
Requirements and Solutions for Tool Integration in Software Test Automation

Bernhard Peischl
Softnet Austria

8010 Graz, Austria
bernhard.peischl@soft-net.at

Rudolf Ramler, Thomas Ziebermayr
Software Competence Center Hagenberg

4232 Hagenberg, Austria
{rudolf.ramler, thomas.ziebermayr}@scch.at

Stefan Mohacsi
Siemens IT Solutions and Services

1100 Wien, Austria
stefan.mohacsi@siemens.com

Christoph Preschern
Ranorex GmbH

8053 Graz, Austria
christoph.preschern@ranorex.com

Abstract—In this article, we exemplified today's requirements
in integrating test automation tools in terms of three integra-
tion scenarios combining industrial strength tools in the area of
test management, model-based testing and test executionThe
article further sketches solutions for the three scenarios by
introducing various integration concepts and by discussing
their advantages and drawbacks. Based on successful results
we propose a framework for test tool integration.

Keywords—software test tools; test automation framework;
application integration.

I. INTRODUCTION

The current landscape of solutions for test automation is
characterized by a large number of heterogeneous commer-
cial and open source tools. Many of these tools are highly
specialized solutions for specific aspects of testing, they
focus on different technologies, or they have been designed
with certain development and test paradigms in mind. Hence,
although there is a large variety of specialized test tools for
test case generation, test management, test execution, etc.,
little support for combining the numerous specialized tools to
an integrated solution is offered. In practice, thus, engineers
bother about interfacing two or more tools at the technical
level rather than being able to integrate and enhance these
tools to a custom tool chain that meets the needs of a specific
project or organization. Furthermore, besides the provision
of technical interfaces between single tools, testing activities
require automated support for activities that span across
several steps in the testing process and link testing with re-
lated activities of software development and project man-
agement. Especially with model-based testing gaining mo-
mentum, integration requirements have notably increased
due to the various ways to represent and evolve test cases in
combination with artifacts from requirements engineering,
design and development.

From the perspective of test tool vendors and solution
providers, the situation is characterized by similar chal-
lenges. “80% of the effort Automated Software Quality
(ASQ) tool vendors spend today duplicates the work of oth-
ers, recreating an infrastructure to enable testing and debug-
ging activities. Only 20% of their work produces new func-
tion that’s visible and valuable to testers and developers.” [1]

Vendors and developers of test tools have recognized the
increasing need for integration that allows them to focus on
their specific tool competencies, while still being able to
offer a comprehensive testing solution to their customers.

The objective of our work, therefore, is the development
of integration concepts for test tools that allow connecting
tools from different vendors, each specialized on a particular
task in test automation, within an extensible test automation
framework. In Section 2, we introduce three commercial
software test tools from international tool vendors participat-
ing in the Softnet Austria Competence Network. Section 3
describes the application scenarios used for exploring the
integration requirements. Section 4 summarizes established
integration approaches from which we draw in Section 5,
where we present and discuss concepts and first solutions.
Section 6 summarizes the paper and outlines future work.

II. TEST TOOL LANDSCAPE

To demonstrate and evaluate the proposed integration
concepts, we work together with two international compa-
nies developing commercial software test tools that, in com-
bination, represent a lateral cut across typical activities in test
automation. The following three tools have been involved in
the studied scenarios:
 IDATG [3] (Integrating Design and Automated Test case

Generation) is a tool for generating test data and test
cases that has been developed since 1997 by the Sie-
mens Support Center Test in cooperation with universi-
ties and the Softnet Austria Competence Network. The
IDATG tool supports various approaches for test design
and test case generation including equivalence class par-
titioning, boundary value analysis, cause-effect analysis
[2] as well as random and hybrid test case generation
[3]. Over the years, the functionality has been conti-
nuously expanded and the tool has been successfully ap-
plied in numerous commercial and industrial projects
within Siemens and by customers such as the European
Space Agency ESA. Today, IDATG is a commercial
tool offered in combination with the test management
solution SiTEMPPO described in the following.

