
Model Reconstruction: Mining Test Cases

Edith Werner and Jens Grabowski
Software Engineering for Distributed Systems Group

Institute for Computer Science,
University of Göttingen, Göttingen, Germany
{ewerner|grabowski}@cs.uni-goettingen.de

Abstract—System monitors need oracles to determine
whether observed traces are acceptable. One method is to
compare the observed traces to a formal model of the sys-
tem. Unfortunately, such models are not always available —
software may be developed without generating a formal model,
or the implementation deviates from the original specification.
In previous work, we have proposed a learning algorithm to
construct a formal model of the software from its test cases,
thereby providing a means to transform test cases for offline
testing into an oracle for monitoring. In this paper, we refine
our learning algorithm with a set of state-merging rules that
help to exploit the test cases for additional information. Using
the additional information mined from the test cases, models
can be learned from smaller test suites.

Keywords-Machine Learning, Reverse Engineering, Testing

I. INTRODUCTION

Today, software systems are generally designed to be
modular and reusable. A common scenario of a modular,
reusable system is a web service, where simple services
are accessed as needed by various clients and orchestrated
into larger systems that can change at any moment. While
the vision of ultimate flexibility is clearly attractive, there
are also drawbacks, as the further usage of a module is
difficult to anticipate. In this scenario, it may be advisable
to monitor a system for some time after its deployment, to
detect erroneous usage or hidden errors.

Monitors are used to observe the system and to assess the
correctness of the observed behavior. To this end, monitors
need oracles that accept or reject the observed behavior, e.g.,
a system model that accepts or rejects the observed traces of
the monitored system. Unfortunately, the increasing usage
of dynamic software development processes leads to less
generation of formal models, as the specification of a formal
model needs both time and expertise. Generating a formal
model in retrospect for an already running system is even
harder, as the real implementation often deviates from the
original specification.

We propose a method for learning a system model from
the system’s test cases without probing the System Under
Test (SUT) itself. When test cases are available, they often
are more consistent to the system than any other model.
Ideally, they take into account all of the system’s possible
reactions to a stimulus, thereby classifying the anticipated
correct reactions as accepted behavior and the incorrect or

unexpected reactions as rejected behavior. As the test cases
are developed in parallel to the software, they provide a
means to judge the correct behavior of the system. Also,
test cases are generated at different levels of abstraction,
e.g., for unit testing, integration testing, and system testing.
By selecting the set of test cases to be used, the abstraction
level of the generated model is influenced.

The basis of our approach is a learning algorithm, first
introduced by Angluin [1], which learns a Deterministic
Finite Automaton (DFA). To learn from test cases, we
adapted the query mechanisms of the algorithm [2]. Exper-
iments with our approach show that while a model can be
learned this way, the algorithm only accepts simple traces
as input, thereby losing additional information from the test
cases, e.g., regarding branching, default behavior, or syn-
chronization. We believe that exploitation of this additional
information would enhance the learning algorithm.

In this paper, we propose a state-merging approach,
termed semantic state-merging, which exploits the semantic
properties of test cases in order to identify implicitly defined
behavior. We first define a data structure, the trace graph, to
store the available test cases. Then, we define merging rules
for cyclic test cases and for test cases with default branches
for the construction of the trace graph.

The remainder of this paper is structured as follows.
Section II gives an overview on related work. In Section III,
we introduce the foundations of our work in testing and ma-
chine learning. Section IV describes the trace graph and its
construction. Based on this, Section V defines our approach
to semantic state-merging on test cases. Subsequently, in
Section VI, we give an overview on our experimental
results. In Section VII, we conclude with a summary and
an outlook.

II. RELATED WORK

During the last years, a number of approaches have
adapted Angluin’s learning algorithm in combination with
testing. Mainly, the approaches focus on the learning side
of the problem and refine the properties of the generated
model. Among the most recent adaptations are approaches to
learning Mealy machines [3] and parameterized models [4],
[5], [6], [7]. Some approaches can handle large or even
infinite message alphabets [4] or potentially infinite state

97

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

spaces [5]. In all those approaches, the learning algorithm
generates test cases that are subsequently executed against
the SUT, so that the System Under Test itself is the oracle
for the acceptability of a given behavior.

Some approaches use outside guidance to improve the
learning approach. The algorithm presented in [8] learns
workflow petri nets from event logs and handles incomplete
data by asking an external teacher. In [9], learning is used
in a modeling approach. In this approach, a domain expert
provides Message Sequence Charts representing desired and
unwanted behavior.

