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Abstract—Software verification using abstract interpretation
is scalable but imprecise. Model checking is precise in verifying
a property but not scalable. Often, these two techniques are
combined to achieve better precision. A possible way is to analyze
a software system first by using abstract interpretation and later
eliminating the false positives using bounded model checking. This
is a time consuming process as it typically involves verifying an
assertion corresponding to each generated warning. We observe
verifying all assertions often introduces redundancy, and some
verifications may not even eliminate a false positive. In this paper,
we present an approach consisting of three techniques to make
such false positives elimination faster. Two of the techniques
identify an assertion as being equivalent to an other assertion
thus avoiding its verification. The third technique tries to identify
and skip a class of assertion verifications that will not eliminate a
false positive. Empirical results indicate that these techniques are
quite useful in reducing the number of assertions being verified
by 53%, and the false positives elimination time by 60%.

Keywords—Abstract Interpretation; Model Checking; False Pos-
itives Elimination; Data Flow Analysis.

I. INTRODUCTION

Software verification using abstract interpretation [1] has
been effective in proving the absence of runtime errors such
as Division by Zero (ZD), Array Index Out of Bound (AIOB)
and buffer overflow. It has successfully been used to verify
very large software systems, but generates too many false
warnings, commonly referred to as false positives [2]. On the
other hand, model checking is precise for property verification,
but it often faces the state explosion problem as programs
include unbounded-loops, recursions, complex data structures
[3][4]. Under these circumstances, a property verification may
not succeed and it is a concern.

There have been several attempts at combining these two
techniques to improve precision [5][6][7], i.e., to generate
fewer warnings which, in turn, would reduce the cost of their
manual review. Abstract interpretation, being light weight,
is used first and then generated warnings are processed by
a model checker to eliminate false positives [8][9]. This
processing includes generation of an assertion corresponding
to each warning and its verification using a model checker. If
an assertion is successfully verified, its corresponding warning
is a false positive and is eliminated.

This process of False Positives Elimination (FPE) is very
time consuming as each assertion needs to be verified by a
model checker, and an average assertion verification time is
significant [9][10]. Hence, there is a need to make it faster.

To the best of our knowledge, nothing has been done to
make such false positives elimination efficient. In practice, we
observe verifying all assertions often introduce redundancies,
and few verifications even may not eliminate a false positive.
We use these observations to make FPE efficient by reducing
the number of assertions being verified.

Throughout this paper:

1) we use An to denote the assertion at line n and V (An)
to denote its verification.

2) in our examples, for clarity of representation, we have
eliminated some parts of the code (like assigning non-
deterministic values to input variables, conditional pre-
processor code to include single assertion at a time).

3) we describe FPE more particularly, using CBMC (C
Bounded Model Checker) [11]. We chose CBMC for our
experimentation because we have prior experience in its
usage and it is integrated in the existing tool set [9].

Consider the motivating example in Figure 1, where each
access of an array is reported as a warning by abstract
interpretation (AIOB property), since their index values are
unknown for abstract interpretation. This example also shows
six assertions, one corresponding to each of the warnings.
Verifications of all these six assertions is not required since
some of them are redundant or non-verifiable. This is explained
as below:

1) A15 and A17 are equivalent since their assert expressions
are same and n is not modified in between. With this
equivalence, V (A17) is found redundant as it has same
result as that of V (A15). That is, if A15 is verified
successfully, warnings related to A15 and A17 will be
eliminated, else they will continue to be warnings after
FPE.

2) If Overflow-Underflow (OFUF) property is proved on the
code, V (A21) has same result as that of V (A23), because
the involved index variable has an unsigned data type.
That is, success in V (A23) guarantees success in V (A21),
whereas if V (A23) fails then V (A21) is most likely to fail.
Thus, their corresponding warnings will together be either
false positives or continue to be warnings after FPE. This
observation finds the V (A21) is redundant.

