
Extracting and Verifying Viewpoints Models in
Multitask Applications

Selma Azaiez, Belgacem Ben Hedia, Vincent David
CEA, LIST, Embedded Real Time Systems Laboratory,

Point Courrier 94, Gif-sur-Yvette, F-91191 France
Email: {selma.azaiez,belgacem.ben-hedia,vincent.david} @cea.fr

Abstract—Static analyzers are most of the time dedicated to
checking runtime errors in sequential programs or are specific to
one particular property in the multitasking domain such as
deadlock detection. However, the safety of multitask and realtime
applications relies on several properties (e.g., absence of
deadlock, atomicity, respecting the temporal constraints, etc.).
Verification of each property requires a specific abstract model.
In this paper, we introduce a generic pattern-based method
allowing automatic extraction of viewpoint models appropriate
for verification of various properties. Each property is defined by
a property analysis pattern specifying the algorithm for its
verification (steps are defined to specify needed viewpoint
models). The extraction of each viewpoint model is described
within a dedicated model extraction pattern. Property analysis
patterns and model extraction ones are the main achievement of
our work. By introducing these patterns, our method allows
harmonizing the validation process and capitalizing the knowhow
by explicitly defining the verification and transformation
processes.

Keywords- multitask applications; semantic-based static
analysis; property verification; property analysis pattern; model
extraction pattern.

I. INTRODUCTION

To validate multitask and real-time systems, developers or
validators in independent certification authorities have to use
different tools based on different methods (e.g., static analysis
[5] or model checking [3]). Each tool is dedicated to a specific
class of properties or even to a specific stage in the
development process [15][16]. For instance, model checking
tools are usually used to validate system specifications
(expressed using dedicated formal languages); which does not
really reflect what is really implemented. In the other hand, the
safety of multitask and real-time applications relies on the
satisfaction of several properties such as deadlock freedom,
atomicity, respecting the temporal constraints, etc. The
verification of each property is based on a different viewpoint
model. For instance, models focusing on locks are necessary to
detect deadlocks; models focusing on shared memory – to
check atomicity. Using such different techniques and tools
complicate the validation process and a high expertise is
required for each type of property.

In this paper, we propose an approach targeting to
harmonize validation process for multitask and realtime
systems. The approach is applicable to check correctness in
these systems from their source code. It is based on the

extraction of different viewpoint models driven by the
properties to verify. It uses property analysis and model
extraction patterns. A property analysis pattern defines the
algorithm for determining which models have to be extracted
in order to verify the property. The extraction process of each
model is described within a model extraction pattern.

The paper is structured as follows. In Section II, we provide
an overview of our approach. In Section III, we explain the
semantic annotation. Then, in Sections IV and V, we introduce
property analysis and model extraction patterns, respectively.
Finally, in Section VI we illustrate our approach on a simple
example.

II. RELATED WORK AND APPROACH OVERVIEW

To address our topic, we study different types of validation
and verification techniques. We first look at techniques dealing
with source code analysis: static analysis [5] and reverse
engineering [19]. Then, we study model checking and theorem
proving techniques that are suitable for verifying multitasking
and realtime systems.

Most static analysis tools were developed for detecting
numerical software bugs in sequential programs [15] (e.g.,
buffer overflows or underflows, null pointer references, etc.).
Some examples of such analyzers are ASTREE [10], CAVEAT
[11], PolySpace[12], Coverity [13], etc. Other existing tools are
more suitable for our context (i.e., multitask realtime systems)
but are specific to particular types of properties (e.g., deadlock
freedom or race condition detection) [14][17][18]. In reverse
engineering approaches, some tools [20] are only focusing on
generating structural models such as UML diagram class or
function dependencies while others are based on model
checking techniques [21][22] but do not address concurrency
issues. Hence, in both areas limited concurrency and realtime
issues are addressed. By contrast, model checking and theorem
proving techniques [4][6][7][8][9] focuses on safety properties
in multitask realtime systems. However, verifications are
performed on systems specifications which make them suitable
for top-down approaches where developers need to be sure that
their programs are correct by construction. In our context, a
bottom-up approach is needed where different viewpoint
models can be extracted from the source code driven by the
properties to verify.