 SiTEMPPO [23] is a solution for managing large test
case portfolios and related artifacts such as test data, test

71

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

results and execution protocols. The tool supports test
planning, test case design and specification, the compo-
sition of test suites, manual and automated execution of
test cases as well as the analysis and reporting of test re-
sults [20]. Test management as the coordinating function
of software testing interacts with a variety of other de-
velopment and testing activities such as requirements
management, change and defect management and test
automation. Hence, the tool has to offer interfaces to a
number of related but separate tools for data exchange
and synchronization. SiTEMPPO has been developed by
an initiative of Siemens Austria. Nowadays, the tool is
applied in projects within Siemens all over the world
and it is licensed as commercial product for test man-
agement on the open market with customers from vari-
ous industrial domains as well as commercial and public
organizations.

 Ranorex [24] is a solution for developing and executing
automated test cases. The focus of the Ranorex test tool
is on the user-friendly capture and replay of robust test
scripts building on the accurate recognition and unique
identification of user interface elements of applications
based on a broad spectrum of different technologies,
from C#, VB.NET, WPF, Flex/Flash, to Java and even
Qt. The unique strengths of Ranorex's capturing facili-
ties made it a widely recognized test automation tool
successfully applied by numerous customers all over the
world. The reliable capturing facility allows for an au-
tomatic provision of the various elements of the user in-
terface and can thus support the modeling of user inter-
faces and workflows. Therefore the Ranorex test tool
has also been used in a lightweight model-based ap-
proach for random test case generation and execution
[4]. With the ever increasing variety of user interfaces
and the various notification mechanisms in behind, ro-
bust replay mechanisms are further an important part in
executing and recording the tests being generated.

III. USAGE SCENARIOS AND REQUIREMENTS

In the context of the tools listed above, various usage
scenarios have been identified and investigated.

A. Scenario 1: Test Automation and Execution

The integration of executable test cases provided, e.g., as
test scripts in a test management environment like SiTEMP-
PO is a vital part of automating the test process. In this sce-
nario, we do not address the generation of test cases but take
care of the task of executing the test cases (no matter where
the test cases stem from) and recording the results in a test
case management tool. This scenario involves several tasks.
Typically, for every test case we have to provide test data
and the path to the test script for executing the test case. The
result of the execution is typically persisted in form of a log
file. The test management tool has to access and interpret the
log file in order to derive the results of the test case execu-
tion.

Although a technical solution for interfacing the tools in
this basic scenario can easily be envisioned, when coupling
tools of two different vendors, a couple of challenges are

involved. For example, how can the message "testscript
foo.bar failed in line 42" be mapped to a step in the test case
specification? What is reported if the test case execution is
not terminating or terminates with a timeout? Who should be
notified when the test execution failed due to a problem in
the setup of the execution environment? Such questions are
typical for any integration scenario and illustrate that the
various aspects involved have to be addressed at different
levels of integration by different integration concepts.

B. Scenario 2: Model Evolution in Model-based testing

Model-based testing promises to offer solutions to many
of the problems that make software testing a complex task.
In theory, given a suitable behavioral model of the SUT, any
number of test cases can automatically be generated with
respect to planned adequacy criteria and the model serving as
a test oracle [7]. To leverage the full potential of test case
generation, a complete, detailed and correct model of the
SUT – a golden model – has to be provided. Ideally, such a
model of the SUT is built on the grounds of requirements or
existing specification documents. So the model encodes the
intended behavior and can reside at various levels of abstrac-
tion [7]. Further models that focus on the workflow and the
possible user interactions (e.g., via the GUI elements) may
assist in the systematic design of test cases respectively in
their automated generation.

Even with considerable upfront investments in terms of
resources, time and money, such a golden model can hardly
ever be achieved in practice due to several reasons. First, the
model needs to capture specific aspects of the SUT at a very
detailed level, e.g., GUI elements and workflows. However,
in many cases the requirements do not contain the necessary
details and, thus, the only options are making adequate as-
sumptions or reverse engineering these missing details by
exploring the actual implementation. Second, like program-
ming, modeling is an error-prone task and without frequently
executing the model throughout model development, faults
in modeling are rather the rule than the exception.