3) V (A35) and V (A39) require analysis of the unbounded
loop (run time dependent loop at line 34), and hence, these
verifications either will terminate with out of memory or
will produce an error trace depicting insufficient loop un-
winding. Please refer to Section II-A for more details on
insufficient loop unwinding by CBMC. These assertions
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int rColors[10], gColors[10];

11. void f1(int r, int g){
12. unsigned int i = 0, n, temp;
13.
14. n = ...;
15. assert( n>=0 && n<10 );
16. rColors[n] = r;
17. assert( n>=0 && n<10 );
18. gColors[n] = g;
19.
20. i = ...;
21. assert(temp=i++, temp>=0 && temp<10 );
22. rColors[i++] = ...;
23. assert(temp=i++, temp>=0 && temp<10 );
24. gColors[i++] = ...;

}

char *str, charArr[20];

31. void f2(){
32. int i = 0;
33. ...
34. while( *str != ’ ’ ){
35. assert( i>=0 && i<20 );
36. charArr[i] = *str;
37. i++;
38. }
39. assert( i>=0 && i<20 );
40. charArr[i] = ’\0’;

...
}

Figure 1: Example and Annotation - 1

can not be verified, so are non-verifiable; we are unable
to eliminate a false positive.

We propose three techniques for efficient FPE.

1) Property Independent Redundant Assertion Identification
Technique (PI-RAIT): It partitions assertions and selects
a leader assertion for each partition such that if leader
assertion hold so does the other assertions from its parti-
tion. A partition so formed represents a set of either false
positives or the warnings together, and it requires only
the leader assertion to be verified. This technique will
put A15 and A17 in the same partition with A15 as the
leader.

2) Property Dependent Redundant Assertion Identification
Technique (PD-RAIT): It includes partitioning of asser-
tions similar in PI-RAIT, but depends on the characteristic
of a run-time property. It only differs with PI-RAIT in
the way of identifying equivalence of assertions, where
it uses property characteristics and practical observations
(code patterns) to identify the equivalence of assertions.
This technique will put A21 and A23 in the same partition
with A23 as the leader.

3) Non-Verifiable Assertion Identification Technique
(NVAIT): It includes identifying assertion verifications
which require analysis of unbounded loops and most
likely they can not be verified successfully. This
technique will identify A35 and A39 as Non-Verifiable
Assertions (NVAs).

Out of six assertions in Figure 1, these proposed techniques
identify only two assertions (A15 and A23) to be verified
and skip the other four. This makes FPE considerably faster.
We applied this approach in different FPE settings for two
automotive industry C applications and the results indicate that
these techniques reduce the number of assertions being verified
by 53% and the resultant FPE time by 60%.

We discuss in detail PI-RAIT in Section II, and PD-RAIT
and NVAIT in Section III. The implementation and empirical
results are described in Section IV. Section V presents related
work, and finally, we conclude with future work in Section
VI.

II. PROPERTY INDEPENDENT RAIT

This section discusses in detail the proposed Property
Independent RAIT (PI-RAIT) and presents an algorithm for
it.

A. CBMC

In this paper, we describe FPE and the proposed techniques
using CBMC, hence it is briefly described. CBMC is a
Bounded Model Checker for ANSI-C and C++ programs. It
takes an entry function and a property to be verified that is
expressed as an assertion. The specified entry function repre-
sents a context at which the assertion is verified and can be an
entry point of the application or any other function having
the input assertion. If an assertion holds for all execution
paths, CBMC reports verification success. If it does not hold,
generates an error trace leading to the property violation.
The verification is performed by unwinding the loops in the
program, and it is necessary for all loops to have a finite
upper bound [4]. For unbounded loops, it takes a user provided
bound (unwinding count) as an upper bound. The provided
bound should be enough to capture the program semantics, so
that the property verification is sound and complete. Further,
when the bound is not enough, it produces a trace (loop
unwinding counterexample) to demonstrate the insufficiency
of loop unwinding.

B. Reduction of Assertions in FPE: Need

Abstract interpretation usually reports a large number of
analysis warnings [4]. In a FPE process, ideally, an assertion
corresponding to each generated warning should be verified
with application entry point as the entry function. However,
it often does not scale or generates a loop unwinding coun-
terexample. To overcome this problem, a different approach
of incremental code context (context expansion) is adopted
[8]. In this approach, an assertion verification is started with
a minimal code context only, i.e., the enclosed function of the
assertion. Later, the context is incremented to the callers of
the enclosed function until one of the following holds:

1) its corresponding false positive is eliminated
2) context reaches the application entry
3) a certain time limit is achieved

14Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle



FPE with code context expansion, as compared to FPEs at
function and application levels, eliminates more false positives
but involves verifying an assertion multiple times. Performing
numerous verifications for each of the generated assertion
increases FPE time even further. Hence, there is a need to
minimize the number of assertions being verified.