The method we propose allows bridging the gap between
techniques such as static analysis that checks source code and

64

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

techniques such as model checking and theorem proving that
uses more abstract models. It is based on three main levels. In
the first level, source code is parsed and the AST (Abstract
Syntax Tree) is produced. In the second level, AST nodes are
annotated. The annotation allows capturing the semantics of
specific real-time multitasking APIs objects (such as those
provided by POSIX [1], OSEK VDX[2], etc.). A formalism
(introduced in Section III) is used for this purpose. During
annotation phase, nodes using multitasking elements
(primitives or variables) are identified and they are assigned
with annotations provided by the semantic description.

Figure 1. Layers of analysis

In the third level, models are extracted and properties are
verified according to user-defined patterns. Properties analysis
patterns specify within a checking process which models are
necessary to perform the verification.

Model extraction patterns define transformation rules
according to pre-conditions describing initial model
configuration and post-conditions describing configuration of
output model. Once models are extracted the verification of the
property is performed. The result of the verification process
can either be a Boolean value or an extracted model.

III. SEMANTIC ANNOTATION

Multitasking concepts are usually implemented within
API(s) that include a set of functionalities, data types, data
structures, and protocols aiming to facilitate access to resources
or services. The use of API(s) elements in the source code is
identified during AST annotation phase according to the
provided semantic description. In this section, we introduce the
formalism that allows capturing API semantics. Then, we
introduce features that facilitate models extraction from the
AAST (Annotated Abstract Syntax Tree).

A. Semantic description

We introduce a set of annotations in order to capture
multitask API semantics, based on two main concepts:

• Semantic primitives: functions introduced by the API;

• Semantic variables: constraints on the type and values
of the parameters and values returned by the primitive
call.

1) Multitask primitives

Multitask primitives are classified upon their general
semantics:

• Task management: task creation, destruction, sleep and
awakening;

• Critical sections management: locks acquisition and
release;

• Communication mechanisms: creation or destruction
of message-passing mechanisms or shared memories,
sending and receiving of messages.

 A multitasking primitive is described as follows:

P = (id, φ(parami), φ(res), sem-role)

where:
• id : is the identifier of the primitive (e.g., fork);

• φ(parami): value and type constraints having to be
respected by primitive parameters;

• φ(res): value and type constraints that have to be
respected by the primitive return value;

• sem-role: annotation expressing the primitive role
(e.g., CREATE-TASK, TAKE-LOCK, RELEASE-LOCK,
SLEEP, etc.).

2) Semantic variables

Semantic variables are the parameters or return values of a
primitive. They are defined as following:

V = (id, φ(type), range)

where:
• id: is an identifier (used in semantic description of the

primitive);

• φ(type): are type constraints;

• range: is the range of acceptable values or a constant.

B. AAST node structure

During parsing phase, the program is tokenized then, the
AST is generated. A node in the AST is associated to each
word in the source code. Additional nodes are added that we
call branch-node and that inform about the syntactical nature of
the branch (e.g., statement, function call, loop body, else body
etc.). A token is associated to each node to inform about the
node nature (e.g., FUNC-CALL, END-LOOP, etc.).

65

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

Figure 2. The structure of the annotated AST node

During annotation phase, AST nodes conserve information
about syntactical structures. This information is augmented by
semantic information mentioned in the previous Sections. After
semantic annotation phase, AST nodes have the structure
shown in Figure 2.

C. From AAST to model extraction

Model extraction consists in applying a set of
transformation rules to extract a new model configuration from
one or several initial ones. To be able to define such rules,
original and target models have to follow a common abstract
definition. In this subsection, we introduce abstract definition
of models as well as a navigation feature that will facilitate the
definition of transformation rules.

1) Abstract definition of models

A common representation to all models used in our
approach (i.e., AAST, control graphs, synchronization and
communication graphs) is graph representation. For all these
representation, we adopt a generic definition stating that a
graph is a quadruple G(S, T, s0, sf) where

• S: is a set of nodes;

• T: is a set of transitions which can be labeled or not;

• s0 ⊂ S: is the initial node;

• se ⊂ S: is the set of final nodes.

2) Navigation formalism

During patterns specification, one can need to select
specific model elements (nodes or transition sets) or to test
nodes according to their identifiers, tokens, branches to which
they belong or their semantic annotation. To this purpose, we
introduce the operator “::” that allows such navigation. For
instance, the expression G::S states that we refer to the set of
nodes S in the graph G.