Executable models are known to improve the situation,
but are not able to overcome this problem fully. Therefore,
tools such as IDATG propose the combination of model-
based testing with GUI exploration and capturing techniques
employed within capture and replay tools like the Ranorex
Studio. This allows for an early detection of faults in the
models being developed as test cases, as they can be ex-
ecuted on the GUIs and workflows even in early stages of
development when almost no business logic is implemented
behind the GUIs. An agile development process, where GUIs
- from the very beginning - are crucial elements and are thus
directly influencing the modeling process, increase the
chance that the software finally will solve the problem of the
customer rather than conform to a specification that does not
capture the problem in its full shape.

Figure 1 illustrates a scenario for an integrated tool chain.
The scenario involves several tools: the Siemens IDATG test
case generator, a model editor (e.g., a workflow editor or a
UML modeling tool, the IDATG tool comes with its own
model editor), the Ranorex GUI spy and the Ranorex replay
component. The scenario starts with capturing a specific

72

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

view of an application (view 1) and continues with recording
of a second view of the SUT (view 2). Capturing of the GUIs
establishes a rather detailed level of modeling from the very
beginning when compared to a purely manual modeling
process. The process of capturing introduces conceptual units
and recurring building blocks, which support reuse between
test cases and even between test cases across different
projects.

Afterwards, the result is handed over to a modeling tool
where the result of the recording process (view 1 and view 2)
is combined and enriched with further details from the re-
quirements document or the knowledge of the SUT. The
automated extraction of model components alongside with
the composition of components reduces the upfront invest-
ments and thus removes a substantial entry barrier into mod-
el-based testing also from an economical perspective.

Thereafter the criteria for the test case generation are
specified and the model is handed over to the IDATG test
case generator for generating the test sequences (which cor-
respond to paths in the model) and corresponding test data.
Finally, the Ranorex replay component is employed to ex-
ecute the generated test cases on the GUI of the SUT.

Figure 1: Example workflow with an integrated tool chain.

C. Scenario 3: Managing Requirements-based Testing

Testing that the specified requirements have been cor-
rectly and completely transferred into executable software is
an essential part in the software development lifecycle. In
this scenario testing embraces a range of verification and
validation activities as well as interfaces linking the results to
development and management. In particular, this scenario
demonstrates the need to integrate tools across the test and
development process to establish a tool chain where the
results of one phase build the basis for the next phase. How-
ever, the integration is not only characterized by passing on
results but includes several update and feedback cycles.

SiTEMPPO supports a requirements-based approach for
testing by organizing the test case portfolio according to the
structure of the requirements, by tracing test cases to re-
quirements and by reporting test results from the perspective
of covered requirements. Figure 2 gives an overview of the
involved activities and interactions.

Figure 2: Activities and interactions in requirements-based testing.

(1) Requirement trees are imported into the test manage-
ment tool as read-only structure. For every imported re-
quirement one or more test cases are derived. The tree struc-
ture is used to organize the set of new test cases. Coverage
reports show which test cases are linked to requirements and,
vice versa, which requirements are covered by test cases.

(2) In a first run, the test cases are executed manually.
The test execution results are evaluated and (3) defect reports
are issued to a separate defect database when bugs are en-
countered. (4) Furthermore, the evaluated test execution
results are mapped to requirements, indicating that the im-
plementation of a requirement has either been successfully
verified or still contains bugs. This first manual run has a
strong explorative character and not only focuses on testing
the software system but also serves as check whether the
requirements have been correctly translated into test cases.

(5) For stable requirements that are subject to ongoing
regression testing, test engineers – often located at distri-
buted development sites – automate the manual test cases
with tools such as Ranorex Studio or IDATG. The resulting
test scripts are linked to the test cases in the test management
tool. As described in Scenario 1, SiTEMPPO provides me-
chanisms for running the test scripts from within the test
management environment and (6) for collecting the execu-
tion results to evaluate which test cases passed or failed. The
results are again mapped to requirements for reporting.

In many projects changing requirements are a constant
factor that adds further complexity and dynamics to require-
ments-based testing. (7) Changes in the requirements have to
be propagated to the derived test cases and, furthermore, to
the associated test scripts. Keeping requirements, test cases
and test scripts synchronized requires coordination and col-
laboration between the different roles such as requirements
analyst, test manager and test engineer. However, without
appropriate mechanisms incorporated in test and develop-
ment tools, coordination and collaboration becomes an ever
increasing challenge for distributed teams.