Our approach differs from the above in two aspects. First,
our aim is to generate a model for online monitoring. To
this end, we need a model that is independent from the
implementation itself. Therefore, we can neither use the
implementation as an oracle nor learn from event traces
generated by the implementation. Instead, we choose to learn
from a test suite that was developed due to external criteria.
Using a test suite also leads to the second difference of our
approach. Where other approaches rely on unstructured data,
a test suite provides relations between the distinct traces.
We exploit those relations in order to enhance our learning
procedure. Where other approaches address the learning side
of the problem, our focus is actually on the structure of the
teacher.

III. FOUNDATIONS

In the following, the foundations of testing and on the
learning of DFA are given.

A. Testing

A test case is itself a software program. It sends stimuli to
the SUT and receives responses from the SUT. Depending
on the responses, the test case may branch out, and a test
case can contain cycles to test iterative behavior. To each
path through the test case’s control flow graph, a verdict is
assigned. A common nomenclature is to use the verdict pass
to mark an accepting test case and the verdict fail to mark a
rejecting test case. An accepting test case is a test case where
the reaction of the SUT conforms to the expectations of the
tester. This can also be the case, when an erroneous input is
correctly handled by the SUT. Accordingly, a rejecting test
case is a test case where the reaction of the SUT violates
its specification. Depending on the test specification, there
may be additional verdicts, e.g., the Testing and Test Control
Notation version 3 (TTCN-3) [10] extends the verdicts pass
and fail with the additional verdicts none, inconc, and
error: none denotes that no verdict is set; inconc indicates
that a definite assessment of the observed reactions is not
possible, e.g., due to race conditions on parallel components;
and error marks the occurrence of an error in the test
environment. During the execution of a test case, the verdict
may be changed at different points. The overall assessment
of a test case depends on the verdicts set along the execution

trace, and is computed according to the rules of the test
language. E.g., in TTCN-3, the overall verdict may only be
downgraded, i.e., once an event was rated as fail the overall
verdict may not go back to pass. For most SUTs, there is a
collection of test cases, where each test case covers a certain
behavioral aspect of the SUT. Such a collection of test cases
for one SUT is called a test suite.

The main objective when constructing test cases for a
software system is to assure that the specified properties are
present in the SUT. To test against a formal specification,
e.g., in the form of a DFA, test cases are derived from the
model by traversing the model so that a certain coverage
criterion is met, e.g., state coverage or transition coverage.
State coverage means that every state of the model is visited
by at least one test case. Transition coverage means that
every transition of the model is visited by at least one test
case. The largest possible coverage of a system model is
path coverage, where every possible path in the software is
traversed.

B. Learning a Finite Automaton Model from Test Cases

Our learning approach is based on a method proposed by
Angluin [1]. The algorithm consists of the teacher, which
is an oracle that knows the concept to be learned, and the
learner, who discovers the concept. The learner successively
discovers the states of an unknown target automaton by
asking the teacher whether a given sequence of signals is
acceptable to the target automaton. To this end, the teacher
supports two types of queries. A membership query evaluates
whether a single sequence of signals is a part of the model
to be learned. An equivalence query establishes whether the
current hypothesis model is equivalent to the model to be
learned.

For learning from test cases, we need to redefine the two
query types for test cases. The most important mechanism
of the learning algorithm is the membership query, which
determines the acceptability of a given behavior. In our case,
the behavior of the software and thus of the target automaton
is defined by the test cases. Since the test cases are our only
source of knowledge, we assume that the test cases cover the
complete behavior of the system. In consequence, we state
that every behavior that is not explicitly allowed must be
erroneous and therefore has to be rejected, i.e., rejected ≡
¬accepted. In consequence, we accept a sequence of signals
if we can find a pass test case matching this sequence, and
reject everything else.

The equivalence query establishes conformance between
the hypothesis model and the target model. This is exactly
what a test suite is designed for, therefore, we redefine the
equivalence query as an execution of the test suite against the
hypothesis model, where every test case in the test suite must
reproduce its verdict. A detailed description of the learning
algorithm can be found in [2], [11].

98

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

IV. REPRESENTING TEST CASES

For the learning procedure, it is important that queries can
be answered efficiently and correctly. Therefore, we need a
representation of the test suite that is easy to search and
provides a means to compactly store a large number of test
cases. In the following, we define the trace graph as a data
structure and describe its construction.

