project phases and when they changed.

The remainder of this paper is structured as follows. In
Section II, we introduce software metrics and discuss which
metrics we use and how we selected them. Afterwards,
in Section III, we explain the basic concept of the EM
clustering algorithm. Section IV discusses our methodology
for data collection, preparation, and analysis. In Section
V, we apply our approach in a case study. The results of
our work and the threats to its validity are discussed in
VI. Finally, Section VII concludes the paper and gives an
outlook on future work on this subject.

II. SOFTWARE METRICS

The first problem when analyzing software or software
projects is that software is an abstract and difficult to
grasp product. Software metrics are a means to describe the
abstract product software with numbers. The IEEE defines
software metrics as “the quantitative measure of the degree
to which a system, component, or process possesses a
given attribute” [4]. For our analysis, we need quantifiable
attributes of software development projects, which is exactly
what software metrics can provide.

We use a target-oriented approach for the selection of soft-
ware metrics, the Goal/Question/Metric (GQM) approach
[5], [6]. In this approach, first a goal that shall be achieved
is defined. Then, questions are formulated whose answer can
be used to achieve the goal. Finally, metrics that can answer
the questions are selected. This methodology ensures that
there is no ‘measurement for the sake of measurement’, but
that it is clear why the metric data is collected and how it
is used.

We applied the GQM approach to select metrics to achieve
our goal, the detection of project phases (Figure 1). We
defined two questions to evaluate the goal.

1) How large is the source code?
2) How many bugs are in the software?

58

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

Goal Questions Metrics

Detection of
Project Phases

How large is the
source code?

Lines of Code
(LOC)

How many bugs
are in the
software?

Number of Bugs
(BUG)

Number of Active
Bugs (ACTBUG)

Figure 1. GQM approach to select apropriate metrics.

The rational behind these questions is that we feel that
the most important features to determine the progress of a
project are the software’s size and its number of bugs. The
size determines how much of the software’s source code
is written and should increase continously as the projects
progresses. The number of bugs is an indicator for the
stability of a project. It should drop sharply at the end
of the project, as the focus switches from development to
stabilizing the project. For the first question, we selected
the metric Lines of Code (LOC) to measure the size of
the software. For the second question, we determined two
similar candidates: Number of Bugs (BUG) and Number of
Active Bugs (ACTBUG). The metric BUG measures how
many of the total number of bugs known about the software
at the end of the project are still open, i.e., have not yet been
fixed. The metric ACTBUG includes when a bug has been
reported, i.e., it does not measure the number of open bugs
with relation to the end of the project, but to the currently
known bugs. To our mind, one of these two metrics should
be sufficient, because it can be shown that a small number
of metrics often performs similar to larger sets [7]. As part
of the case studies we plan to investigate this further and
evaluate if either BUG or ACTBUG performs better than
the other.

III. THE EM ALGORITHM

To analyze the data, we use the EM clustering algorithm
[3], which belongs to the unsupervised learning algorithms.
Unsupervised means that no prior knowledge except the data
is used. In our case, this means that the algorithm does
not know when a data point has been measured and which
project phase it belongs to, only the metric data itself is
known. Clustering algorithms estimate the data sources that
created the data. In our case, the data sources are project
phases. The EM algorithm determines a mixture of gaussian
distributions that fits the data. This mixture is basically
a number of k gaussian distributions and each data point
“belongs” to the distribution which generated it with the
highest probability. Each of the distribitions defines a cluster,
i.e., a set of points that the algorithm determines to be
generated by the same data source. The points are assigned

to the clusters based on the likelyhood that the underlying
gaussian distribution generated the data point. The number
k of clusters is not fixed, but determined by the algorithm
itself.

The acronym EM stands for expectation maximization
and describes the two basic steps of the algorithm: 1)
calculate the expected likelihood of the current hypothesis;
2) determine a new hypothesis to maximize the likelihood.
Additional details of the algorithm can be found in [8].

IV. APPROACH

Our approach for the retrospective analysis of software
project consists of three phases: 1) data collection; 2) data
preparation; 3) data analysis.

A. Data Collection

We selected the metrics LOC, BUG, and ACTBUG for
the evaluation (see Section II). For the analysis, we need the
values of these metrics at regular points of time t1, . . . , tn
during the project. To collect the metric data in retrospective,
access to the software project’s repository is necessary.