While most of today's tools lack support for coordination
and collaboration, SiTEMPPO already includes basic me-
chanisms like versioning of test cases and linking execution
results to the corresponding version of a test set. Neverthe-
less, as users demand short feedback cycles and constantly
up-to-date information on the status and progress of testing
across all involved roles and activities, future solutions need
to close the currently existing gap between the different tools
at the process level.

RE&M
Test

Mgnt.

Manual
Exec.

Auto-
mat.

Exec.
Defect

DB
Test

Report

Exec.
Log

(1) (7)
(2)

(3)
(4)

(5)

(6)

73

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

IV. INTEGRATION CONCEPTS

The area of Enterprise Application Integration (EAI) has
a long history in developing integration concepts for interac-
tion between existing functionality. Approaches for integra-
tion can be categorized by the architectural level where the
integration is established [11] or by the communication para-
digm underlying the integration [12]. We adopted the catego-
ries proposed in literature and summarized the existing inte-
gration concepts in Table 1.

In Table 1, the column Layer indicates the architectural
layer at which the integration is taking place. Technology
names the commonly applied technologies used for integra-
tion. Communication shows whether the possible communi-
cation options are synchronous, asynchronous or both. The
column Coupling indicates the strength of the connection
between the integrated applications. Interaction dynamics
states whether the integration is static or dynamic, i.e., has to
be set up before the start of the application or can be estab-
lished and changed at runtime. Data Transformation is an
important aspect for data exchange between applications and
is therefore supported by some of the listed integration con-
cepts. Usage context indicates from the user perspective
whether integration is possible with one or more other appli-
cations.

In the following, the integration concepts as presented in
Table 1 are briefly described.
 File and Database: Integration at the lowest architectur-

al level, the data level, allows the exchange of data be-
tween otherwise heterogeneous applications. Data level
integration can be implemented in various ways, e.g., by
file exchange, by sharing a database, or by copying data
from one database to another [15]. This approach may
include data transformation if data structures are not
compatible. File data might be structured as XML data
which provide a stable basis for data exchange and
transformation, e.g., using XSLT. While the communi-
cation at data level is often easy to implement and has
minimal impact on the existing applications, the main
drawback of this level is that the applications' existing
functionality is not integrated and therefore not reused.
Redundant implementations of the same functionality
may lead to an increased development and maintenance
effort and, furthermore, increases the risk of incompati-
bility between applications.

 Shared Library and Application Programming Inter-
face (API): Good software design encourages the reuse
of existing implementations, e.g., provided as compo-
nents in a shared library or in form of plugins. Interfaces
encapsulate the functionality and implementation. Via
interfaces the functionality of other applications can be
accessed. Integration at application interface level (see
[11]) can be implemented at different abstraction levels
like integration of data access functionality or integra-
tion of functionality that contains business logic. Inte-
gration at this level leads to strong coupling between
applications. Transformation is not supported by default
and it supports integration with a single other applica-
tion. However, if an application already provides an
API, implementing integration at this level is easily
achievable even without additional infrastructure.

 Business components, Remote Procedure Calls
(RPC): At higher abstraction levels an application may
consist of business components that provide rather
coarse-grained business functionality [13]. This functio-
nality can be integrated in other applications in various
ways, either by packing them to the application where
they should be integrated or by remote procedure calls.
Using business components remotely requires that the
remote application is running. Business components
provide the highest functional abstraction level of an ap-
plication and, therefore, reuse at the highest functional
level. Coupling at this level is strong and transformation
support not natively built in. Yet the functional reuse
level is high.

 Service: Software services provide means for loose
coupling of applications as they encapsulate functionali-
ty and the site where this functionality is running [14].
The concept of Web services provides standardized pro-
tocols for communication to integrate applications
across platform borders. Overall, integration at service
level means integration at a coarse-grained business
function level for reusing application functionality at
business level. The advantage of this level is the loose
coupling and mostly standardized communication proto-
cols, but without additional infrastructure, communica-
tion is still synchronous without transformation support
and it is used for integration with a single application.