A. The Trace Graph

As described in Section III-A, in general, a test case is
itself a piece of software and can therefore be represented
as an automaton containing a number of event sequences.
Usually, a test case distinguishes events received from the
SUT, events sent to the SUT, and internal actions like value
computation or setting verdicts. Each possible path through
the test case must contain the setting of a verdict.

For the learning procedure, we only regard input and
output events as the transitions in our target model and
ignore internal actions except for the setting of verdicts. The
verdicts are used to identify accepting test cases.

In general, every test case combines a number of traces,
depending on the different execution possibilities. At the
same time, a test suite contains a number of test cases, where
different test cases may contain identical traces as they partly
overlap. To present the test cases to the learning algorithm,
we combine all traces from all test cases in the test suite into
a single data structure, the trace graph, thereby eliminating
duplicates and exploiting overlaps.

To enable an efficient search on the test cases, the trace
graph is based on a labeled search tree, where all traces share
the same starting state and traces with common prefixes
share a path in the trace graph as long as their prefixes match.
For the state-merging approach, the nodes in the trace graph
are annotated with the verdicts. Cycles in the test cases are
represented in the trace graph by routing the closing edges
back to the starting node of the cycle. For better control,
nodes where a cycle starts are also marked.

The trace graph forms the basic data structure for our se-
mantic state-merging. The semantic state-merging methods
depend on the information contained in the test cases, which
in turn depends on the test language. To represent this, the
trace graph can be extended to represent diverse structural
information on the test cases by defining additional node
labels. That way, information on the test cases will only
affect the construction of the trace graph, but not the learning
procedure that depends on its structure.

B. Constructing the Trace Graph

To construct the trace graph, we dissect the test cases into
single traces and add them to the trace graph. Starting in the
root of the trace graph, the signals in the trace to be added
are matched to the node transitions in the trace graph as far
as possible. We call this part of the trace the common prefix.
The remainder of the new trace, the postfix, is then added to

the last matched node. Algorithm 1 describes the procedure
in pseudo code.

Data: A sequence of signals w
Start at the root node n0 of the trace graph;1

for all signal in w do2

Get the first signal b in w;3

if the current node has an outgoing edge marked b4

then
Move to the b-successor of n, which is δ(n, b);5

Remove the first signal from w;6

else7

// The signal is unknown at the current node
Add w as a new subgraph at the current node;8

return;9

end10

end11
Algorithm 1: Add a Trace to the Trace Graph

Cycles of the test case automaton need special treatment,
as a cycle means that an edge loops back to an existing node.
To this end, we separate the cyclic traces into three parts, a
prefix leading into the cycle, the cycle itself and a postfix
following the cycle. We then add the prefix and the cycle,
whereby the last transition in the cycle is linked back to the
beginning of the cycle. Finally, the postfix then is added to
the trace graph.

V. MINING THE TEST CASES

So far, the state-merging in the trace graph only means
the combination of the test case automata, where traces
are only merged as far as their prefixes match. The trace
graph therefore exactly represents the test cases, but nothing
more. In the following, we show two techniques to derive
additional traces based on our knowledge of test cases.

A. Cycles and Non-Cycles

When testing a software system with repetitive behavior
or a cyclic structure, the cycle has of course to be tested.
However, usually it is sufficient to test the correct working
of the cycle in one test case. In all other test cases the
shortest possible path through the software is considered,
which may mean that test cases execute only a part of a cycle
or completely ignore a cycle. Depending on the test purpose,
the existence of the cycle might not even be indicated in the
test case. As long as the cycle itself is tested by another
test case, the test coverage is not influenced. This approach
results in shorter test cases, which means shorter execution
time and thus faster testing. Furthermore, the readability
of the test cases is increased. While the preselection of
possible paths for cycles is appropriate for software testing,
for machine learning it is desirable to have access to all
possible paths of the software.

99

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

start

 a
b

 c

setverdict
(pass)

(a) A Test Case with a Cycle

start
 a

 c

setverdict
(fail)

(b) A Test Case without a Cycle

PASS

NONEa

NONE

b

FAILc

c

(c) Trace Graph Combining
Both Test Cases

Figure 1. Precedence of Cyclic Behavior

Consider the two test cases shown in Figures 1a and 1b.
Although this is only a small example for demonstration
purposes, the setting is quite typical. The test case shown in
Figure 1a tests the positive case, that is, a repeated iteration
of the three signals a, b, and c. The test case shown in
Figure 1b tests for a negative case, namely what happens
if the system receives the signal c too early. In the latter
test case, the repetitive behavior is ignored, as it has been
tested before and the test focus is on the error handling of
the system. However, usually this behavior could also be
observed at any other repetition of the cycle.