C. Equivalence of Assertions

We have observed that, in practice, many of the generated
warnings are similar, and hence, their corresponding assertions
are also likely to be equivalent. The code snippet in Figure 2
depicts three Zero Division (ZD) warnings and their corre-
sponding assertions. These warnings are similar, because the
denominator in each ZD warning is the same variable taking
values from the same source. They together represent a class
of false positives or an error. Hence, the added assertions are
also equivalent.

11. denom = ...;
12. if(...){
13. assert(denom != 0); r1 = n1/denom;
14. }
15.
16. assert(denom != 0); r2 = n2/denom;
17.
18. if(...){
19. assert(denom != 0); r3 = n3/denom;
20. }

Figure 2: Example and Annotation - 2

More precisely, two assertions are equivalent if -

1) their assert expressions are structurally similar and
2) the variables referred to by these assertions have the same

source for their values.

The structural similarity of expressions requires that vari-
ables used, the operators and their order of appearance in the
expression be the same. For example, given two ZD assertions
with their expressions as

• (a+ b+ c)! = 0 and (a+ b+ c)! = 0 are potentially
equivalent.

• (v+1)! = 0 and (1+v)! = 0 are not equivalent, since
operands appear in different order.

• (v1 + func())! = 0 and (v1 + func())! = 0 are not
equivalent since different calls to a function can return
different values.

D. Partitioning of Assertions

We use the equivalence of assertions to reduce the number
of FPE assertion verifications. The equivalent assertions are
put in the same partition. An assertion in a partition is tagged
as a Leader Assertion (LA) only if its successful verification
by model checker guarantees the successful verification of
other assertions in its partition. This ensures that the warnings
corresponding to assertions in a partition are regarded as
false positives when the leader of the partition is verified
successfully. In the other case, if the leader verification fails
then verification of other assertions in that partition is most

likely to fail. Essentially, the verification result of assertions in
a partition follow the verification result of the partition leader,
hence, they are referred to as Follower Assertions (FAs). If an
assertion can not be equivalent to an other assertion, it will
be the only member (LA) of its partition without having the
follower(s). Thus, in a partition there will be strictly only one
LA and any number of FAs including zero.

Using this approach, burden of eliminating a false positive
corresponding to a FA is transferred to its leader, and hence,
there is a chance that it might miss on eliminating a false
positive. This is because, there could be a scenario in which
a FA is able to identify a false positive but its leader is not.
We permit this assuming such scenarios would be very rare in
practice.

We tag an assertion A in a partition as a LA, only if all
paths reaching any other assertion (FA) also go through A.
Under this criterion, A16 is selected as a LA for the partition
of the equivalent assertions in Figure 2. Other assertion (A13

or A19), can not be tagged as a LA since there exists a path
reaching A16 but not going through it.

E. Assertions Partitioning Algorithm

We use must reachability and must liveness of assertions to
compute the LAs and associate them with their corresponding
FAs. The reaching and live assertions being computed denote
must data flow information, i.e., they represent the assertions
that are definitely reaching or definitely live from the program
points at which they appear. These must reaching (must live)
assertions are similar to reaching definitions (live variables)
[12], with assertions replacing variables and must information
replacing may. It should be noted that the assertions under
consideration are unique in themselves where they are uniquely
identified by the program points at which they appear.

1) Must Reaching Assertion (MRA): An assertion with
expression e at a program point P is a MRA at its succeeding
program point P ′ if every path coming to P ′ passes through
P and, no path segment between P and P ′ contains a l-value
occurrence of any of the r-value(s) of e. This ensures that each
execution path through P ′ also includes P .

With a slight abuse of notation, we denote a program point
of an assertion by the assertion itself. In Figure 2, A16 is a
MRA at A19. However, it is not a MRA at A13 since A13

appears before the A16. Also, A13 is not a MRA at other two
assertions since there exists a path that does not go through
A13 but reaches to them (A16 and A19).

