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Abstract—Static analyzers are most of the time dedicated to
checking runtime errors in sequential programs or ae specific to
one particular property in the multitasking domain such as
deadlock detection. However, the safety of multitdsand realtime
applications relies on several properties (e.g., abnce of
deadlock, atomicity, respecting the temporal constints, etc.).
Verification of each property requires a specific astract model.
In this paper, we introduce a generic pattern-basedmethod
allowing automatic extraction of viewpoint models ppropriate
for verification of various properties. Each property is defined by
a property analysis pattern specifying the algoritim for its
verification (steps are defined to specify needed iexwpoint
models). The extraction of each viewpoint model islescribed
within a dedicated model extraction pattern. Propety analysis
patterns and model extraction ones are the main agwvement of
our work. By introducing these patterns, our method allows
harmonizing the validation process and capitalizinghe knowhow
by explicitly defining the verification and transformation
processes.

Keywords- multitask applications, semantic-based dtatic
analysis, property verification; property analysis pattern; model
extraction pattern.

. INTRODUCTION

To validate multitask and real-time systems, dgwels or
validators in independent certification authoritiesve to use
different tools based on different methods (egtics analysis
[5] or model checking [3]). Each tool is dedicatedca specific
class of properties or even to a specific stagetha
development process [15][16]. For instance, modcking
tools are usually used to validate system spetifica
(expressed using dedicated formal languages); wihdes not
really reflect what is really implemented. In thiher hand, the
safety of multitask and real-time applications eglion the
satisfaction of several properties such as deadfceddom,
atomicity, respecting the temporal constraints,. eihe
verification of each property is based on a diffiéréiewpoint
model. For instance, models focusing on locks apessary to
detect deadlocks; models focusing on shared memotyg
check atomicity. Using such different techniques daaols
complicate the validation process and a high eigqeeris
required for each type of property.

In this paper, we propose an approach targeting
harmonize validation process for multitask and tieal
systems. The approach is applicable to check doess in
these systems from their source code. It is basedhe
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extraction of different viewpoint models driven bthe

properties to verify. It uses property analysis amddel

extraction patterns. A property analysis patterfinds the
algorithm for determining which models have to hé&racted

in order to verify the property. The extraction gess of each
model is described within a model extraction patter

The paper is structured as follows. In Sectiomw#,provide
an overview of our approach. In Section lll, we lekp the
semantic annotation. Then, in Sections IV and Vnsduce
property analysis and model extraction patternspeetively.
Finally, in Section VI we illustrate our approach a simple
example.

Il.  RELATED WORK AND APPROACH OVERVIEW

To address our topic, we study different typesaiidation
and verification techniques. We first look at teiciues dealing
with source code analysis: static analysis [5] aaderse
engineering [19]. Then, we study model checking duedrem
proving techniques that are suitable for verifyingltitasking
and realtime systems.

Most static analysis tools were developed for ditgc
numerical software bugs in sequential programs [(5.,
buffer overflows or underflows, null pointer refaces, etc.).
Some examples of such analyzers are ASTREE [10},EX
[11], PolySpace[12], Coverity [13], etc. Other eixig tools are
more suitable for our context (i.e., multitask tiead systems)
but are specific to particular types of properfies., deadlock
freedom or race condition detection) [14][17][18]). reverse
engineering approaches, some tools [20] are ordysing on
generating structural models such as UML diagraassclor
function dependencies while others are based oneimod
checking techniques [21][22] but do not addresscamency
issues. Hence, in both areas limited concurrendyraaltime
issues are addressed. By contrast, model checkih¢ghaorem
proving techniques [4][6][7][8][9] focuses on safgiroperties
in multitask realtime systems. However, verificago are
performed on systems specifications which make theitable
for top-down approaches where developers need soiteethat
their programs are correct by construction. In oontext, a
bottom-up approach is needed where different viémtpo
models can be extracted from the source code diyethe

tgroperties to verify.

The method we propose allows bridging the gap batwe
techniques such as static analysis that checkesaade and
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techniques such as model checking and theoremnuydtiat
uses more abstract models. It is based on thage levels. In
the first level, source code is parsed and the ASstract
Syntax Tree) is produced. In the second level, ABdles are
annotated. The annotation allows capturing the séozaof

specific real-time multitasking APIs objects (suah those
provided by POSIX [1], OSEK VDX[2], etc.). A formiam

(introduced in Section 1ll) is used for this purpo®uring

annotation phase, nodes using multitasking
(primitives or variables) are identified and theay assigned
with annotations provided by the semantic desanipti
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Figure 1. Layers of analysis

In the third level, models are extracted and prisgerare
verified according to user-defined patterResoperties analysis
patterns specify within achecking process which models are
necessary to perform the verification.