For the learning procedure, we would like to have all
those possible failing traces, not only the one specified. We
therefore define a precedence for cycles, which means that
whenever a cycle has the same sequence of signals as a non-
cyclic trace, the non-cyclic trace is integrated into the cycle.
Figure 1c shows the trace graph combining the two test cases
in Figures 1a and 1b. Besides the trace a, c, setverdict(fail)
explicitly specified in Figure 1b, the trace graph also con-
tains traces where the cycle is executed multiple times, (a,
b, c)*, a, c, setverdict(fail). With precedence of cycles, the
test suite used as input to the learning algorithm can be more
intuitive, as cycles only need to be specified once.

B. Default Behavior

Another common feature of test cases is the concentration
on one test purpose. Usually, the main flow of the test
purpose forms the test case, while unexpected reactions of
the SUT are handled in a general, default way. Still, there
may exist a test case that tests (a part of) this default behavior
more explicitly.

Default branches usually occur when the focus of the test
case is on a specific behavior, and all other possible inputs
are ignored or classified as fail. Also, sometimes a test case
only focuses on a part of the system, where not all possible
signals are known. In such cases, the test case often contains
a default branch, which classifies what is to be done on
reading anything but what was specified.

For our application, this poses two challenges. The first
challenge is in the learning procedure. For the different
queries, we need to have as many explicitly classified traces
as possible, but at the same time we do not want to blow
up the size of the test suite. The second challenge is in the

start
a

 b

else

setverdict
(pass)

setverdict
(fail)

(a) Test Case

NONE NONEa
PASSb

FAIL

C{b}

(b) Trace Graph

Figure 2. Representing Default Branches

start
 prefix

subgraph Aa

subgraph BC{a}

Figure 3. Generic Trace Graph with Default Branch

construction of the trace graph. When adding all different
traces into one combined structure, the implicit context
of what is “default” in the local test case is lost. Also,
sometimes another test case uses the same default, adds more
specific behavior in the range of the default, or defines a new
default which slightly differs. We therefore need a method
of preserving the local concept of “default” in the test cases
and a method of combining different defaults in the trace
graph.

Consider a typical default situation, like a default state-
ment in a switch-case environment. The default collects
all cases that are not explicitly handled beforehand. As
branching on alternatives splits the control flow in a pro-
gram, each of the branches belongs to a different trace.
Therefore, when taking the traces one by one, the context
of the default is not clear. To preserve this context, instead
of default we record the absolute complementary of the set
of other alternatives, which is {{a, b}. A complementary set
is a set that contains everything but the specified elements.
Figure 2 shows a test case with defaults (Figure 2a) and
its representation as a trace graph using the complementary
set notation (Figure 2b). The branch marked with {{a}
represents every branch not marked with a.

Figure 3 shows a trace graph with a default branch in
a general way. There are some arbitrary transitions leading
to the default (marked with prefix), the default branching
itself with an edge marked a and an edge marked {{a}
(”everything but a”), and the arbitrary subgraphs of a and
{{a}.

When adding a trace with a matching prefix to this trace
graph, the signal s following the prefix can be matched to
the trace graph according to one of the following three cases.

• Exact Match: s matches one of the branches of the trace
graph, i.e., if s is a complementary set, it is identical
to the complementary set in the trace graph.

• Subset: s matches one signal (or a subset of signals) of
the complementary set in the trace graph.

• Overlap: s is a complementary set, and overlaps the
complementary set in the trace graph.