2) MRAs Data Flow Formalization: We present the data
flow formalization for MRAs computation at procedure level
using forward information flow. It considers one run-time
property at a time while computing MRAs, for example, MRAs
for partitioning of ZD and AIOB assertions are computed
separately. The equations below are shown for a node n in a
control flow graph [13], where n denotes either an assignment
statement or an expression controlling the flow.

Inn =

 ∅ n is the entry node⋂
p ε predecessors(n)

Outp otherwise (1)

Outn = Genn + (Inn −Killn(Inn)) (2)
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Genn =

{
{A} n has an assertion A

∅ otherwise
(3)

Killn(X) =



killInfo(X,n) n modifies at
least one variable

∅ no variable is
modified by n

(4)

killInfo(X,n) =

{A ∈ X | (usedV ars(A) ∩modifiedV ars(n)) 6= ∅} (5)

usedV ars(A) = r-values from assertion A (6)

modifiedV ars(n) = l-values from program statement n
(7)

In the above formalization,

• Inn represents the MRAs flowing in to n, i.e., at the
start of n, whereas Outn represents the MRAs flowing
out (at the exit) of n.

• Inn equation (1) uses intersection because the flow
information being computed is a must information.

• information flowing in at a point is computed using
the information flowing out of its predecessors. This
is because we compute the flow information in the
forward direction.

• MRAs information is generated only at program points
having assertions while kill information is computed
at each variable modification point.

• Inn equation (1) indicates that MRAs are computed
at procedure level. This equation will need a change
if the MRAs are to be computed at the application
level. The change is required to incorporate the effect
of calling contexts and function call points.

3) Must Live Assertion (MLA): An assertion with expres-
sion e at a program point P is a MLA at its preceding program
point P ′ if every path coming out of P ′ also passes through
P and, no path segment between P ′ and P contains a l-value
occurrence of any of the r-value(s) of e. This ensures each
execution path having P ′ on it, also includes P .

In Figure 2, A16 is a MLA at A13. However, it is not a
MLA at A19 since A19 does not precede A16. Also, A19 is not
a MLA at the other two assertion points (A16 and A19) since
there exists a path that does not go through A19 but reaches
them.

4) Data Flow Formalization for MLAs: The formalization
for MLAs computation will be similar to that of MRAs. The
only change here is the direction of information flow which
is backward in case of MLAs. In order to account for this
change, we change the Inn and Outn equations as under.
Outn and Inn denote the MLAs being computed at the exit
and start of a program point n respectively.

Outn =

 ∅ n is the exit node⋂
s ε successors(n)

Ins otherwise (8)

Inn = Genn + (Outn −Killn(Outn)) (9)

5) Computation of LAs and FAs: Once MRAs and MLAs
are available at each program point of an application, identi-
fication of partitions with their associated LAs becomes easy.
We denote the MRAs at the exit of a program point n (flowing
out of n) as MRAs(n), and the MLAs at its start (flowing
in at n) as MLAs(n). Assertions A and A′, with their assert
expressions as e and e′ respectively, form elements in the same
partition if e and e′ are structurally similar and one of the
following hold:

1) A ∈ (MRAs(A′)∪MLAs(A′)). In this case, A′ will be
a FA and A can be its leader.

2) A′ ∈ (MRAs(A) ∪MLAs(A)). In this case, A will be
a FA and A′ can be its leader.

An assertion A can be selected as a leader of a partition if
for every other assertion A′ in the partition, A ∈MRAs(A′)∪
MLAs(A′). If more than one assertion in a partition qualify
to be a leader, one of them is randomly selected as the leader.

F. Assertions Partitioning: Limitation

11. denom = ...;
12. if(...){
13. assert(denom != 0); r1 = n1/denom;
14. } else {
15. assert(denom != 0); r3 = n3/denom;
16. }

Figure 3: Limitation scenario of PI-RAIT

The usage of MRAs and MLAs to identify LAs sometimes
does not partition the assertions which are equivalent but not
definitely reachable from one another. Examples of this are
A13 and A15 in Figure 3. In spite of being equivalent, they
will not be partitioned together because there will not be a
MRA or a MLA available at an assertion point from another
assertion.