Source code based metrics, like LOC, can be extracted
from a code versioning system, e.g., Concurrent Versions
System (CVS) [9], Subversion (SVN) [10] or Git [11].
These system allow the access to the whole history of the
source code. That way, the state of source code at the
times t1,, tn can be accessed. Once the source code
is available, we can measure the LOC with any software
measurement tool.

The metrics BUG and ACTBUG are gathered from bug-
tracking systems, e.g., Bugzilla [12]. Bugtracking systems
maintain all data related to bugs, i.e., when they were
discovered, in which versions of the software they are
present, the current state of the bug, a record or its state-
changes, and how it was resolved. Possible states of the bugs
are, e.g., OPEN and CLOSED: OPEN indicates that a bug
is reported and still being worked on; CLOSED means that
the bug is resolved. Possible resolutions are, e.g., FIXED,
INVALID, and WONTFIX: FIXED means that a bug has
been corrected; INVALID means that the entry is not a bug;
WONTFIX means that for some reason the bug will not be
fixed. Using all these informations, we extract all known
bugs for a specific version of a software to measure the
metric BUG. By including the information when a bug has
been reported, we measure the metric ACTBUG.

The result of the data collection are the metric values for
LOC, BUG, and ACTBUG at times t1, . . . , tn.

B. Data Preparation

The collected data needs to be prepared for the anal-
ysis. To this aim, we normalize the data. Normalization
means, that we change the scales of the metrics to the
interval [0, 1] while keeping the relative distances between
the metric values. The normalized metric values valuenorm

59

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

are calculated as valuenorm = value−valuemin

valuemax−valuemin
, where

valuemin, valuemax represent the minimal and maximal
measured values of the metric.

The reason for the normalization is to reduce the impact
of the metric scales. The different scales of the metrics
effect the result of the clustering. The scale of LOC is much
larger than the scale of BUG and ACTBUG. This difference
can give LOC a higher weight than the other two metrics.
The important feature for the analysis are not the absolute
values but the relative distances to the other values in the
project, because the relative distance reflect the progress.
Normalization keeps the relative distances, but removes the
scale effects, thereby allowing a better data analysis.

As result of the data preparation, we have a the data
set DATA = {values(t1), . . . , values(tn)} ⊂ [0, 1]3. The
notation values(ti) stands for the value of metrics LOC,
BUG and ACTBUG at ti.

C. Data Analysis

For the data analysis, we use the EM clustering algorithm
and apply it to the metric data. The input of the algorithm is
only the metric data itself and no information about project
phases according to the project plan or even the date of
the measured. As result, the algorithm yields k clusters
C1, . . . , Ck ⊂ DATA. The clusters are a disjoint partition
of the input, i.e.,

⋃k
i=1 Ci = DATA and Ci ∩Cj = ∅ for all

i, j = 1, . . . , k. The number k is not fixed and the algorithm
can determine as many or few clusters as required to fit the
data.

If the analysis is successfull, the resulting clusters contain
time-adjacent data, i.e., Ci = {values(tj), values(tj +
1), . . . , values(tj+|Ci|)}. Such a cluster describes a time-
interval [tj , tj+|Ci|]. The time-intervals can then be mapped
to the project phases by an expert to gain knowledge about
the project. In case the resulting clusters are not time-
adjacent, there are to possible conclusions: 1) the approach
failed; 2) the project was chaotic. Which of the two is the
case needs to be determined by an expert.

V. CASE STUDIES

To validate our approach, we performed a case study
where we applied it to two large-scale open source projects.
We designed our case study to answer the following two
research questions:

• RQ1: Is the approach able to identify project phases?
• RQ2: is either BUG or ACTBUG sufficient or are both

required?

In the following, we will describe the case study method-
ology and data. Then, we will present the results of the
experiments. Based on the results, we answer the research
questions in Section VI.

A. Methodology and Data

The experiments we performed in this case study are
based on data obtained from the development of projects
hosted by the Eclipse Foundation [13]. We mined data about
the developement of two versions of the Eclipse Platform
project [14], the versions 3.2 and 3.3. We excluded the
Standard Widget Toolkit (SWT) subproject of the platform
from our measurements, as it is for the most part independent
of the remainder of the project. We obtained the source code
from the Eclipse CVS repository [15]. To measure the bug
related metrics, we used SQL queries to directly extract the
metrics from a database dump of the Eclipse Bugzilla [16]
bugtracking system made available to us.