In Figure 3, we provide an example written in C that creates
two tasks by using the fork primitive, provided by POSIX
[1]. Tasks are synchronized using a producer/consumer process
(for the sake of clarity, we suppose that P and V are lock
acquisition primitives provided by the platform). In the
corresponding annotated AST, all nodes calling a semantic
primitive are red while nodes corresponding to semantic values
are light gray.

Figure 3. Annotated AST

To select a node calling a primitive with the semantic role
CREATE-TASK, the following expression is used (where
node ∈ AST).

node::semantic::primitive::sem-role==

CREATE-TASK

In order to check whether the returned value of the fork is
tested, we use the following expression:

node::semantic::variable::type == PID-T ∧
node::root::token == IF-BODY

The first expression selects a node corresponding to a

semantic variables having PID-T type. The second expression
tests whether this node is in conditional branch which means
that the token corresponding to the root of the current node is
an IF-BODY.

IV. SPECIFICATION OF PROPERTIES

Once the AST is annotated, verification of properties can be
performed. Each property is described using a pattern
provided by Table I.

TABLE I. A PROPERTY ANALYSIS PATTERN

Identifier Property identifier

Checking process
Defines the steps of the property
verification process. These steps can
comprise extraction of various models.

Property
Specification

Specification of the property

Several models can be used to check a single property.
Steps of the checking process are specified by using the
following formalism:

step-id: from [quantifier]{input models}
 extract[quantifier]{output model}
 according to{model extractor
 pattern}
step-id: verify {prop-id} on {model}

66

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

Property specification is a logical expression that can be

stated using first order logic, CTL, LTL, or other specific
formalism and that can be verified upon the last extracted
model.

V. MODEL EXTRACTOR PATTERNS AND TRANSFORMATION

RULES

When stating the checking process within the property
analysis pattern, steps refer to model extraction patterns. These
patterns define how to build abstract models according to the
API semantics. They have the format described in Table II.

TABLE II. MODEL EXTRACTOR PATTERN

Input Models Input models from which output
models will be extracted

Output Model
output model can be referred
here, several instances can be
extracted.

Model Transformation
Rules Model building rule

A model extraction is based on transformation rules. We
introduce how to state the method for specifying pre-conditions
and post-conditions constraining initial configurations in input
models and resulting configurations in output models
respectively.

A. Models transformation rules

Model transformation rules allow deriving a new graph
configuration from one or several initial ones.

{G0,…,Gn} ⇒ Gd

Transformation rules are based on three elements
introduced in Table III.

TABLE III. TRANSFORMATION RULES

Pre-conditions Set of configuration rules that are
respected by input models

Nodes building
rules Algorithm for building sets S, s0 and se

Transitions
building rules Algorithm for building the set T

B. Pre-conditions

In the pre-condition section, the user will define a set of nodes
from which the output model will be derived. Pre-conditions
are expressed using the following formalism:

p-id : { nodes: input-graph | ϕ(nodes)}

p-id describes a precondition ϕ that has to be respected by the
set nodes ⊆ input-graph ("|" means "such that").
p-id is the identifier of the pre-condition. A pre-condition can
state, for instance, ”There exists at least one

node that is a fork call” which is expressed as
follows:
p1: {fork-node ∈ AST |
 (fork-node::identifier==fork) ∧
 (fork-node!=0)}

C. Nodes building rules

Nodes building rules define S, s 0 and s e of output
models according to provided pre-conditions. They are
considered as implication rules expressed as follows:

{precondition} →{{graph}::set=building-rule}

" →" means "implies". Building rules are expressed by
using one of the following propositions (ni, nj ∈ {graph}::S
and one of expressions between brackets or even both):

• include all[from ni until nj][such that
ϕ]: this rule includes into the specified set all the
nodes of the subset specified by the optional
expression [from n0 until ni] or [such that
ϕ] ;

• exclude all[from n0 until ni][such that
ϕ]: exclude from the set S nodes of the subset
specified by the optional expression [from n0 until
ni] or [such the ϕ] ;

• build nodes according to (f): build a node
with a new format generated by the function f (e.g.,
from control graph, build a node with task-id).

D. Transition rules

Transition rules define the algorithm for connecting nodes
to each other in the output model Gd according to their
configuration in the initial model {G0,…, Gn} . Transition rules
are also expressed using:

• Pre-condition: we assume that there exists one or
several element si ∈ S that have their projection sd
∈ Sd, pre-conditions introduce properties that have to
be respected by si in the initial model G;

• Post-condition: define the type of links that connect Sd
nodes in Gd.