III. PD-RAIT AND NVAIT

This section discusses the details of PD-RAIT and NVAIT,
and presents an algorithm for both.

A. PD-RAIT

We have observed that, often, there are large number of
assertions whose verification result follows the verification
result of some other assertion, and they do not fall under the
same partition during PI-RAIT. For instance, in Figure 1, A21

and A23 will not be identified as equivalent by PI-RAIT, even
though the result of V (A21) follows that of V (A23). We use
this characteristic peculiar to AIOB warnings to reduce the
number of assertion verifications by partitioning them in a way
similar to PI-RAIT.

1) Partitioning of AIOB assertions: In Figure 1, the need
is to identify A23 as a leader and A21 as its follower. This will
require backward analysis. Therefore, we use MLAs (as in PI-
RAIT) to partition the AIOB assertions. The only change here
is in the way MLAs are computed. The rest of the algorithm
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to identify the LA and its associated FAs remains the same as
in PI-RAIT.

We describe the change required in MLAs computation
using the same example in Figure 1. We denote the MLAs at
the exit of a program point n as Out(n), and the MLAs at the
start of n as In(n). In PI-RAIT, A23 ∈ Out(A21) but A23 /∈
In(A21) because A23 gets killed at A21. This kill of A23 omits
the association of A21 (follower) with A23 (leader). In PD-
RAIT, we avoid such a kill computation. With this change,
A23 ∈ In(A21) and using PI-RAIT algorithm these will get
partitioned together with A23 as the leader.

We skip the data flow formalization of MLAs computation
in this technique due to lack of space. It is to note that this
algorithm does not consider the MRAs for their partitioning.
This approach can not be applied to partition the assertions
associated with the AIOB warnings including a pre/post unary
decrement operator or a signed data-type variable in their in-
dexes. It is possible to refine the PD-RAIT technique to handle
these limitation scenarios, but we do not do it as such scenarios
are very rare in practice. Also, we do not apply this technique
for ZD as its warnings with such patterns are very rare. Further,
it can not be applied to partition overflow-underflow assertions
since the relationship in verification results of LA and FAs can
not be guaranteed.

int *ptr1, **ptr2;
#define NULL 0

void f(...) {
...

11. ptr1 = *ptr2;
12.
13. assert(ptr1!=NULL); arr[0] = *ptr1++;
14. assert(ptr1!=NULL); arr[1] = *ptr1++;
15. assert(ptr1!=NULL); arr[2] = *ptr1++;

}

Figure 4: DNP Assertions Example

Figure 4 presents another example for the Dereference of
a Null Pointer (DNP) to illustrate the application of the PD-
RAIT algorithm is property specific. The PD-RAIT algorithm
used to partition the AIOB assertions can not be used for
partitioning of these DNP assertions because successful veri-
fication of V (A15) does not guarantee the same for V (A13).
However, it can be observed that if A13 is verified successfully,
the successful verification of V (A14) and V (A15) is ensured.
Thus, these assertions can be partitioned together with A13

tagged as a LA. It is intuitive that, such leader identification
includes forward analysis, and hence, MRAs should be used
instead of MLAs.

B. Non-Verifiable Assertions Identification Technique

Verification of an assertion by CBMC includes analysis
of a provided entry function and the functions that are called
directly or indirectly from the entry function. It uses a provided
bound (unwinding count) for the unbounded loops during
their unrolling. In the absence of this input (unwinding count)
CBMC keeps unrolling the loop and eventually out of memory.
When the input bound is not insufficient, it results into an

unwinding assertion counterexample. This verification does not
contribute in eliminating a false positive and is needless.

In practice, an application includes unbounded loops whose
bound is determined only at the run-time. We present a few
examples of the unbounded loops as follows:

1) an infinite loop such as while(1), for(; ; ; ).
2) a loop in which a bound variable in its terminating

condition takes values from library system calls.
3) a loop whose terminating condition is run-time dependent

like ∗ptr! =‘\0’ and the string(s) pointed by ptr gets its
content during run-time through fgets(ptr).

If an assertion is control or data dependent on any of the
above unbounded loops, then it is a NVA. An assertion A
is control or data dependent on a loop l if A is dependent
on a statement belonging to l. In Figure 1, A35 and A39 are
the NVAs. This is because, each of them is control and data
dependent on the unbounded loop starting at line 34. We skip
the verification of these NVAs to make FPE faster.

