
State Space Reconstruction for On-Line Model Checking with UPPAAL

Jonas Rinast, Sibylle Schupp
Institute of Software Systems

Hamburg University of Technology, Hamburg, Germany
Email: {jonas.rinast,schupp}@tuhh.de

Dieter Gollmann
Security in Distributed Applications

Hamburg University of Technology, Hamburg, Germany
Email: diego@tuhh.de

Abstract—On-line system verification requires the efficient
reconstruction of the state space a model checker generates. This
paper proposes an approach to reconstruct the current state
of models of real-time systems, implements it in the Uppsala
and Aalborg model checker (UPPAAL) and thus renders on-line
model checking in UPPAAL possible. On-line model-checking can
be employed if parameters of models need to be adjusted to real-
world values in case models are inaccurate. Applications include
closed-loop patient monitoring and care taking as patient models
commonly fail to accurately model all interactions in the human
body and thus cannot provide good long-term estimates to ensure
the patient’s safety. We exploit use-definition chains in state
space transformations to reduce the amount of reconstruction
transformations. During testing the method reduced the amount
of transformations by 42% on average over all experiments.

Keywords—State Space Reconstruction; On-line Model Check-
ing; UPPAAL

I. INTRODUCTION

Medical treatment facilities have grown to rely significantly
on medical devices for monitoring and treatment. Most devices
are still operated manually today and need to be configured,
maintained, and supervised by a care taker. Recently, closed-
loop monitoring and treatment of patients became a research
topic as experience shows that human errors are prevalent.
Patient-in-the-loop systems try to autonomously assess the
patient’s state using a monitoring device and if necessary treat
the patient automatically, e.g., via a remote infusion pump.
Such a system must clearly be shown to cause no harm to
the patient. Safety must be ensured to prevent harm from
the patient not only during normal operation but also in case
emergency situations arise.

Model checking is a well developed technique to verify that
a system model conforms to its specification and thus may be
applied to show the safety of such system. However, to make
meaningful conclusions about the system’s behavior it is nec-
essary to have detailed and accurate models of the individual
components of the system. In the medical domain, the model
checking approach is therefore severely hampered if the patient
needs to be modeled accurately, e.g., to make estimates on a
drug concentration in the patient. Generally, a patient model
is likely to be inaccurate as the physiology of human beings
is complex and varies between individuals, e.g. blood oxygen
and heart rate depend on the patients condition. A generalized
model will always miss individual characteristics. Patient-in-
the-loop systems thus could be proved safe with such models
but might still put patients at risk.

On-line model checking is a recent model-checking variant
that relaxes the need for models to be accurate far into the

future. On-line model checking provides safety assurances
for short time frames only and renews these assurances
continuously during operation. Appropriate models for the
system thus only need to be correct for the short time frame
they are used in. The renewal of safety assurances then is
carried out on models adapted to the current system state to
ensure the system’s safety for the next time window. This on-
line approach thus allows safety assessment at all times and
provides means to react before safety violations occur.

A model adaptation step first needs to create an ini-
tialization sequence that recreates the previous model state
before adjusting single values. The reconstruction is necessary
to allow the simulation of the model to continue from the
state it was interrupted in. This paper presents an automated
state reconstruction approach for the Uppsala and Aalborg
model checker (UPPAAL) that eliminates the need for custom
reconstruction procedures for every application. The developed
reconstruction method serves as a base for an on-line model
checking interface with UPPAAL as the underlying verification
engine.

Naively, the state space can be reconstructed by executing
the same transition sequence that was used to create the state
in the beginning. However, if the simulation has already run a
significant time the executed transition sequence is likely to be
long and only continues to grow over time. A more direct way
to the desired state space is needed to keep the reconstruction
process fast and on-line model checking feasible. For our
reconstruction approach we adopted use-definition chains to
eliminate transformations that have no effect on the final
state space. Such transformations occur when their results are
overwritten before they are read. Our reconstruction method
has been applied to seven different test models. The method
always correctly reconstructed the original state space while
yielding a reduction of the executed transformations in the
range from 23% to 84%.

Interestingly our on-line model checking interface could
not only be used to automatically carry out on-line model
checking. The interface also allows generic dynamic adaptation
of model parameters and thus could be used with parameter
learning algorithms or for calibrating the model.

The rest of the paper is organized as follows: Section II
shortly introduces model checking, on-line model checking,
and the model checker UPPAAL. Section III first provides nec-
essary information on UPPAAL’s state space and its transfor-
mations and then explains our reconstruction approach. Section
IV presents our evaluation results. Section V gives an overview
on related literature and, lastly, Section VI summarizes the
paper and suggests further research.

21Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

II. ON-LINE MODEL CHECKING

This section shortly introduces model checking and its on-
line variant, on-line model checking. The technique is shown
by way of example using the model checker UPPAAL; for a
formal specification of UPPAAL see [1].

Generally, the model checking approach explores the state
space of the given system model in a symbolic fashion to
check whether the state space satisfies certain properties. Such
properties are mostly derived from a requirement specification
for the system, e.g., one could check whether or not a certain
system state is actually reachable. The modeling and property
languages vary greatly depending on the model-checking tool.
Tools for various programming languages coexist with dedi-
cated tools that support their own modeling language. Dedi-
cated tools often use finite state automata as a base formalism
for their models. UPPAAL is such a well-established, dedicated
model checking tool, which was jointly developed by Uppsala
University, Sweden, and Aalborg University, Denmark [2], [3].
It is based on the formalism of timed automata: an extension of
finite state automata with clock variables to allow modeling of
time constraints. A finite state automaton defines a transition
system by defining locations and edges that connect these
locations. Edges are fired to execute a transition from one
location to another. The system state in this case is the current
location of the automaton and the possible valuations of the
clock variables.