As dates for the measurements we choose weekly intervals
on monday mornings. For the Eclipse Platform 3.2 the
starting date was 2005-06-27 and the final measurement was
2006-06-26. For the Eclipse Platform 3.3 the start date was
2006-06-26 and the final date 2007-06-26. For the analysis
we used Weka’s [17] implementation of the EM clustering
algorithm, with a maximum of 100 iterations and a dynamic
number of clusters.

To answer the research question, we performed three
experiments with both software versions respectively. In the
first experiment, we used all three metrics as input for the
EM clustering algoritm, in the second experiment we used
only the metrics LOC and BUG, and in the third experiment
we used only the metrics LOC and ACTBUG. The first
experiment is to evaluate if the identification of project
phases through the clustering works to answer RQ1. The
other two experiments evaluate how each of the bug metrics
alone performs in order to answer RQ2.

B. Results

The results of the experiments are visualized in figures 2-
7. The figures depict the weekly measured data points for
the metric used in the experiments and where the clusters
are located. Both projects had several milestones and release
candidates. MX stands for milestone X , M0 denotes the
beginning of the project. RCX denote release candidate
X . The number of clusters varies between two and four,
depending on the experiment. Each cluster only contains
time-adjacent data. While the number of clusters varies, the
last cluster found is in all six experiments very similar. The
cluster is within 3 weeks of the first release candidate. The
clusters before the last one are inconsistent and vary.

VI. DISCUSSION

In this section we discuss the case study results and use
them to answer our research questions. Furthermore, we list
the threats to the validity of our studies.

A. RQ1: Is the approach able to identify project phases?

All clusters determined in the case study were time-
adjacent, thereby providing evidence that cluster analysis is

60

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

0

0.25

0.5

0.75

1
M

0

M
1

M
2

M
3

M
4

M
5

M
6

R
C

1

R
C

2

R
C

3

R
C

4

R
C

5

R
C

6

R
C

7

R
e

le
a

s
e

Normalized LOC Normalized BUG Normalized ACTBUG

Cluster 1 Cluster 2 Cluster 3

Figure 2. EM clustering with normalized LOC, BUG, and ACTBUG for the Eclipse Platform 3.2

0

0.25

0.5

0.75

1

M
0

M
1

M
2

M
3

M
4

M
5

M
6

R
C

1

R
C

2

R
C

3

R
C

4

R
C

5

R
C

6

R
C

7

R
e

le
a

s
e

Normalized LOC Normalized BUG

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Figure 3. EM clustering with normalized LOC and BUG for the Eclipse Platform 3.2

0

0.25

0.5

0.75

1

M
0

M
1

M
2

M
3

M
4

M
5

M
6

R
C

1

R
C

2

R
C

3

R
C

4

R
C

5

R
C

6

R
C

7

R
e

le
a

s
e

Normalized LOC Normalized ACTBUG

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Figure 4. EM clustering with normalized LOC and ACTBUG for the Eclipse Platform 3.2

61

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

0

0.25

0.5

0.75

1
M

0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

R
C

1

R
C

2

R
C

3

R
C

4

R
e

le
a

s
e

Normalized LOC Normalized BUG Normalized ACTBUG

Cluster 1 Cluster 2 Cluster 3

Figure 5. EM clustering with normalized LOC, BUG, and ACTBUG for the Eclipse Platform 3.3

0

0.25

0.5

0.75

1

M
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

R
C

1

R
C

2

R
C

3

R
C

4

R
e

le
a

s
e

Normalized LOC Normalized BUG

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Figure 6. EM clustering with normalized LOC and BUG for the Eclipse Platform 3.3

0

0.25

0.5

0.75

1

M
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

R
C

1

R
C

2

R
C

3

R
C

4

R
e

le
a

s
e

Normalized LOC Normalized ACTBUG

Cluster 1 Cluster 2

Figure 7. EM clustering with normalized LOC and ACTBUG for the Eclipse Platform 3.3

62

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

indead capable of partitioning a project into phases. The
case study results show that the final phase of the project
leading up to the release can be detected with good accuracy.
With regard to this phase, we answer this research question
with yes. However, other phases could not accurately be
determined and the results varied between the experiments.
For example, with the metrics LOC and BUG and for the
Eclipse Platform 3.3 (Figure 6), the first cluster seems to be
an initializing project phase, where the project was still in
planning mode. Thus, this experiment did not only detect
the final phase, but also the intial one. But the detection is
singular and not repeated accurately in other experiments.
Therefore, the approach seems to be capable of detecting
further phases, but is not reliable.