 Messaging: In some cases asynchronous communica-
tion is required due to performance reasons or the need

TABLE I. OVERVIEW OF INTEGRATION CONCPETS

Layer Technology Communication Coupling
Interaction

dynamics
Transformation Usage context

Business process Workflow Engine both transparent business rules low multi role

Service Bus both transparent business rules yes multi application

Messaging asynchron transparent registration low multi application

Service synchron loose registration/broker low single application

Business components/RPC both strong static low single application

Shared library/API synchron strong static/plug‐in low single application

Database both strong static low single/multi app.

File both strong static possible (XSLT) single application
Data

Application

74

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

for weak coupling. These requirements can be addressed
by a message queue which decouples communication
partners in a timely manner and provides guaranteed
message delivery. Message queues are also used for
sending messages to multiple applications (broadcast),
with or without feedback about delivery; see integration
styles in [6]. Advantages of this integration level are
asynchronous communication, low coupling and inte-
gration possible with multiple applications.

 Service Bus: A common integration concept is the ser-
vice bus which provides functional support for the inte-
gration and communication between applications. The
idea is to connect all applications with a bus where ap-
plications put messages on the bus and others listen and
take the messages relevant to them. A service bus also
supports plugging in additional components like trans-
formation or filter components that allow modifying or
removing messages. Furthermore, some service bus im-
plementations support defining message flows between
applications and components including splits and joins
[6]. This integration level supports all features presented
in Table 1 except the possibility of integration along a
workflow involving responsibilities and roles.

 Workflow Engine: From a user perspective, the usage
of applications follows organizational workflows which
define task order and responsibilities. In order to ac-
complish the work, a workflow might contain multiple
tasks that utilize different applications. From a technical
perspective, a sequence flow between tasks utilizing dif-
ferent applications indicates integration of those applica-
tions (see also [16]). Workflow engines are able to im-
plement communication at workflow level and coordi-
nating the use of applications integrated at a technical
level. This is the highest and most abstract integration
level with support for transparent coupling, dynamic in-
teraction based on business rules and integration of the
work processed by multiple roles.

V. SOLUTIONS AND DISCUSSION

This section describes and discusses how the integration
requirements elaborated from the usage scenarios in Section
III can be supported by the technologies presented in Section
IV. The integration concepts have been explored either via a
(prototypical) implementation or a design study elaborated
together with developers and architects of the test tools.

A. Scenario 1: Test Automation and Execution

In coupling the SiTEMPPO test management solution
with the Ranorex test automation tool, we follow the para-
digm of a strong coupling with the need for both, asynchron-
ous and synchronous communication. Due to the specialized
interface, the interaction dynamics remains static without the
need for transformations. Thus, the integration is established
via files, i.e., at the level of the data layer (Table I). In detail,
the prototypical integration of the SiTEMPPO and Ranorex
tools has been implemented as follows:

Ranorex Studio allows creating executable test suites.
When the execution of a set of automated tests is triggered in
SiTEMPPO, Ranorex Test Runner is called for each test

case, passing the name of the corresponding test script as
command line parameter. The execution generates a log file
in a predefined directory, which is processed by an import
adapter implemented as part of SiTEMPPO. The adapter
extracts the information relevant for deciding on the test
result (passed, failed or blocked).

In order to access the Ranorex tool from within Si-
TEMPPO, several global settings have to be made in the
configuration of the test management environment, e.g., the
path to the executable test scripts, the execution log, and the
necessary runtime libraries. Hence, the interface implementa-
tion part of SiTEMPPO requires exception handling strate-
gies to deal with erroneous configurations and timeouts.
Additional setup, rollback and restart mechanisms need to be
included in the automated test scripts. Furthermore, prede-
fined execution orders due to implicit dependencies between
test scripts cannot be handled by SiTEMPPO.

The benefit of the low-level, static coupling between the
two tools is the straightforward implementation of the inter-
face and the ability to consider tool-specific extensions. This
benefit turns into a drawback as soon as interfaces for several
different test automation tools should be provided. Develop-
ing and maintaining a large set of interfaces is cumbersome
as the external interfaces may change without notice when-
ever a new version of an integrated tool is released.