We use the following algorithm to compute the NVAs:

1) Identify a set of unbounded loops (denoted as LUB) used
in the application. Loop termination analysis [14][15] can
be used for this purpose.

2) For each assertion A and an entry function fe,
a) Identify the loops in fe on which A is control or data

dependent. Program dependence graph [16] can be used
for this purpose. We denote this set of loops as L.

b) If (L ∩ LUB) 6= ∅ then A is a NVA in the context of
fe.

It must be noted that the identification of an assertion as
NVA is always with respect to an entry function. Further, this
approach might wrongly mark an assertion as a NVA even if
it is not. This, in turn, may make the FPE imprecise.

IV. IMPLEMENTATION & EXPERIMENTS

This section covers the implementation details and exper-
iments performed for the proposed FPE.

A. FPE Implementation

We implemented the proposed techniques in TCS Embed-
ded Code Analyzer (TECA) [17] to eliminate false positives
from the analysis warnings generated by it. TECA is a static
analysis tool to verify C source code. We used the framework
shown in Figure 5 to implement the proposed techniques. A
short description of each of the component in the framework
is provided below.

1) Static Analyzer: A static analysis tool (TECA) that
performs verifications for properties AIOB, ZD, DNP, OFUF,
etc. on input C code and reports safe, unsafe and warnings
program points.

2) Code Annotator: This component annotates the source
code to generate assertion corresponding to each warning
produced by a static analysis tool.
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Figure 5: FPE Implementation Framework

3) Redundant/Non-Verifiable Assertions Identifier: We im-
plemented the PI-RAIT, PD-RAIT and NVAIT as separate
components, and use them in succession to get maximum
benefit out of these techniques.

i. PI-RAIT: It implements the MRA and MLA formalizations
in context and flow sensitive way at function level to parti-
tion the input set of assertions based on their equivalence.
Further, it updates the analysis warnings report to reflect
the association of LAs and their FAs.

ii. PD-RAIT: This component implements property specific
PD-RAIT to partition the LAs computed by PI-RAIT.
It does not analyze the FAs from PI-RAIT component
since their analysis in this component would be redundant.
Similar to PI-RAIT, it also updates the warnings report for
its computed LAs and their FAs.

iii. NVAIT: It receives the PD-RAIT LAs and computes the
NVAs from them. We used simple pattern based tech-
niques to identify the unbounded loops in an application
and did not use any complex loop termination analysis.
In this component, due to lack of time, we used must
reachability of unbounded loops instead of control or data
dependency, to check if an assertion is a NVA.

4) Assertions Verifier: This component comprises mainly
of a model checker (CBMC), and it optionally includes other
tools implementing techniques such as code slicing [18],
loops abstractions [9] to scale the model checker. The actual
false positives elimination is performed by this component.
It eliminates warnings (false positives) corresponding to a
LA and its FAs when the LA is verified successfully. If the
verification fails or times out, its corresponding warning is

not eliminated. This component allows FPE in three different
settings:

1) FPE at a Function level (Ffpe),
2) FPE at an Application level (Afpe), and
3) FPE using a Code context expansion (Cfpe).

In Cfpe, assertions verifier component communicates with
NVAIT component to check if the assertion being verified with
an entry function is a NVA, and on finding the assertion as a
NVA, its further verifications are skipped.

B. Experiments and Observations

We selected two embedded applications, one of 40 KLOC
representing an automobile battery control module and another
of 80 KLOC representing a smart card management system.
Both the applications were verified for AIOB and ZD prop-
erties using abstract interpretation, and false positives were
eliminated in three FPE settings - Ffpe, Afpe and Cfpe. During
our FPE experiments, we used-

1) 200 seconds time out for a CBMC verification.
2) sliced code with respect to generated assertion for its

verification.
3) machine with Intel Core 2 Duo 2.33 GHz processor, 2

GB RAM configuration and having Windows XP SP3.

