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Abstract—Static analyzers are most of the time dedicated to 
checking runtime errors in sequential programs or are specific to 
one particular property in the multitasking domain such as 
deadlock detection. However, the safety of multitask and realtime 
applications relies on several properties (e.g., absence of 
deadlock, atomicity, respecting the temporal constraints, etc.). 
Verification of each property requires a specific abstract model. 
In this paper, we introduce a generic pattern-based method 
allowing automatic extraction of viewpoint models appropriate 
for verification of various properties. Each property is defined by 
a property analysis pattern specifying the algorithm for its 
verification (steps are defined to specify needed viewpoint 
models). The extraction of each viewpoint model is described 
within a dedicated model extraction pattern. Property analysis 
patterns and model extraction ones are the main achievement of 
our work. By introducing these patterns, our method allows 
harmonizing the validation process and capitalizing the knowhow 
by explicitly defining the verification and transformation 
processes.  

Keywords- multitask applications; semantic-based static 
analysis; property verification; property analysis pattern; model 
extraction pattern.  

I.  INTRODUCTION 

To validate multitask and real-time systems, developers or 
validators in independent certification authorities have to use 
different tools based on different methods (e.g., static analysis 
[5] or model checking [3]). Each tool is dedicated to a specific 
class of properties or even to a specific stage in the 
development process [15][16]. For instance, model checking 
tools are usually used to validate system specifications 
(expressed using dedicated formal languages); which does not 
really reflect what is really implemented. In the other hand, the 
safety of multitask and real-time applications relies on the 
satisfaction of several properties such as deadlock freedom, 
atomicity, respecting the temporal constraints, etc. The 
verification of each property is based on a different viewpoint 
model. For instance, models focusing on locks are necessary to 
detect deadlocks; models focusing on shared memory – to 
check atomicity. Using such different techniques and tools 
complicate the validation process and a high expertise is 
required for each type of property.  

In this paper, we propose an approach targeting to 
harmonize validation process for multitask and realtime 
systems. The approach is applicable to check correctness in 
these systems from their source code. It is based on the 

extraction of different viewpoint models driven by the 
properties to verify. It uses property analysis and model 
extraction patterns. A property analysis pattern defines the 
algorithm for determining which models have to be extracted 
in order to verify the property. The extraction process of each 
model is described within a model extraction pattern.  

The paper is structured as follows. In Section II, we provide 
an overview of our approach. In Section III, we explain the 
semantic annotation. Then, in Sections IV and V, we introduce 
property analysis and model extraction patterns, respectively. 
Finally, in Section VI we illustrate our approach on a simple 
example.  

II. RELATED WORK AND APPROACH OVERVIEW  

To address our topic, we study different types of validation 
and verification techniques. We first look at techniques dealing 
with source code analysis: static analysis [5] and reverse 
engineering [19]. Then, we study model checking and theorem 
proving techniques that are suitable for verifying multitasking 
and realtime systems.  

Most static analysis tools were developed for detecting 
numerical software bugs in sequential programs [15] (e.g., 
buffer overflows or underflows, null pointer references, etc.). 
Some examples of such analyzers are ASTREE [10], CAVEAT 
[11], PolySpace[12], Coverity [13], etc. Other existing tools are 
more suitable for our context (i.e., multitask realtime systems) 
but are specific to particular types of properties (e.g., deadlock 
freedom or race condition detection) [14][17][18]. In reverse 
engineering approaches, some tools [20] are only focusing on 
generating structural models such as UML diagram class or 
function dependencies while others are based on model 
checking techniques [21][22] but do not address concurrency 
issues. Hence, in both areas limited concurrency and realtime 
issues are addressed. By contrast, model checking and theorem 
proving techniques [4][6][7][8][9] focuses on safety properties 
in multitask realtime systems. However, verifications are 
performed on systems specifications which make them suitable 
for top-down approaches where developers need to be sure that 
their programs are correct by construction. In our context, a 
bottom-up approach is needed where different viewpoint 
models can be extracted from the source code driven by the 
properties to verify. 

The method we propose allows bridging the gap between 
techniques such as static analysis that checks source code and 
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techniques such as model checking and theorem proving that 
uses more abstract models.   It is based on three main levels. In 
the first level, source code is parsed and the AST (Abstract 
Syntax Tree) is produced. In the second level, AST nodes are 
annotated. The annotation allows capturing the semantics of 
specific real-time multitasking APIs objects (such as those 
provided by POSIX [1], OSEK VDX[2], etc.). A formalism 
(introduced in Section III) is used for this purpose. During 
annotation phase, nodes using multitasking elements 
(primitives or variables) are identified and they are assigned 
with annotations provided by the semantic description.   