Our experience with implementations for this scenario
showed that the initial use case also stretches into the organi-
zation dimension. While in an ideal setting the test manage-
ment supervises the top-down development of automated test
scripts from previously defined and specified test cases, in
practice, many valuable test scripts also emerge bottom-up
and need to be incorporated into the managed test structure.
Gathering existing test cases and keeping them synchronized
results in a considerable effort for test managers, especially
in a distributed project setting. Hence, the need for tool sup-
port for discovering and "importing" existing test cases soon
appeared as additional requirement. As a consequence we
propose an approach emphasizing the inversion of control –
developers of automated test scripts should register the new
or changed test cases with test management. The responsibil-
ity to maintain and update the test cases remains with the test
script developers. Integration concepts that support this ap-
proach are presented and discussed as part of Scenario 3,
Section C.

B. Scenario 2: Model Evolution in Model-based Testing

A key requirement for our Scenario 2 is the interaction
dynamics. Any solution has to guarantee acceptable response
times and ease of use in switching from one tool to the other.
Thus, we favor synchronous communication mechanisms
and no or rather low need for transformations. There are no
multiple roles involved and the interaction happens always
between two tools. Thus we propose shared libraries, busi-
ness components, and plug-ins to implement Scenario 2.

Plug-ins are a common mechanism for adding third-party
tools to a tool suite. A plug-in explicitly provides informa-
tion about its dependencies on other plug-ins. Furthermore, a
plug-in can change menus and menu entries as well as popup
menus and toolbars. Additionally, it is possible for plug-ins

75

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

to notice the execution of menu actions of other plug-ins [8].
For these reasons, a plug-in mechanism is very well suited to
implement the desired coupling on the application level.

According to [9], a software component is a unit of com-
position with contractually specified interfaces and explicit
context dependencies only. A software component can be
deployed independently and is subject to composition by
third parties. Besides the specification of provided interfaces,
the definition of a component also requires components to
specify their needs. In other words, a component requires a
specification of what the deployment environment will need
to provide such that the component will operate. In principle,
this is a generalization of plug-ins and might thus be appro-
priate for implementing the coupling as well.

Software engineers in general create many scenarios (and
corresponding model artifacts) and often recall prior work as
they develop models for novel use cases. The process of re-
finding patterns is a popular approach in this respect and will
be supported by the concept of a shared library. However,
the adequate abstraction level of the models (or building
blocks) stored in the library is a challenging research issue.
Basically, we pursue two main directions in supporting re-
usability: tagging and structural similarity [5].

C. Scenario 3: Managing Requirements-based Testing

The third scenario is characterized by the need for inte-
gration at the process level to support coordination and col-
laboration across different roles, phases and distributed de-
velopment sites. Conventional approaches rely on a central
coordination instance, usually represented by test manage-
ment. In that constellation the test management tool is used
as central hub, gathering and consolidating information from
the various other test tools. Technically, the interfaces be-
tween the involved tools remain on the lowest level; mainly
data exchange via import/export facilities is supported.

The specialization of the different tools is generally
quoted as reason why sharing functionality between tools is
insufficiently attractive. However, the numerous redundant
features provided by the different tools reveal that the oppo-
site is true. For example, almost all tools implement their
own reporting. The slight but obvious variances in the report-
ing of the different tools are a common nuisance for users,
especially when they try to analyze the status of testing over
all activities from data spread across different tools. As a
result, existing reporting facilities are once more imple-
mented as part of test management tools in an attempt to
create a homogeneous, aggregated view on the test process.

With the test management tool as central hub and all oth-
er tools arranged as satellites, the management tool becomes
the bottleneck in the test tool infrastructure. It has to provide
interfaces to all tools included in testing and, thus, the pro-
vided interfaces are the main limitation in the choice of ap-
plicable tools. Projects suffer from this inflexibility when the
optimal test tool cannot be applied due to test management
not offering the corresponding interface or – in case generic
adapters exist – when test management lacks the resources to
setup and maintain the necessary interface configurations.
Moreover, the strong coupling of the data level integration
turns intro rigid dependencies. Even minor changes in the

data format may render the interface incompatible. Hence, in
practice, many projects are tied to outdated versions of tools
because of update incompatibilities. Tool providers, howev-
er, often do not even know about the potential conflicts since
they are not aware of the dependencies to the interface im-
plemented as part of the test management tool.