Transition rules are expressed as follows:

{precondition} →{connection-rule}

Where connection-rule have the following format (the
fourth optional parameter specifies the transition label):

connection(G d::s 1,G d::s 2,type,[l])

VI. APPLICATION

We illustrate our methodology on the simple example
provided in Section III.C.2). Let us suppose that we want to
check whether locks are correctly released after their
acquisition. We will provide the property pattern analyzer
corresponding to this property. Then, we provide model
extraction patterns used in the verification process.

67

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

A. CORRECT-LOCKS-USE property analysis pattern

To check whether acquired locks are always released, we
need to first extract control graphs in order to determine which
task is using which lock. After that, a lock-use-graph is
extracted where nodes represent tasks. These nodes are
connected by transitions labeled by lock operations (cf. Figure
4).

The property consists of verifying that each node, which is
a source of an arc labeled with ACQ-LOCK on a lock, has an
entrant arc labeled with RLS-LOCK on the same lock.

Figure 4. Lock-use-graph extraction

The pattern corresponding to this property is provided in
the Table IV.

TABLE IV. CORRECT-LOCKS-USE ANALYSER PROPERTY
PATTERN

Identifier CORRECT-LOCKS-USE

Checking
Process

step1 : from {AAST}
 extract all {CG:CONTROL-GRAPH}
 according to{CONTROL-GRAPH-
 EXTRACTOR-PATTERN}
step2 : from all {CG}
 extract all {LG:LOCK-USE-GRAPH}
 according to{LOCK-USE-GRAPH-
 EXTRACTOR-PATTERN}
step3 : verify {CORRECT-LOCKS-USE}
 on{LG}

Property
Specification

{ ∀n ∈ LG::S}
if

{ ∃t1 ∈ LG::T |
 ((t1::org==n) ∧
 (t1::label::sem==ACQ-LOCK))}
then

{ ∃t2 ∈ LG::T |
 ((t2::dest==n) ∧
 (t2::label::sem==RLS-LOCK) ∧
(t1::label::param==t2::label::sem))}
else
 Error

B. Model extraction patterns

The property specification pattern refers to two model
extraction patterns that are described in the following
subsections.

1) Control graph extraction

In this example, fork primitive is used to create tasks.
Fork is provided by POSIX and allows the duplication of the
current process. Fork does not take any parameters and returns

either 0 (for the child process) or the PID value of the child
process (for the parent process). Fork can be used differently
within a conditional expression or not (cf. Figure 5) and this
influences the extraction of the control graph.

Figure 5. fork writing styles

The first writing style (1) implies that both created tasks have
the same behavior and start on the instruction following the
call to fork (i.e., the instruction in line 3) until the end of the
program. In the second case, the behavior of both tasks starts
by instructions following fork (e.g., instruction in line 2).
However, according to the conditional expression that is
testing the PID value, the control graph of the child task
continues in else block (i.e., line 6) while the behavior of the
parent task is defined by the if block (i.e., line 4). Then, both
tasks behavior continues until the end of the program (i.e., line
7).

To specify such semantics, the corresponding pattern
described in Table II is expressed as follows:

1. if there exists a conditional expression testing the
returned PID value; then control graphs CG1 and
CG2 are created where (1) S0 refers to the statement
following the call to fork , (2) Se points towards the
end of the program, (3) S includes S0, Se and all nodes
following S0 except those included in IF_BODY for
CG1 and those included in ELSE_EXPR for CG2;

2. if the return value of the fork is not tested, both
control graphs include all nodes between S0 and Se.

A simplified control graph extractor pattern is provided in
Table V.

TABLE V. FORK CONTROL GRAPH EXTRACTION PATTERN

Identifier FORK-CONTROL-GRAPH-EXTRACTOR
Input AAST
Output CG1, CG2 : CONTROL-GRAPH

Pre-condition
-- there exists in the AST at least one --
-- with fork identifier and one node --
-- with END-OF-PROGRAM node --
p1:{fork-node, end-node ∈ AAST |
 (fork-node::identifier==fork) ∧
 (end-node::token==END-OF-PROGRAM)}

-- return value of fork is tested --
p2:{cond, fork-if-body, fork-if-end ∈ AAST |
 (cond::token={VALUE,FUNC-CALL} ∧
 ((cond::semantic::VAR::type=PID-T) ∨
 (cond::identifier==fork)) ∧
 ((fork-if-body::token==IF-BODY-EGIN(cond))
 ∧
 (fork-if-end::token==IF-BODY-END(cond))}