Model extraction patterns define transformation rules
according to pre-conditions describing initial model
configuration andpost-conditions describing configuration of
output model. Once models are extracted the vatifio of the
property is performed. The result of the verifioatiprocess
can either be a Boolean value or an extracted model

[ll.  SEMANTIC ANNOTATION

Multitasking concepts are usually implemented withi
API(s) that include a set of functionalities, dayaes, data
structures, and protocols aiming to facilitate asde resources
or services. The use of API(s) elements in the cguapde is
identified during AST annotation phase according the
provided semantic description. In this section,imteoduce the
formalism that allows capturing APl semantics. There
introduce features that facilitate models extractfoom the
AAST (Annotated Abstract Syntax Tree).
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elements

A. Semantic description

We introduce a set of annotations in order to aaptu
multitask APl semantics, based on two main concepts

e Semantic primitives: functions introduced by thel AP

Semantic variables: constraints on the type ahaega
of the parameters and values returned by the pvanit
call.

1) Multitask primitives
Multitask primitives are classified upon their geale
semantics:

e Task management: task creation, destruction, sledp
awakening;

e Critical sections management:
release;

locks acquisitiod an

e Communication mechanisms: creation or destruction
of message-passing mechanisms or shared memories,
sending and receiving of messages.

A multitasking primitive is described as follows:

P=(id, o(param), ¢(res), semrole)

e id:isthe identifier of the primitive (e.g., fork);

* o(param): value and type constraints having to be
respected by primitive parameters;

* o(res): value and type constraints that have to be
respected by the primitive return value;

e semrol e: annotation expressing the primitive role
(e.g., CREATE- TASK, TAKE- LOCK, RELEASE- LOCK,
SLEEP, etc.).

2) Semantic variables

Semantic variables are the parameters or returresaf a
primitive. They are defined as following:

V = (id, o(type), range)
where:
e id:is an identifier (used in semantic descriptiortaf
primitive);

«  (type): are type constraints;

e range: is the range of acceptable values or a constant.

B. AAST node structure

During parsing phase, the program is tokenized, tkien
AST is generated. A node in the AST is associate@dach
word in the source code. Additional nodes are adtatlwe
call branch-node and that inform about the syntattiature of
the branch (e.g., statement, function call, loogyh@Ise body
etc.). A token is associated to each node to infabout the
node nature (e.g., FUNC-CALL, END-LOOP, etc.).
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Figure 2. The structure of the annotated AST node

During annotation phase, AST nodes conserve inftioma
about syntactical structures. This informationugraented by
semantic information mentioned in the previous iBast After
semantic annotation phase, AST nodes have thetgteuc
shown in Figure 2.

C. From AAST to model extraction

Model extraction consists in applying a set
transformation rules to extract a new model coméitjan from
one or several initial ones. To be able to definehsrules,
original and target models have to follow a comnadustract
definition. In this subsection, we introduce abdtrdefinition
of models as well as a navigation feature that fadilitate the
definition of transformation rules.

1) Abstract definition of models

A common representation to all models used in our

approach (i.e., AAST, control graphs, synchrondatiand
communication graphs) is graph representation. diothese
representation, we adopt a generic definition rsgatihat a
graphis aquadrupl& S, T, sq, S¢) where

S: is a set of nodes;

T: is a set of transitions which can be labeledair n

so 0S: is the initial node;

s. JS: isthe set of final nodes.