 
Figure 1. Layers of analysis 

In the third level, models are extracted and properties are 
verified according to user-defined patterns. Properties analysis 
patterns specify within a checking process which models are 
necessary to perform the verification.  

Model extraction patterns define transformation rules 
according to pre-conditions describing initial model 
configuration and post-conditions describing configuration of 
output model. Once models are extracted the verification of the 
property is performed. The result of the verification process 
can either be a Boolean value or an extracted model. 

III.  SEMANTIC ANNOTATION 

Multitasking concepts are usually implemented within 
API(s) that include a set of functionalities, data types, data 
structures, and protocols aiming to facilitate access to resources 
or services. The use of API(s) elements in the source code is 
identified during AST annotation phase according to the 
provided semantic description. In this section, we introduce the 
formalism that allows capturing API semantics. Then, we 
introduce features that facilitate models extraction from the 
AAST (Annotated Abstract Syntax Tree).  

A. Semantic description 

We introduce a set of annotations in order to capture 
multitask API semantics, based on two main concepts:  

• Semantic primitives: functions introduced by the API; 

• Semantic variables:  constraints on the type and values 
of the parameters and values returned by the primitive 
call. 

1) Multitask primitives  

Multitask primitives are classified upon their general 
semantics: 

• Task management: task creation, destruction, sleep and 
awakening;  

• Critical sections management:  locks acquisition and 
release; 

• Communication mechanisms: creation or destruction 
of message-passing mechanisms or shared memories, 
sending and receiving of messages.  

 A multitasking primitive is described as follows:  

P = (id, φ(parami), φ(res), sem-role)  

where:  
• id : is the identifier of the primitive (e.g., fork); 

• φ(parami):  value and type constraints having to be 
respected by primitive parameters;  

• φ(res): value and type constraints that have to be 
respected by the primitive return value; 

• sem-role: annotation expressing the primitive role 
(e.g., CREATE-TASK, TAKE-LOCK, RELEASE-LOCK, 
SLEEP, etc.). 

2) Semantic variables 

Semantic variables are the parameters or return values of a 
primitive.  They are defined as following: 

V = (id, φ(type), range) 

where: 
• id: is an identifier (used in semantic description of the 

primitive); 

• φ(type): are type constraints;  

• range: is the range of acceptable values or a constant.  

B. AAST node structure     

During parsing phase, the program is tokenized then, the 
AST is generated. A node in the AST is associated to each 
word in the source code. Additional nodes are added that we 
call branch-node and that inform about the syntactical nature of 
the branch (e.g., statement, function call, loop body, else body 
etc.). A token is associated to each node to inform about the 
node nature (e.g., FUNC-CALL, END-LOOP, etc.).  
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Figure 2. The structure of the annotated AST node 

During annotation phase, AST nodes conserve information 
about syntactical structures. This information is augmented by 
semantic information mentioned in the previous Sections. After 
semantic annotation phase, AST nodes have the structure 
shown in Figure 2. 

C. From AAST to model extraction  

Model extraction consists in applying a set of 
transformation rules to extract a new model configuration from 
one or several initial ones. To be able to define such rules, 
original and target models have to follow a common abstract 
definition. In this subsection, we introduce abstract definition 
of models as well as a navigation feature that will facilitate the 
definition of transformation rules.  

1) Abstract definition of models  

A common representation to all models used in our 
approach (i.e., AAST, control graphs, synchronization and 
communication graphs) is graph representation. For all these 
representation, we adopt a generic definition stating that a 
graph is a quadruple G(S, T, s0, sf) where 

• S: is a set of nodes; 

• T: is a set of transitions which can be labeled or not;  

• s0 ⊂ S: is the initial node;  

• se ⊂ S:  is the set of final nodes. 

2) Navigation formalism       

During patterns specification, one can need to select 
specific model elements (nodes or transition sets) or to test 
nodes according to their identifiers, tokens, branches to which 
they belong or their semantic annotation. To this purpose, we 
introduce the operator “::” that allows such navigation. For 
instance, the expression G::S states that we refer to the set of 
nodes S in the graph G.  

In Figure 3, we provide an example written in C that creates 
two tasks by using the fork  primitive, provided by POSIX 
[1]. Tasks are synchronized using a producer/consumer process 
(for the sake of clarity, we suppose that P and V are lock 
acquisition primitives provided by the platform). In the 
corresponding annotated AST, all nodes calling a semantic 
primitive are red while nodes corresponding to semantic values 
are light gray.  