B. RQ2: Is either BUG or ACTBUG sufficient or are both
required?

When it comes to detecting the final phase of a project,
the results show no significant difference between using both
BUG and ACTBUG or only one of them. Thus, any of the
three combinations is feasible. Therefore, one should use
either only BUG or ACTBUG instead of using both, as
it reduces the demands on the data mining as well as the
dimension of the data set, thereby simplifying the analysis.

C. Threats to validity

There are several threats to the validity of our results.
Our case study was only performed for successful industrial
open-source projects. We did not consider closed-source
projects, or community driven open-source projects. Fur-
thermore, both projects are consecutive version of the same
software. The results of the case study are only consistent
when it comes to the detection of the final project phase and
inconsistent otherwise, indicating possible problems with the
analysis.

VII. CONCLUSION

In this paper, we defined an approach for the retrospective
analysis of software development projects. The approach
is purely data-driven and based on software metrics. We
described how we selected appropriate metrics using the
GQM approach. As basis for the analysis we use metric
data measured at different times during the execution of a
project. We then partition the data into clusters using the
EM clustering algorithm. Aim of the analysis is to map the
clusters to phases of the project. Our case studies showed
that the approach can accurately determine the final phase
of a project, but has problem detecting prior phases.

Future work on this project has several promising direc-
tions. First, it is possible to tweak the clustering algorithm
used for the analysis, e.g., by predefining a number of
clusters that matches the project plan. A detailed comparison
with other clustering algorithms should also be explored.
Second, the metric set can be extended with further metrics.

For example, the number of successfull tests or the overall
complexity of the project. Third, the time intervals used
for the measurement can also be varied to try to determine
whether they have an effect on the results. Finally, we will
consider further projects to broaden the scope of the case
studies.

REFERENCES

[1] S. Herbold, J. Grabowski, H. Neukirchen, and S. Waack,
“Retrospective Analysis of Software Projects using k-Means
Clustering,” in Proc. of the 2nd Design for Future 2010
Workshop (DFF 2010), Bad Honnef, Germany, May 2010.

[2] D. J. MacKay, Information theory, inference, and learning
algorithms. Cambridge Univ. Press, 2003.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
Likelihood from Incomplete Data via the EM Algorithm,”
J. Royal Statistical Soc., vol. 39, no. 1, pp. 1–38, 1977.
[Online]. Available: http://www.jstor.org/stable/2984875

[4] IEEE, “Ieee glossary of software engineering terminology,
ieee standard 610.12,” IEEE, Tech. Rep., 1990.

[5] V. Basili and D. Weiss, “A methodology for collecting valid
software engineering data,” IEEE Trans. Softw. Eng., vol. 10,
no. 6, pp. 728–738, 1984.

[6] V. Basili and H. Rombach, “The TAME project: towards
improvement-oriented softwareenvironments,” IEEE Trans.
Softw. Eng., vol. 14, no. 6, pp. 758–773, 1988.

[7] S. Herbold, J. Grabowski, and S. Waack, “Calculation and
Optimization of Thresholds for Sets of Software Metrics,”
Empirical Softw. Eng., pp. 1–30, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s10664-011-9162-z

[8] T. Mitchell, Machine Learning (Mcgraw-Hill International
Edit), 1st ed. McGraw-Hill Education (ISE Editions),
Oct. 1997. [Online]. Available: http://www.worldcat.org/isbn/
0071154671

[9] July 2011. [Online]. Available: http://www.nongnu.org/cvs/

[10] July 2011. [Online]. Available: http://subversion.apache.org/

[11] July 2011. [Online]. Available: http://git-scm.com/

[12] July 2011. [Online]. Available: http://www.bugzilla.org/

[13] July 2011. [Online]. Available: http://www.eclipse.org/

[14] July 2011. [Online]. Available: http://www.eclipse.org/
platform/

[15] July 2011. [Online]. Available: dev.eclipse.org:/cvsroot/
eclipse

[16] July 2011. [Online]. Available: https://bugs.eclipse.org/bugs/

[17] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The weka data mining software: an
update,” SIGKDD Explor. Newsl., vol. 11, pp. 10–18,
November 2009. [Online]. Available: http://doi.acm.org/10.
1145/1656274.1656278

63

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