68

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

-- pre-condition stated to check whether --
-- else exists --
p3:{fork-else-body, fork-end-body ∈ AAST |
 ((p2::cond) ≠ 0 ∧
 (fork-else-body::token==ELSE-BODY-
BEGIN(cond))
 ∧
 (fork-else-end::token==ELSE-BODY-END(cond))}}

Node building rules

{p1 ∧ p2} →{{CG1, CG2}::S 0 = NEXT(fork-node)
 ∧
 {CG1, CG2}::S e = END-OF-PROGRAM}

-- both graphs have the same behavior --
{p1 ∧ ¬p2∧ ¬p3} →{{CG1, CG2}::S =
 include all from S 0 until S e}

-- graphs have different behavior --
{p1 ∧ p2 ∧ p3} →
 {CG1::S= include all from S 0 until S e
 ∧
 CG1::S =exclude all from fork-else-body
 until fork-else-end
 ∧
 CG2::S= include all from S 0 until S e
 ∧
 CG2::S =exclude all from fork-if-body
 until fork-if-end }

Transition building rules
{ ∃ {n1, n2} ∈ AAST, {gn1, gn2} ∈ CG::S
 | gn1=proj(n1), gn2=proj(n2) ∧ next(n1,n2)}
→
{ connect(gn1, gn2, direct-transaction) }

2) Extraction of the lock use graph

The lock use graph is extracted according to the pattern
provided in the Table VI.

TABLE VI. LOCK USE GRAPH EXTRACTION PATTERN

Identifier LOCK-USE-GRAPH-EXTRACTOR
Input CONTROL-GRAPH
Output LG : LOCK-USE—GRAPH

Pre-condition

-- there exists a lock acquisition node --
-- in the control graph --

p1:{lock, lock-acq-node ∈ CONTROL-GRAPH |
 (lock::sem::var::type==LOCK
 ∧
 lock-acq-node::sem::primitive::sem-role
 == LOCK-ACQ(lock))}
-- there exists a lock release node in the --
-- control graph --
P2:{lock, lock-rls-node ∈ CG |
 (lock::sem::var::type==LOCK
 ∧
 lock-rls-node::sem::primitive::sem-role
 == LOCK-RLS(lock))}

Nodes building rules
{ ∀cg : CG |
 (p1 ∨ p2)} →{LG::S = build(identifier(cg))}

Transitions building rules
{ ∀ l1, n1 ∈ CG1: CONTROL-GRAPH,
 ∀ l2, n2 ∈ CG2: CONTROL-GRAPH,
 ∃ n3,n4 ∈ LG::S |

 ((n1==lock-acq-node) ∧
 (n2==lock-rls-node) ∧
 l1::identifier==l2::identifier) ∧
 (n3==identifier(CG1) ∧
 n4==identifier(CG2)}
→
{ connect(n3,n4,direct,n1) ∧
 connect(n4,n3,direct, n2)}

VII. CONCLUSION AND FUTURE WORKS

This paper deals with the question of how to automatically
extract different viewpoint models from source code in order to
validate system behavior according to a set of properties. We
propose a pattern-based approach that allows specifying the
property to check and the transformation rules to apply. For
each pattern, a dedicated formalism was introduced. This
approach provides more generality than the existing ones. It
can be applied for different systems using different languages.
Users can plug-in different language parsers and provide the
corresponding API semantics.

This approach also allows knowledge capitalization by
explicitly defining the verification and transformation
processes. It can facilitate verification and validation processes,
particularly when these are performed by a third-party
organization.

Currently, a prototype was developed allowing checking
several design rules such as correct use of locks, atomicity and
deadlock. The next step will consist on testing its scalability on
great systems.

For future work, we aim to improve our method in order to
address temporal constraints. The key point is specifying how
to extract a temporal viewpoint model and how to perform the
analysis of the satisfaction of temporal constraints.

ACKNOWLEDGMENT

We would like to thank Simon Bliudze for comments on this
work.

REFERENCES
[1] POSIX Certification – updated on 3 November 2003 -

http://www.opengroup.org/certification/idx/posix.html

[2] OSEK VDX version 3.0.3 – July 2004 - http://portal.osek-
vdx.org/index.php?option=com_content&task=view&id=9&Itemid=13.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled, "Model checking", MIT
Press, 1999, ISBN 0-262-03270-8.