The first and simplest case is the exact match, where
a trace with a matching complementary set is added. As
the complementary sets are identical, it suffices to add

100

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

start
prefix

 C{a}

postfix

(a) Test Trace to be Added

start
 prefix

subgraph A a

subgraph B
 +

postfix

 C{a}

(b) New Trace Graph

Figure 4. Add a Trace with a Matching Default

start
prefix

 b

postfix

(a) Test Trace to be Added

start
 prefix

subgraph Aa

subgraph B
C{a,b}

subgraph B

b copy

(b) Modify the Trace Graph:
Split the Default Branch

start
 prefix

subgraph Aa

subgraph BC{a,b}

subgraph B
 +

postfix

b

(c) New Trace Graph

Figure 5. Add a Trace with a Subset of the Default

the postfix of the trace to the subgraph of the default
already in the trace graph. Figure 4 illustrates this. Figure 4a
shows the test trace to be added. The prefix of the trace
matches the prefix of the trace graph (see Figure 3) and
the complementary set {{a} matches the complementary
set in the trace graph. Therefore, the postfix of the trace
has to be added to the subgraph of the complementary set.
Assuming that there are no other defaults in the postfix,
this is done according to the construction rules described
in Section IV-B. Figure 4b depicts the resulting trace graph
after the new trace was added.

In the second case, the new trace matches a subset of
the complementary set in the trace graph. The situation is
depicted in Figure 5, the signal following the prefix in the
trace (Figure 5a), b, is a subset of the complementary set
{{a}. However, the postfix cannot simply be added to the
subgraph of the complementary set, as this would allow
unspecified traces. Instead, before adding the postfix, the
trace graph is modified as shown in Figure 5b. The signal b
is removed from the complementary set and represented by
a distinct edge. Now, the new trace matches exactly and the
adding proceeds as described for the first case. Figure 5c
shows the result.

In the third and last case, the complementary sets of the
new trace and the trace graph overlap (see Figure 6). The
trace contains an edge marked with the complementary set
{{b} (Figure 6a), whereas the trace graph contains an edge
marked with the complementary set {{b} (see Figure 3). The
complementary set of the test trace to be added does not fit
the complementary set of the trace graph, but there is an
overlap, i.e., every signal which is neither a nor b matches
both sets.

The solution is similar to the second case. The transitions

start
prefix

C{b}

postfix

(a) Test Trace to be Added

start
prefix

subgraph Aa

subgraph B
C{a,b}

subgraph B

b copy

(b) Modify the Trace Graph:
Split the Default Branch

start
prefix

 C{a,b}

a

 copy

postfix

postfix

 copy

(c) Modify the Test Trace:
Split the Default Branch

start
 prefix

subgraph A
 +

postfix
a

subgraph Bb

subgraph B
 +

postfix

C{a,b}

(d) New Trace Graph

Figure 6. Add a Trace with a Differing Default

in the trace need to match the transitions in the trace graph,
so the sets are split accordingly. For the trace graph, the
edge marked b is branched out from the complementary set
(Figure 6b). The remaining complementary set in the trace
graph is {{a, b}. However, the complementary set of the
test trace still does not match, so the test trace is also split
(Figure 6c). The complementary sets of the trace graph and
the test trace are now identical, {{a, b}, but the test trace
has been split into two test traces. Now, the two resulting
test traces can be added to the trace graph, resulting in the
trace graph shown in Figure 6d.

The described techniques also generalize to sets with more
than one element. In this case, the sets associated with
the split branches are determined as the intersections and
differences of the given sets.

VI. EXPERIMENTAL RESULTS

To assess the power of our learning approach, we have
developed a prototypical implementation [11]. The imple-
mentation realizes an Angluin-style learner, which is adapted
to learning from test cases, and the organization of the test
data into a trace graph as discussed in Sections IV and V.
Using the prototype, we performed a case study based on the
conference protocol [12]. The conference protocol describes
a chat-box program that can exchange messages with several
other chat-boxes over a network.

Table I shows our results for a simple version of the
conference protocol, where the sequence of the signals
was fixed. The protocol scaled according to the number of
participating chat-boxes. As the table shows, the semantic
state-merging reduces the size of the trace graph by more

101

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

Number of Size of Size of the Trace Graph Size of the Test Suite
Chat-Boxes Target Automaton Without Merging With Merging Without Merging With Merging

1 72 edges, 8 nodes 33 nodes 13 nodes 6 pass traces 2 pass traces
2 168 edges, 12 nodes 60 nodes 22 nodes 9 pass traces 3 pass traces
3 304 edges, 16 nodes 90 nodes 30 nodes 12 pass traces 4 pass traces
4 480 edges, 20 nodes 120 nodes 40 nodes 15 pass traces 5 pass traces
5 696 edges, 24 nodes 164 nodes 48 nodes 18 pass traces 6 pass traces

Table I
EFFECT OF SEMANTIC STATE-MERGING

than half in this example, while the learned automaton was
identical. Also, the test suite can be smaller. In addition, the
compact version of the trace graph also allows an optimized
equivalence query.