As indicated in Scenario 1, Section A, we propose to em-
phasize the Inversion of Control principle for tool integration
at the process level. Test management has to be released
from the burden of gathering and extracting data from the
various other test tools. In contrast, the satellite tools have to
take over the responsibility of providing the necessary data
and maintaining compatibility. Now, however, instead of test
tools interfacing directly with various different test manage-
ment tools resulting in a complex point to point integration,
the tool communication should be extracted into a separate
integration facility serving as backbone of the tool infrastruc-
ture. Service-oriented concepts have been proposed and were
successfully evaluated for software engineering environ-
ments [17]. Drawing from positive experience with integrat-
ing software engineering tools, we adopted the service bus
approach (Figure 2) specifically for test tools.

Figure 3: Engineering Service Bus (EngSB) for integrating software

engineering tools [17].

The illustrated approach enables communication between
the different tools beyond the level of data exchange. Status
messages can be exchanged to notify other tools about com-
pleted activities and pending updates. For example, test ex-
ecution tools can send a message indicating the successful
completion of a test run. The message can include relevant
result information and a link to the execution log. Thus,
instead of storing static configuration details such as the
location of execution logs in the test management tool's
settings, all concerned tools register for the corresponding
message and receive the information at runtime. Further-
more, the link may not point to a static location from where
the log is retrieved as file, but to a service interface that al-
lows querying and analyzing relevant aspects of the execu-
tion. Providing the query logic as a service of the execution
tool avoids redundant implementation of analysis functions.

A prerequisite for the service-based integration of tools is
the agreement about offered services, data structures and
exchange formats. In software and systems engineering and
in particular in testing, several relevant standards are in
place, for example the UML Testing Profile [21, 22], the
IEEE Std. 829-2008 for Software and System Test Docu-
mentation, or the Requirements Interchange Format [18].

76

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

Furthermore, automated transformation of messages, models
and data formats implemented in form of services are also
connected to the service bus.

Communication and teamwork requirements can be ad-
dressed by adding shared services for reporting, monitoring,
status notification and even workflow-based collaboration.
An example for a tool providing shared services is a test
cockpit [19] providing insight on the status and progress of
testing across all involved roles and activities.

VI. CONCLUSION AND FUTURE WORK

In this article, we exemplified today's requirements in in-
tegrating test automation tools in terms of three integration
scenarios combining industrial strength tools in the area of
test management, model-based testing and test execution:
The test and requirements management tool SiTEMPPO, the
Siemens IDATG tool for model-based testing, and the Rano-
rex automation tool suite. The integration scenarios represent
typical situations frequently encountered in real-world
projects by the authors: (1) Combining test automation and
test execution, (2) model development and evolution in mod-
el-based testing, and (3) the management of requirements-
based testing and regression testing. For each of these scena-
rios, solution concepts have been developed and explored
together with developers and architects of the presented
tools, based on existing integration technologies (file-level
data exchange, plug-in concept, messaging and service bus).
It could be shown that the elicited integration requirements
of each scenario can be addressed by applying existing con-
cepts, which are attributed the potential for building a
framework able to combine a set of heterogeneous tools by
different vendors. Although the higher-level integration
concepts show a larger potential w.r.t. integrating heteroge-
neous tools, we also found that no single integration concept
is able to cover all requirements from the explored scenarios.

Our next step will be to consolidate the existing imple-
mentations and concepts towards a service-oriented integra-
tion platform easily extendable by future test and develop-
ment tools.

ACKNOWLEDGMENT

The research herein is partially conducted within the
competence network Softnet Austria II (www.soft-net.at,
COMET K-Projekt) and funded by the Austrian Federal
Ministry of Economy, Family and Youth (bmwfj), the prov-
ince of Styria, the Steirische Wirtschaftsförderungsgesell-
schaft mbH. (SFG), and the city of Vienna in terms of the
center for innovation and technology (ZIT).

REFERENCES
[1] The Hyades Project Automated Software Quality for Eclipse:

http://www.eclipse.org/tptp/home/archives/hyades/project_info/Hyad
esFormation.12.pdf, last visited on 27th June 2011.