[4] M. P. Bonacina: "On theorem proving for program checking: historical
perspective and recent developments", PPDP 2010, pp. 1-12.

[5] P. Cousot and R. Cousot, "Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints", Conf. Rec. of the 4th Annual ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages (POPL' 77), ACM
Press (New York), Los Angeles, USA, Jan. 1977, pp. 238-252.

[6] K. M. Chandy and J. Misra. "Parallel Program Design: A Foundation".
Addison-Wesley, 1988, ISBN 0-201-05866-9.

[7] L. Lamport., "The Temporal Logic of Actions". ACM Trans. on Prog.
Lang. and Systems, 1994, pp. 872-923.

[8] Z. Manna and A. Pnueli. "Temporal Verification of Reactive Systems:
Safety". Springer-Verlag, New York, 1995, ISBN 0-387-94459-1.

69

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

[9] E.A. Emerson, "Temporal and modal logic", Handbook of Theoretical
Computer Science, Chapter 16, the MIT Press, 1990, pp. 995-1072.

[10] P. Cousot, R. Cousot, J. Feret, A. Miné, D. Monniaux, L. Mauborgne, X.
Rival. "The ASTRÉE Analyzer". ESOP 2005: The European
Symposium on Programming, Edinburgh, Scotland, April 2-10, 2005.
Lecture Notes in Computer Science 3444, © Springer, Berlin, pp. 21-30.

[11] P.Baudin, A.Pacalet, J.Raguideau, D.Schoen, N.Williams. "CAVEAT : a
Tool for Software Validation". In Proceedings of the International
Conference on Dependable Systems and Networks (DSN’02), pp. 537-
537.

[12] A. Deutsch. "Static Verification Of Dynamic Properties". PolySpace
Technologies, 27 november 2007, www.polyspace.com

[13] Coverity prevent: Static Source Code Analysis for C and C++, 2008,
http://www.coverity.com/library/pdf/coverity_prevent.pdf.

[14] D. Engler and K. Ashcraft, "RacerX: Effective, Static Detection of Race
Conditions and Deadlocks", In Proceedings of the Symposium on
Operating Systems Principles, October 2003, pp. 237-253.

[15] P. Cousot, R. Cousot, "A gentle introduction to formal verification of
computer systems by abstract interpretation". In Logics and Languages
for Reliability and Security, J. Esparza, O. Grumberg, & M. Broy (Eds),
NATO Science Series III: Computer and Systems Sciences, © IOS
Press, 2010, pp. 1-29.

[16] G.S. Avrunin, J.C. Corbett, M.B. Dwyer, C.S. Păsăreanu, S..F. Siegel,
"Comparing Finite-State Verification Techniques for Concurrent

Software". Technical Report UM-CS-1999-069, Department of
Computer Science, University of Massachusetts, 1999.

[17] Sun MicroSystem "Analyzing Program Performance With Sun
WorkShop",1999,
http://www.atnf.csiro.au/computing/software/sol2docs/manuals/worksho
p/analyzing/AnalyzingTOC.html

[18] R. C. Seacord. "Secure Coding in C and C++". Addison-Wesley,
September 2005. ISBN: 0321335724.

[19] B. Bellay and H. Gall. "A Comparison of Four Reverse Engineering
Tools". In Proceedings of the 4th Working Conference on Reverse
Engineering (WCRE ’97), Washington, DC, USA, 1997. IEEE
Computer Society, pp. 2-11.

[20] R. Kollman, P. Selonen, E. Stroulia, T. Syst, and A. Zundorf. A Study
on the Current State of the Art in Tool-Supported UML-Based Static
Reverse Engineering. In Proceedings of the 9th Working Conference on
Reverse Engineering (WCRE ’02), Washington, DC, USA, 2002. IEEE
Computer Society, pp. 22-33.

[21] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, "The Software
Model Checker Blast: Applications to Software Engineering". Int.
Journal on Software Tools for Technology Transfer, 9(5-6): pp. 505-
525, 2007. Invited to special issue of selected papers from FASE
2004/05.

[22] T. Ball, E. Bounimova, R. Kumar, V. Levin, " SLAM2: Static Driver
Verification with Under 4% False Alarms", In Formal Methods in
Computer-Aided Design (FMCAD), 2010, pp. 35-42.

70

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