Additional experiments show that while our approach
quickly learns clearly structured models, models with a
high degree of variation are hard to learn and require a
large test suite. In fact, for a more complex version of the
conference protocol with variable signal sequence, the model
could only be reconstructed from a test suite satisfying path
coverage [11]. However, it is possible that the size of the test
suite can be further reduced using additional state-merging
rules, e.g., marked stable testing states.

VII. CONCLUSION

We have presented a learning approach that combines
state-merging and learning techniques to generate a DFA
from a test suite. The state-merging is used to represent
the test suite and to find additional test cases exploiting
the semantic properties of the test language. The combined
approach has been implemented in a prototypical tool.
Experiments show that while the state-merging approach
reduces the size of the test suite needed for correct iden-
tification of the model, complex models still need a large
number of test cases for correct identification.

Optimizations to deal with this problem comprise the
extension of the semantic state-merging approach to exploit
further information contained in the test cases and an exten-
sion of the learning algorithm to work with unanswerable
membership queries. In addition, the relation between test
suite coverage, system structure, and learnability offers in-
teresting research topics. Based on the experiments with our
learning approach, the next step is to incorporate the identi-
fied optimizations into our prototypical implementation. In
the long run, our findings on the learnability of different
models could also be used to assess the adequacy of a test
suite.

REFERENCES

[1] D. Angluin, “Learning Regular Sets from Queries and Coun-
terexamples,” Information and Computation, vol. 75, no. 2,
pp. 87–106, 1987.

[2] E. Werner, S. Polonski, and J. Grabowski, “Using Learning
Techniques to Generate System Models for Online Testing,”
in Proc. INFORMATIK 2008, ser. LNI, vol. 133. Köllen
Verlag, 2008, pp. 183–186.

[3] M. Shahbaz and R. Groz, “Inferring Mealy Machines,” in
Proc. FM 2009, ser. LNCS, vol. 5850. Springer, 2009, pp.
207–222.

[4] F. Aarts, B. Jonsson, and J. Uijen, “Generating Models of
Infinite-State Communication Protocols Using Regular Infer-
ence with Abstraction,” in Proc. ICTSS’10, ser. LNCS, vol.
6435. Springer, 2010, pp. 188–204.

[5] T. Berg, B. Jonsson, and H. Raffelt, “Regular Inference for
State Machines Using Domains with Equality Tests,” in Proc.
FASE 2008, ser. LNCS, vol. 4961. Springer, 2008, pp. 317–
331.

[6] T. Bohlin, B. Jonsson, and S. Soleimanifard, “Inferring Com-
pact Models of Communication Protocol Entities,” in proc.
ISoLA 2010, ser. LNCS, vol. 6415. Springer, 2010, pp. 658–
672.

[7] M. Shahbaz, K. Li, and R. Groz, “Learning and Integration
of Parameterized Components Through Testing,” in Proc.
TestCom 2007, ser. LNCS, vol. 4581. Springer, 2007, pp.
319–334.

[8] J. Esparza, M. Leucker, and M. Schlund, “Learning Workflow
Petri Nets,” in Proc. PETRI NETS 2010, ser. LNCS, vol. 6128.
Springer, 2010, pp. 206–225.

[9] B. Bollig, J.-P. Katoen, C. Kern, and M. Leucker, “SMA —
The Smyle Modeling Approach,” Computing and Informatics,
vol. 29, no. 1, pp. 45–72, 2010.

[10] ETSI Standard (ES) 201 873: The Testing and Test Control
Notation version 3; Parts 1–10, ETSI Std., Rev. 4.2.1, 2010.

[11] E. Werner, “Learning Finite State Machine Specifications
from Test Cases,” Ph.D. dissertation, Georg-August-
Universität Göttingen, Göttingen, Jun. 2010. [Online].
Available: http://webdoc.sub.gwdg.de/diss/2010/werner/

[12] L. D. Bousquet, S. Ramangalahy, S. Simon, C. Viho, A. F. E.
Belinfante, and R. G. Vries, “Formal Test Automation: The
Conference protocol with TGV/Torx,” in Proc. TestCom 2000,
ser. IFIP Conference Proceedings. Kluwer Academic Pub-
lishers, 2000, pp. 221–228.

102

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