 

 

Figure 3. Annotated AST 

To select a node calling a primitive with the semantic role 
CREATE-TASK, the following expression is used (where 
node ∈ AST ). 

node::semantic::primitive::sem-role== 

CREATE-TASK 

In order to check whether the returned value of the fork is 
tested, we use the following expression: 

node::semantic::variable::type == PID-T ∧ 
node::root::token == IF-BODY 
 
The first expression selects a node corresponding to a 

semantic variables having PID-T  type. The second expression 
tests whether this node is in conditional branch which means 
that the token corresponding to the root of the current node is 
an IF-BODY. 

IV.  SPECIFICATION OF PROPERTIES  

Once the AST is annotated, verification of properties can be 
performed. Each property is described using a pattern 
provided by Table I. 

TABLE I.  A PROPERTY ANALYSIS PATTERN 

Identifier Property identifier 

Checking process 
Defines the steps of the property 
verification process. These steps can 
comprise extraction of various models. 

Property 
Specification   

Specification of the property 

Several models can be used to check a single property. 
Steps of the checking process are specified by using the 
following formalism: 

step-id: from [quantifier]{input models} 
         extract[quantifier]{output model}  
         according to{model extractor  
                      pattern} 
step-id: verify {prop-id} on {model} 
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Property specification is a logical expression that can be 

stated using first order logic, CTL, LTL, or other specific 
formalism and that can be verified upon the last extracted 
model.   

V. MODEL EXTRACTOR PATTERNS AND TRANSFORMATION 

RULES 

When stating the checking process within the property 
analysis pattern, steps refer to model extraction patterns. These 
patterns define how to build abstract models according to the 
API semantics. They have the format described in Table II. 

TABLE II.  MODEL EXTRACTOR  PATTERN 

Input Models Input models from which output 
models will be extracted  

Output Model 
output model can be referred 
here, several instances can be 
extracted. 

Model Transformation 
Rules Model building rule 

 

A model extraction is based on transformation rules. We 
introduce how to state the method for specifying pre-conditions 
and post-conditions constraining initial configurations in input 
models and resulting configurations in output models 
respectively.  

A. Models transformation rules  

Model transformation rules allow deriving a new graph 
configuration from one or several initial ones. 

{G0,…,Gn} ⇒ Gd 

Transformation rules are based on three elements 
introduced in Table III. 

TABLE III.  TRANSFORMATION RULES 

Pre-conditions  Set of configuration rules that are 
respected by input models  

Nodes building 
rules  Algorithm for building sets S, s0 and  se  

Transitions 
building rules Algorithm for building the set T 

B. Pre-conditions  

In the pre-condition section, the user will define a set of nodes 
from which the output model will be derived. Pre-conditions 
are expressed using the following formalism: 

p-id : { nodes: input-graph | ϕ(nodes)} 

p-id  describes a precondition ϕ that has to be respected by the 
set nodes  ⊆ input-graph ("|" means "such that").  
p-id  is the identifier of the pre-condition. A pre-condition can 
state, for instance, ”There exists at least one 

node that is a fork call”  which is expressed as 
follows: 
p1: {fork-node ∈ AST |  
    (fork-node::identifier==fork) ∧ 
    (fork-node!=0)} 

C. Nodes building rules  

Nodes building rules define S, s 0 and s e of output 
models according to provided pre-conditions. They are 
considered as implication rules expressed as follows: 

{precondition} →{{graph}::set=building-rule} 

" →"  means "implies". Building rules are expressed by 
using one of the following propositions (ni, nj  ∈ {graph}::S 
and one of expressions between brackets or even both):  

• include all[from ni until nj][ such that 
ϕ]: this rule includes into the specified set all the 
nodes of the subset specified by the optional 
expression [from n0 until ni] or [ such that 
ϕ] ; 

• exclude all[from n0 until ni][ such that 
ϕ]: exclude from the set S nodes of the subset 
specified by the optional expression [from n0 until 
ni] or [ such the ϕ] ; 

• build nodes according to (f): build a node 
with a new format generated by the function f (e.g., 
from control graph, build a node with task-id).  

D. Transition rules  

Transition rules define the algorithm for connecting nodes 
to each other in the output model Gd according to their 
configuration in the initial model {G0,…, Gn} . Transition rules 
are also expressed using:  

• Pre-condition: we assume that there exists one or 
several element si ∈ S that have their projection sd 
∈ Sd, pre-conditions introduce properties that have to 
be respected by si in the initial model G;  

• Post-condition: define the type of links that connect Sd 
nodes in Gd. 