2) Navigation formalism
During patterns specification, one can need to csele

of

1.4
[ s smmm | 2
. pid =
4. .
‘ ASSIGNEMENT ‘ ‘ 4 STATEMENT .Z if (pid)
-1
7. p(&lockl) ;
VAL:-E 5.IF-COND 8.
= 9. v(&lock2) ;
10. }
11. else
12. {
13 p(&lock?2) ;
14.
15. v (&lockl) ;
16. }
H 8. STATEMENT ‘ 17.}

‘ Param

o ‘ ‘ 14. STATEMENT ‘

17.END-STATEMENT

Figure 3. Annotated AST

To select a node calling a primitive with the setitarole
CREATE-TASK the following expression is used (where
node [OAST).

node::semantic::primitive::sem-role==
CREATE-TASK

In order to check whether the returned value offthk is
tested, we use the following expression:

node::semantic::variable::type == PID-T
node::root::token == IF-BODY

The first expression selects a node corresponding t
semantic variables havigJD-T type. The second expression
tests whether this node is in conditional branchctvimeans
that the token corresponding to the root of theenirnode is
anlF-BODY.

V. SPECIFICATION OF PROPERTIES

Once the AST is annotated, verification of progsrttan be
performed. Each property is described using a mpatte
provided by Table I.

TABLE . A PROPERTY ANALYSIS PATTERN

specific model elements (nodes or transition setsjo test
nodes according to their identifiers, tokens, bhascto which

Identifier Property identifier

they belong or their semantic annotation. To thigppse, we
introduce the operatdr:”  that allows such navigation. For|
instance, the expression G::S states that we tefdre set of

Defines the steps of the property
verification process. These steps can
comprise extraction of various models.

Checking process

nodes S in the graph G.

Property

Specification Foecification of the property

In Figure 3, we provide an example written in G tr@ates
two tasks by using théork primitive, provided by POSIX
[1]. Tasks are synchronized using a producer/corsymocess
(for the sake of clarity, we suppose that P andr¥ lack
acquisition primitives provided by the platform)n Ithe
corresponding annotated AST, all nodes calling masgic
primitive are red while nodes corresponding to semavalues
are light gray.
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Several models can be used to check a single pyoper
Steps of the checking process are specified bygusir
following formalism:

step-id: f r om[quantifier}{input models}
ext r act [quantifier{output model}
accor di ng t o{model extractor
pattern}
step-id: verify {prop-id} on {model}
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o _ _ node that is a fork call” which is expressed as
Property specification is a logical expression tban be  fgllows:
stated using first order logic, CTL, LTL, or othepecific p1: {fork-node OAST|
formalism and that can be verified upon the lasraexed (fork-node::identifier==fork) 0
model. (fork-node!=0)}

V. MODEL EXTRACTORPATTERNSAND TRANSFORMATION ~ C- Nodesbuilding rules
RULES Nodes building rules defin&, s o and s . of output
models according to provided pre-conditions. Thewe a

When stating the checking process within the prgper considered as implication rules expressed as fallow

analysis pattern, steps refer to model extractattemns. These
patterns define how to build abstract models adagrtb the {precondition} - {{graph}::set=building-rule}

API semantics. They have the format described lieTH. o o
" ." means "implies". Building rules are expressed by

using one of the following propositions;,(n; O {graph}::S
TABLEIl. MODEL EXTRACTOR PATTERN and one of expressions between brackets or evéit bot

Input model s from which output ; ;

Input Models X « include all[from n; until n][ such that
models will be extracted ¢]: this rule includes into the specified set all the
output model can be referred nodes of the subset specified by the optional

Output Model here, several instances can be expression{ from ny until nj] or[such that
extracted. o1

Model Transformatiol _— e exclude all[from ny until n][ such that

Rules Model building rule ¢]: exclude from the set S nodes of the subset

specified by the optional expressipir om ny unti |
n;] or[such the ¢];

A model extraction is based on transformation rul&e _ _ .
introduce how to state the method for specifyingrgonditions * build nodes according to (f): build a node
and post-conditions constraining initial configimas in input with a new format generated by the functiore.g.,
models and resulting configurations in output medel from control graph, build a node with task-id).

respectively.
D. Transtionrules

A. Modelstransformation rules Transition rules define the algorithm for connegtimodes
Model transformation rules allow deriving a new mia t0 each other in the output mod& according to their
configuration from one or several initial ones. configuration in the initial mod€l&,, ..., G,} . Transition rules

are also expressed using:
(Gor....G} = Gy P g

Transformation rules are based on three elements
introduced in Table IlI.

Pre-condition: we assume that there exists one or
several elemerg /7 S that have their projectios
[7 Sy, pre-conditions introduce properties that have to

be respected by in the initial modelG

TABLE lll.  TRANSFORMATION RULES . ) .
e Post-condition: define the type of links that coctrig

Set of configuration rules that are nodes inG.