[2] A. Beer and S. Mohacsi, “Efficient Test Data Generation for
Variables with Complex Dependencies”, Int. Conf. on Software
Testing, Verification, and Validation, 2008, pp. 3-11.

[3] S. Mohacsi and J. Wallner, “A Hybrid Approach for Model-Based

Random Testing”, in Advances in System Testing and Validation
Lifecycle (VALID), 2010, pp.10-15, 22-27 Aug. 2010

[4] B. Hofer, B. Peischl, and F. Wotawa, “GUI Savvy End-to-End
Testing with Smart Monkeys”, Fourth International Workshop on the
Automation of Software Test, Vancouver, Canada, May 16-24, 2009.

[5] W.N. Robinson and H.G Woo,“Finding reusable UML sequence
diagrams automatically”, IEEE Software, vol. 21, no. 5, pp. 60- 67,
Sept.-Oct. 2004.

[6] G. Hohpe and B. Woolf, “Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions”, Addison-Wesley
Professional, 2003.

[7] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-
based testing approaches”, Software Testing, Verification and
Reliability, 2011. Published online, paper version in press.

[8] S. Burmester et al., “Tool integration at the meta-model level: the
Fujaba approach”, Int. J. Softw. Tools Technol. Transf. 6, 3 (August
2004), pp. 203-218.

[9] C. Szyperski, “Component Software: Beyond Object-Oriented
Programming”, 2nd ed. Addison-Wesley Professional, Boston ISBN
0-201-74572-0.

[10] Eclipse TPTP, Eclipse Test & Performance Tools Platform
Project,http://www.eclipse.org/tptp/, last visited 27th July 2011.

[11] D.S. Linthicum, “Enterprise Application Integration”, Addison-
Wesley Professional, 1999, ISBN.: 978-0-201-61583-8.

[12] Gregor Hohpe, Bobby Woolf: Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions. Addison-
Wesley Professional, 2003.

[13] P. Herzum and O. Sims, “Business Components Factory: A
Comprehensive Overview of Component-Based Development for the
Enterprise”, John Wiley & Sons, New York, NY, USA 2000,
ISBN:0471327603.

[14] T. Erl, “Service-Oriented Architecture: Concepts, Technology, and
Design”, Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[15] M. Vujasinovic and Z. Marjanovic, “Data Level Enterprise
Applications Integration”, in Business Process Management
Workshops, pp. 390-395, Volume 3812, Lecture Notes in Computer
Science 2006, Springer.

[16] J.A. Espinosa and A. Sanz Pulido, “IB (Integrated Business): A
Workflow-Based Integration Approach”, Hawaii International
Conference on System Sciences (HICCS), 2002.

[17] S. Biffl and A. Schatten, “A Platform for Service-Oriented Integration
of Software Engineering Environments”, 8th International
Conference on Software Methodologies, Tools and Techniques
(SOMET 09), 2009.

[18] M. Jastram and A. Graf, “Requirements, Traceability and DSLs in
Eclipse with the Requirements Interchange Format (RIF/ReqIF)”,
Dagstuhl-Workshop MBEES 2011: Modellbasierte Entwicklung
eingebetteter Systeme, 2011.

[19] S. Larndorfer, R. Ramler, and C. Buchwiser, “Experiences and results
from establishing a software cockpit at BMD Systemhaus”, 35th
Euromicro Conf. on Software Engineering and Advanced
Applications (SEAA 2009), pp. 188-194, IEEE, 2009.

[20] R. Ramler, G. Czech, and D. Schlosser, “Unit Testing beyond a Bar
in Green and Red”. 4th int. Conf. on Extreme Programming and Agile
Processes in Software Engineering, XP 2003.

[21] OMG, “UML testing profile Version 1.0”, OMG, 2005. formal/05-
07-07; http://utp.omg.org/.

[22] P. Baker, Z. Ru Dai, J. Grabowski, O. Haugen, I. Schieferdecker, and
C. Williams, “Model-Driven Testing: Using the UML Testing
Profile”, Springer, 2007.

[23] SiTEMPPO: www.siemens.at/sitemppo, visited 27th July 2011.

[24] Ranorex Automation Studio: www.ranorex.at, visited 27th July 2011.

.

77

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