Transition rules are expressed as follows: 

{precondition} →{connection-rule} 

Where connection-rule have the following format (the 
fourth optional parameter specifies the transition label): 

connection(G d::s 1,G d::s 2,type,[l]) 

VI.  APPLICATION 

We illustrate our methodology on the simple example 
provided in Section III.C.2). Let us suppose that we want to 
check whether locks are correctly released after their 
acquisition. We will provide the property pattern analyzer 
corresponding to this property. Then, we provide model 
extraction patterns used in the verification process. 
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A. CORRECT-LOCKS-USE property analysis pattern  

To check whether acquired locks are always released, we 
need to first extract control graphs in order to determine which 
task is using which lock. After that, a lock-use-graph is 
extracted where nodes represent tasks. These nodes are 
connected by transitions labeled by lock operations (cf. Figure 
4). 

The property consists of verifying that each node, which is 
a source of an arc labeled with ACQ-LOCK on a lock, has an 
entrant arc labeled with RLS-LOCK on the same lock.  

 
 

 
Figure 4. Lock-use-graph extraction 

The pattern corresponding to this property is provided in 
the Table IV. 

TABLE IV.  CORRECT-LOCKS-USE ANALYSER  PROPERTY 
PATTERN 

Identifier CORRECT-LOCKS-USE 

Checking 
Process 

step1 : from {AAST}             
   extract all {CG:CONTROL-GRAPH}  
   according to{CONTROL-GRAPH- 
                EXTRACTOR-PATTERN} 
step2 : from all {CG}            
   extract all {LG:LOCK-USE-GRAPH}  
   according to{LOCK-USE-GRAPH- 
                EXTRACTOR-PATTERN} 
step3 : verify {CORRECT-LOCKS-USE}     
   on{LG} 

Property 
Specification   

{ ∀n ∈ LG::S}  
if  

{ ∃t1 ∈ LG::T | 
     ((t1::org==n) ∧  
      (t1::label::sem==ACQ-LOCK))} 
then 

{ ∃t2 ∈ LG::T |  
     ((t2::dest==n) ∧  
      (t2::label::sem==RLS-LOCK) ∧  
(t1::label::param==t2::label::sem))} 
else 
 Error               

B. Model extraction patterns 

The property specification pattern refers to two model 
extraction patterns that are described in the following 
subsections. 

1) Control graph extraction  

In this example, fork primitive is used to create tasks. 
Fork is provided by POSIX and allows the duplication of the 
current process. Fork does not take any parameters and returns 

either 0 (for the child process) or the PID value of the child 
process (for the parent process). Fork  can be used differently 
within a conditional expression or not (cf. Figure 5) and this 
influences the extraction of the control graph.  

 
Figure 5. fork writing styles 

The first writing style (1) implies that both created tasks have 
the same behavior and start on the instruction following the 
call to fork  (i.e., the instruction in line 3) until the end of the 
program. In the second case, the behavior of both tasks starts 
by instructions following fork  (e.g., instruction in line 2). 
However, according to the conditional expression that is 
testing the PID value, the control graph of the child task 
continues in else block (i.e., line 6) while the behavior of the 
parent task is defined by the if block (i.e., line 4). Then, both 
tasks behavior continues until the end of the program (i.e., line 
7).  

To specify such semantics, the corresponding pattern 
described in Table II is expressed as follows: 

1.  if there exists a conditional expression testing the 
returned PID  value; then control graphs CG1 and 
CG2 are created where (1) S0 refers to the statement 
following the call to fork , (2) Se points towards the 
end of the program, (3) S includes S0, Se and all nodes 
following S0 except those included in IF_BODY for 
CG1 and those included in ELSE_EXPR for CG2; 

2. if the return value of the fork  is not tested, both 
control graphs include all nodes between S0 and Se.  

A simplified control graph extractor pattern is provided in 
Table V. 