In Table I, we present details of the CBMC verification
results for Ffpe and Afpe settings without applying any of the
proposed techniques (PI-RAIT, PD-RAIT and NVAIT). These
results indicate that Ffpe outperforms Afpe in terms of num-
ber of successful verifications. Also, there is a considerable
number of unwinding counterexamples for these applications.

The results obtained for different combinations of the
proposed techniques in each FPE setting are shown in Table
II. For a FPE setting, it presents-

a. |Ain|, where Ain indicates a set of assertions those are
verified by the CBMC.

b. |Efp|, where Efp is a set of false positives eliminated.
c. Tfpe representing the time taken ([Hours:Mins]) to verify

assertions from Ain. It does not include the time spent in
the code slicing.

In Table II, we also present the time taken in minutes (TR)
by a combination of the proposed techniques in a FPE setting.
In our experiments, we applied PD-RAIT to AIOB only (and
not for ZD). Following are the few observations from Table
II.

1) In a setting, TR is very less as compared to Tfpe, and
this does not add any performance overhead in the FPE.

2) Among the FPE settings, the false positives eliminated
are maximum in Cfpe and minimum in Afpe.

3) Equivalent assertions found by PI-RAIT and PD-RAIT
techniques, are more for AIOB compared to the ZD, and
hence, the FPE time reduction is more for AIOB.

4) On an average, the PI-RAIT and PD-RAIT techniques
have reduced 13.55% and 26.5% of FPE time respectively
without compromising on the false positives eliminated.
It indicates, although FPE with PI-RAIT and PD-RAIT is
conservative in eliminating the false positives, in practice
there is no miss on false positives eliminated.
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TABLE I: Distribution of CBMC Verification Results

Application Property Setting |Ain|
CBMC
Timeouts

Verification
Successful

CBMC
Trace

Unwinding
Assertions

CBMC
Failures

Battery
Control
Module

Ffpe 430 13 107 238 71 1
AIOB Afpe 430 0 1 0 429 0

Ffpe 47 6 5 16 20 0
ZD Afpe 47 0 0 0 47 0

Smart Card
Management
System

Ffpe 314 5 13 231 65 0
AIOB Afpe 314 42 0 0 250 0

Ffpe 54 0 24 22 8 0
ZD Afpe 54 26 12 0 7 9

TABLE II: FPE Experiment Results

Application Property Techniques TR
Ffpe Afpe Cfpe

|Ain| |Efp| Tfpe |Ain| |Efp| Tfpe |Ain| |Efp| Tfpe

Battery
Control
Module

- - 430 107 04:11 430 1 04:14 430 270 13:45
AIOB PI-RAIT ≈ 1 301 107 03:01 301 1 03:03 301 270 10:37

PI-RAIT + PD-RAIT ≈ 1 196 107 01:50 196 1 01:53 196 270 06:47
PI-RAIT + PD-RAIT + NVAIT ≈ 3 157 105 01:22 7 1 00:11 157 265 05:29

- - 47 5 01:06 47 0 00:29 47 8 02:16
ZD PI-RAIT ≈ 1 37 5 01:02 37 0 00:29 37 8 01:39

PI-RAIT + NVAIT ≈ 2 22 2 00:16 0 0 00:00 22 5 00:41

Smart Card
Management
System

- - 314 13 01:45 314 0 09:38 314 22 29:13
AIOB PI-RAIT ≈ 1 229 13 01:17 229 0 07:34 229 22 22:53

PI-RAIT + PD-RAIT ≈ 2 177 13 01:03 177 0 06:43 177 22 19:14
PI-RAIT + PD-RAIT + NVAIT ≈ 2 165 12 00:59 116 0 03:53 165 20 19:03

- - 54 24 00:14 54 12 00:41 54 29 01:28
ZD PI-RAIT ≈ 1 53 24 00:14 53 12 00:41 53 29 01:25

PI-RAIT + NVAIT ≈ 2 50 24 00:13 26 10 00:24 50 29 01:24

5) On an average, the NVAIT technique has reduced the
FPE time by 38.91% with the identification of 32.54%
of assertions as NVAs, but it has compromised on 1.3%
of false positives. This indicates that NVAIT makes FPE
efficient as well as imprecise.

6) The application of all the three techniques, on an average,
reduces the |Ain| and Tfpe, respectively by -
• 53.37% and 61% in Ffpe setting.
• 82.37% and 71.4% in Afpe setting.
• 53.37% and 43% in Cfpe setting.