Pre-conditions respected by input models

Transition rules are expressed as follows:

Nodes building Algorithmfor building sets S spand s

rules {precondition} - {connection-rule}
Transitiors . o Where connection-rule have the following formate(th
building rules Algorithm for building the set T fourth optional parameter specifies the transitidrel):

connection(G  4:s 1,Gg4is otypel[l])
B. Pre-conditions

In the pre-condition section, the user will defaneet of nodes VI. APPLICATION

from which the output model will be derived. Preaditions

. . . We illustrate our methodology on the simple example
are expressed using the following formalism:

provided in Section Ill.C.2). Let us suppose that want to

_ prid - {nodes:input-graph | ¢(nodes)} check whether locks are correctly released afteeir th
p-id descnl_aesaprecondltlamthat has to be respected by theacquisition. We will provide the property patternalyzer
setnodes O input-graph (" means "such that"). corresponding to this property. Then, we providedeto

p-id is the identifier of the pre-condition. A pre-catih can  extraction patterns used in the verification preces
state, for instance]There exists at least one
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A. CORRECT-LOCKSUSE property analysis pattern

To check whether acquired locks are always released
need to first extract control graphs in order ttedmine which
task is using which lock. After that, a lock-useqgn is
extracted where nodes represent tasks. These naaes
connected by transitions labeled by lock operati@hsFigure
4).

The property consists of verifying that each nogleich is
a source of an arc labeled w®tCQ-LOCKon a lock, has an
entrant arc labeled witRLS-LOCKon the same lock.

\,
Pe &
U

CcG1

cG2

Figure 4. Lock-use-graph extraction

The pattern corresponding to this property is piediin
the Table IV.

TABLE IV. CORRECT-LOCKS-USEANALYSER PROPERTY
PATTERN
Identifier CORRECT-LOCKS-USE

stepl : f rom {AAST}
extract all {CG:CONTROL-GRAPH}
accordi ng t o{CONTROL-GRAPH-
EXTRACTOR-PATTERN}
step2 : fromall {CG}
extract all {LG:LOCK-USE-GRAPH}
accordi ng t o{LOCK-USE-GRAPH-
EXTRACTOR-PATTERN}
step3: veri fy {CORRECT-LOCKS-USE}
on{ LG}

Checking
Process

{On OLG:S}
i f
{01 OLG:T|
((t1::org==n) O
(t1::label::sem==ACQ-LOCK))}
t hen
{02 0OLG:T|
((t2::dest==n) O
(t2::label::sem==RLS-LOCK)
(t1::label::param==t2::label::sem))}
el se
Error

Property
Specification

B. Model extraction patterns

The property specification pattern refers to twodelo
extraction patterns that are described in the afig
subsections.

1) Control graph extraction

In this examplefork  primitive is used to create tasks.
Fork is provided bypcsi X and allows the duplication of the

current processor k does not take any parameters and return
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either O (for the child process) or the PID valdethe child
process (for the parent processytkFcan be used differently
within a conditional expression or not (cf. Figlseand this
influences the extraction of the control graph.

. pid = forki)

(pid)

[F S

fork() L if

E I I IY O LR

(1)

Figure 5. fork writing styles

The first writing style (1) implies that both credttasks have
the same behavior and start on the instructiorofdilg the
call tofork (i.e., the instruction in line 3) until the endtok
program. In the second case, the behavior of kaskststarts
by instructions followingfork (e.g., instruction in line 2).
However, according to the conditional expressioat tis
testing thepri D value, the control graph of the child task
continues in else block (i.e., line 6) while thenaeor of the
parent task is defined by the if block (i.e., lshe Then, both
tasks behavior continues until the end of the @oyg(i.e., line
7).

To specify such semantics, the corresponding patter
described in Table Il is expressed as follows:

1. if there exists a conditional expression testing th
returned PID value; then control graph€G1 and
CG2are created where (1), &fers to the statement
following the call tofork , (2) S points towards the
end of the program, (3) S includeg S. and all nodes
following & except those included in IBODY for
CG1land those included BLSE_EXPR for CG2
if the return value of thdork is not tested, both
control graphs include all nodes betwegra®d S.

A simplified control graph extractor pattern is yided in
Table V.

2.