TABLE V.    FORK CONTROL GRAPH EXTRACTION PATTERN 

Identifier FORK-CONTROL-GRAPH-EXTRACTOR 
Input AAST 
Output CG1, CG2 : CONTROL-GRAPH 

Pre-condition 
-- there exists in the AST at least one    --  
-- with fork identifier and one node       -- 
-- with END-OF-PROGRAM node                --                         
p1:{fork-node, end-node ∈ AAST |  
      (fork-node::identifier==fork) ∧  
      (end-node::token==END-OF-PROGRAM)}  
 
--  return value of fork is tested         -- 
p2:{cond, fork-if-body, fork-if-end ∈ AAST | 
    (cond::token={VALUE,FUNC-CALL} ∧ 
     ((cond::semantic::VAR::type=PID-T) ∨ 
      (cond::identifier==fork))    ∧ 
     ((fork-if-body::token==IF-BODY-EGIN(cond)) 
        ∧ 
      (fork-if-end::token==IF-BODY-END(cond))} 
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-- pre-condition stated to check whether   -- 
-- else exists                             -- 
p3:{fork-else-body, fork-end-body ∈ AAST | 
    ((p2::cond) ≠ 0 ∧ 
     (fork-else-body::token==ELSE-BODY-
BEGIN(cond)) 
      ∧ 
     (fork-else-end::token==ELSE-BODY-END(cond))}} 

Node building rules 
 
{p1 ∧ p2} →{{CG1, CG2}::S 0 = NEXT(fork-node) 
         ∧ 
         {CG1, CG2}::S e = END-OF-PROGRAM} 
 
-- both graphs have the same behavior      -- 
{p1 ∧ ¬p2∧ ¬p3} →{{CG1, CG2}::S =  
                include all from S 0 until S e} 
 
-- graphs have different behavior          -- 
{p1 ∧  p2 ∧ p3} → 
  {CG1::S= include all from S 0 until S e 
            ∧ 
   CG1::S =exclude all from fork-else-body  
                      until fork-else-end 
            ∧ 
   CG2::S= include all from S 0 until S e 
            ∧ 
   CG2::S =exclude all from fork-if-body  
                      until fork-if-end } 

Transition building rules 
{ ∃ {n1, n2} ∈ AAST, {gn1, gn2} ∈ CG::S  
  | gn1=proj(n1), gn2=proj(n2)  ∧ next(n1,n2)}  
→  
{ connect(gn1, gn2, direct-transaction) }  

2) Extraction of the lock use graph  

The lock use graph is extracted according to the pattern 
provided in the Table VI. 

TABLE VI.  LOCK USE  GRAPH EXTRACTION PATTERN 

Identifier LOCK-USE-GRAPH-EXTRACTOR 
Input CONTROL-GRAPH 
Output LG : LOCK-USE—GRAPH 

Pre-condition 
 
-- there exists a lock acquisition node          --  
-- in the control graph                          --  
 
p1:{lock, lock-acq-node ∈ CONTROL-GRAPH |  
         (lock::sem::var::type==LOCK 
          ∧ 
          lock-acq-node::sem::primitive::sem-role    
          == LOCK-ACQ(lock))}  
-- there exists a lock release node in the       --  
-- control graph                                 --  
P2:{lock, lock-rls-node ∈ CG | 
       (lock::sem::var::type==LOCK 
        ∧ 
        lock-rls-node::sem::primitive::sem-role    
        == LOCK-RLS(lock))}   
 

Nodes building rules 
{ ∀cg : CG |  
     (p1 ∨  p2)} →{LG::S = build(identifier(cg))}  

Transitions building rules 
{ ∀ l1, n1 ∈ CG1: CONTROL-GRAPH,  
  ∀ l2, n2 ∈ CG2: CONTROL-GRAPH, 
  ∃ n3,n4  ∈ LG::S |  

  ((n1==lock-acq-node) ∧  
   (n2==lock-rls-node) ∧ 
    l1::identifier==l2::identifier) ∧ 
   (n3==identifier(CG1) ∧ 
    n4==identifier(CG2)} 
→ 
{ connect(n3,n4,direct,n1) ∧ 
  connect(n4,n3,direct, n2)}  

VII.  CONCLUSION AND FUTURE WORKS 

This paper deals with the question of how to automatically 
extract different viewpoint models from source code in order to 
validate system behavior according to a set of properties. We 
propose a pattern-based approach that allows specifying the 
property to check and the transformation rules to apply. For 
each pattern, a dedicated formalism was introduced. This 
approach provides more generality than the existing ones. It 
can be applied for different systems using different languages. 
Users can plug-in different language parsers and provide the 
corresponding API semantics.  

This approach also allows knowledge capitalization by 
explicitly defining the verification and transformation 
processes. It can facilitate verification and validation processes, 
particularly when these are performed by a third-party 
organization.  

Currently, a prototype was developed allowing checking 
several design rules such as correct use of locks, atomicity and 
deadlock. The next step will consist on testing its scalability on 
great systems.    

For future work, we aim to improve our method in order to 
address temporal constraints. The key point is specifying how 
to extract a temporal viewpoint model and how to perform the 
analysis of the satisfaction of temporal constraints.  
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