7) NVAIT technique when applied in Afpe setting to battery
control module, found all the assertions as the NVAs. The
reason was traced to the inclusion of typical while(1)
loop implemented in main function of an embedded
application.

V. RELATED WORK

There are a number of techniques that combine static
analysis with model checking to improve its precision. These
techniques differ in a way these two are combined. Brat et
al. [5] do this in such a way that static analysis component
iteratively exchanges information with the model checker.
The partial order information computed by static analysis is
used by model checker for its state space reduction, and the
aliasing information from model checking is used to refine
the results of static analysis. Fehnker and Huuck [6] analyze
the counterexamples generated through model checking by
using abstract interpretation to learn new facts and refine the
abstraction. This continues until a warning is either proved to
be a bug or spurious.

Rödiger [19] combines data flow analysis and model
checking to improve the security vulnerability detection. The
vulnerable code statements are found based on invalidated
user inputs and they are model checked to eliminate false
positives or produce a readable counterexamples. Junker et
al. [7] present an abstraction refinement technique to auto-
matically find and eliminate the false positives. It is achieved
by iteratively computing the infeasible sub-paths using SMT
solvers and refining the models. Wang et al. [20] and Tsitovich
[21] present techniques among the others that combine static
analysis and model checking.

The techniques described above, combining static analysis
and model checking, focus only on improving analysis preci-
sion. Further, these are difficult to use when static analysis is
performed by widely used commercial tools (like Polyspace
and Coverity) since it needs changes in the tool’s back-end
analysis. Post et al. [8] and Darke et al. [9] try to overcome
this limitation by using model checking to eliminate the false
positives produced by the static analysis tools. Of these two
techniques, [8] presents an approach to eliminate the false
positives generated by Polyspace, where it uses incremental
context expansion to do so.

A major drawback of these two techniques ([8][9]) is
that they generate and verify an assertion corresponding to
each static analysis warning and, hence, involve numerous
verification calls to a model checker. While we also generate
an assertion corresponding to each of the output warning,
we avoid verifying each assertion. We partition the generated
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assertions and verify only one representative assertion from
a partition, so that all the false positives in the partition are
eliminated at once. We employ two techniques - one dependent
on the property being verified and the other independent of
it. Further, we try to skip a class of non-verifiable assertions
before we pass it to a model checker.

VI. CONCLUSION AND FUTURE WORK

In our experiments, we have found an abundance of redun-
dant assertions in FPE. Our techniques helped in minimizing
the verification calls to a model checker and, in turn, made the
FPE faster. The property-dependent and property-independent
RAITs marked 45% of the assertions as the followers. This
is because there are multiple equivalent assertions in certain
code regions and they often fall under the same partition.
Eliminating the false positive corresponding to the leader of
the partition eliminates all the false positives corresponding to
the followers as well. This allows us to skip the verification
of followers. Although we eliminated false positives conserva-
tively in our approach, it was never the case in our experiments
that we failed at eliminating one. The results of PD-RAIT
technique indicate that using code-pattern based approach to
partition assertions can be quite useful in reducing the FPE
time. This is because these patterns are widely used.

The identification of NVAs based on unbounded loops,
using NVAIT, is quite effective in minimizing the FPE time
(led to an average reduction of 38.91%). There are many
unbounded loops in an application and the need to verify an
assertion dependent on them gets eliminated. This approach,
being conservative, may find an assertion as a NVA even if it is
not. That is to say, it might wrongly mark a verifiable assertion
as a NVA that could have possibly eliminated a false positive.
This explains the trade-off between precision and performance
of FPE using this technique.

Our experiments depict that the reduction in FPE time is
dependent on property being verified and the context at which
false positives are eliminated. Although the experiments are
performed on embedded domain applications written in C, we
expect similar benefits on other domain applications as well
due to common coding practices. These techniques can be
extended further to verify properties in applications coded in
other languages too.

We plan to experiment further with NVAIT technique
replacing CBMC by SATABS [22]. We are also exploring a
technique to make FPE more efficient by identifying assertions
whose verifications are more likely to generate counterexam-
ples.
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