TABLE V. FORK CONTROL GRAPH EXTRACTION PATTERN
Identifier FORK-CONTROL-GRAPH-EXTRACTOR
Input AAST
Output CG1, CG2 : CONTROL-GRAPH

Pre-condition
-- there exists in the AST at least one
-- with fork identifier and one node
-- with END-OF-PROGRAM node -
pl:{fork-node, end-node O AAST |
(fork-node::identifier==fork)
(end-node::token==END-OF-PROGRAM)}

-- return value of fork is tested
p2:{cond, fork-if-body, fork-if-end
(cond::token={VALUE,FUNC-CALL}
((cond::semantic::VAR::type=PID-T)
(cond::identifier==fork)) |
((fork-if-body::token==IF-BODY-EGIN(cond))
O

S (fork-if-end::token==IF-BODY-END(cond))}
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-- pre-condition stated to check whether --

-- else exists -
p3:{fork-else-body, fork-end-body O AAST |
((p2::cond) z0 O

(fork-else-body::token==ELSE-BODY-
BEGIN(cond))
g
(fork-else-end::token==ELSE-BODY-END(cond))}}
Node building rules

{p1 Op2} -{CG1,CG2}::S (= NEXT(fork-node)
0

{CG1, CG2}::s « = END-OF-PROGRAM}

-- both graphs have the same behavior -

{p1 O -p20 -p3} -{{CG1, CG2}:S =
include all from S ountlS ¢}

-- graphs have different behavior --

{p1 O p2 0Op3} -
{CG1:S= include all fromSgy until S.
O
CG1:S =exclude all from fork-else-body
until fork-else-end
O
CG2:S= include all fromS, until S
O
CG2:S =exclude all from fork-if-body
until fork-if-end }
Transition building rules
{ 0O{n1, n2} O AAST, {gn1, gn2} dcaG:s

| gn1=proj(n1), gn2=proj(n2)

{ connect(gnl, gn2, direct-transaction) }

Onext(n1,n2)}

2) Extraction of thelock use graph

The lock use graph is extracted according to théepa
provided in the Table VI.

TABLE VI. LOCK USE GRAPH EXTRACTION PATTERN
Identifier LOCK-USE-GRAPH-EXTRACTOR
Input CONTROL-GRAPH
Output LG : LOCK-USE—GRAPH

Pre-condition

-- there exists a lock acquisition node --
-- in the control graph --

pl:{lock, lock-acg-node [0 CONTROL-GRAPH |
(lock::sem::var::type==LOCK
O
lock-acq-node::sem::primitive::sem-role
== LOCK-ACQ(lock))}
-- there exists a lock release node in the --
-- control graph -
P2:{lock, lock-rls-node OcaG|
(lock::sem::var::type==LOCK
O
lock-rls-node::sem::primitive::sem-role
== LOCK-RLS(lock))}

Nodes building rules

{Ocg: CG|
(pl 0 p2)} —{LG::S = build(identifier(cg))}
Transitions building rules
{ 011, n 0 CG1: CONTROL-GRAPH,
012, n2 0 CG2: CONTROL-GRAPH,
0On3,n4 OLG:S|
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((n1==lock-acg-node) O
(n2==lock-rls-node) O
I1::identifier==12::identifier) O
(n3==identifier(CG1) O

n4==identifier(CG2)}
{ connect(n3,n4,direct,nl) O
connect(n4,n3,direct, n2)}

VIl. CONCLUSION AND FUTURE WORKS

This paper deals with the question of how to autaraly
extract different viewpoint models from source caderder to
validate system behavior according to a set of gntegs. We
propose a pattern-based approach that allows gperithe
property to check and the transformation rules fplya For
each pattern, a dedicated formalism was introdudéds
approach provides more generality than the existings. It
can be applied for different systems using diffetanguages.
Users can plug-in different language parsers aodige the
corresponding APl semantics.

This approach also allows knowledge capitalization
explicitly defining the verification and transfortien
processes. It can facilitate verification and \atiidn processes,
particularly when these are performed by a thirdypa
organization.

Currently, a prototype was developed allowing clvegk
several design rules such as correct use of lat&sicity and
deadlock. The next step will consist on testingsialability on
great systems.

For future work, we aim to improve our method inlerto
address temporal constraints. The key point isifypeg how
to extract a temporal viewpoint model and how tdgren the
analysis of the satisfaction of temporal constrint
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