Figure 1 shows the example model that will be used to
demonstrate the proposed state space reconstruction method.
The model consists of three locations, Init, Inv, and Count,
where Init is the initial location indicated by the double
circle. The model uses two variables: x, a clock variable,
and c, a bounded integer variable. Clock variables are special
variables that synchronously advance indefinitely unless they
are bounded by one or more invariants on the current locations.
The location Inv has such an invariant, x <= 2, to bound the
clock x, thus the value of x in Inv can be any value between
its value when it entered the location and 2. The model
has a single transition from the initial location to Inv. This
transition is annotated with a guard, x >= 3, and an update,
x = 0, c = 0. Guards are used to enable and disable edges
depending on the current state. Here, the clock x needs to be
greater or equal to 3 for the edge to be enabled. Only then
can it be fired and a transition occurs. Indeed, as there is no
invariant on x on the initial location the edge is enabled for
values greater or equal to 3. Upon firing of the edge the update
is executed: the clock x and the bounded integer c are both
reset to 0. The edge from Count to Inv is nearly identical to the
previous edge: when x is greater or equal to 3 the edge may be
fired but x is reset to 1 instead of 0 and c is not modified. As
a consequence, the value of x in Inv is between 0 and 2 when
the location is first entered and between 1 and 2 on every
subsequent visit. The transition between Init and Count has
no guard and shows that an update may consist of a complex
expression: the update c = (c + 1) % 7 increases c by 1
modulo 7.

As explained in the introduction, model checking relies
on accurate long term models. On-line model checking is
a variant of classic model-checking that eliminates the need
for such models and thus may be applied when such models
are unavailable. It reduces the modeling error by periodically

x <= 2

x = 0,
c = 0

x = 0,
c = (c + 1) % 7InvInit Count

x = 1x >= 3

x >= 3

Figure 1. UPPAAL Model Example

adjusting the current state to the observed real state, e.g.,
by setting a model value to the exact value measured by a
sensor attached to a patient. For example, if we consider the
model in Figure 1 one could assume that the counter variable
c is modeling some patient’s parameter. If that parameter in
reality occasionally jumps the model is inaccurate and needs
to be adjusted by setting c to the correct value. On-line model
checking performs the adjustments and thus the jumps do not
need to be modeled accurately. Note that errors may still be
present in the system under on-line model checking but the
method predicts them in advance to react to them. On-line
model checking requires the model analysis to finish before
the next update interval. Though the main work is done by the
model checker the reconstruction still consumes some time,
which our method reduces compared to the naive automatic
reconstruction approach.

III. STATE SPACE RECONSTRUCTION

In this section, we summarize the required information on
UPPAAL’s state space in Subsection III-A. Then, Subsection
III-B presents our state space reconstruction process.

A. UPPAAL’s State Space and its Transformations

UPPAAL’s state space can be divided into three parts: the
time state, the location state, and the data state. The location
and the data state are straightforward: every data variable is
assigned exactly one value for the data state and the location
state consists of the current location vector, i.e., a vector that
contains the current location for every automaton instance.
The time state is more complicated as it needs to capture all
possible valuations for every clock in the model as well as
all relations between the clocks. Difference bound matrices
(DBM) are a common and simple representation method for
such time states [1], [4]. By introducing a static zero clock in
addition to all the clocks in the model (C0 = C ∪ 0, C the set
of all clocks) all necessary clock constraints can be written in
the form x − y � n where x and y are clocks (x, y ∈ C0), �
is a comparator (� ∈ {<,≤}), and n is an integer (n ∈ Z).
A value in a difference bound matrix then is a tuple of an
integer and a comparator (n, �), n ∈ Z, � ∈ {<,≤} or
the special symbol ∞, which indicates no bound. An order on
the entries is given by (n,�) < ∞, (n1,�1) < (n2,�2)
if n1 < n2, and (n,<) < (n,≤). Addition is defined as
follows: (n,�)+∞ =∞, (m,≤)+(n,≤) = (m + n,≤), and
(m,<)+(n,�) = (m+ n,<). A difference bound matrix thus
contains one bound, either including or excluding, for every
pair of clocks M = ({Z× {<,≤}} ∪ ∞)|C0|×|C0|.

As an example a clock constraint system with two clocks
a and b and the constraints a ∈ [2, 4), b > 5, and b− a ≥ 3 is
transformed to the canonical constraints a−0 < 4, 0−a ≤ −2,

22Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

b − 0 < ∞, 0 − b < −5, a − b ≤ −3, and b − a < ∞. The
matching DBM is

0 a b[]
0 0 (−2, ≤) (−5, <)
a (4, <) 0 (−3, ≤)
b ∞ ∞ 0

During simulation of an UPPAAL model its transitions are
repeatedly executed. Every transition generally has multiple
effects on the time state and each such effect corresponds to a
transformation of the difference bound matrix that represents
the current time state. The following summary lists the DBM
transformations necessary to traverse the state space [4]:

• Clock Reset A clock reset is performed when an
edge is fired that has an update for a clock variable
(x = n). A clock reset sets the upper and lower
bound on the clock x to the given value and depending
constraints, i.e., constraints on a clock difference in-
volving x are adjusted. This corresponds to modifying
the matrix row and column for the clock x.

• Constraint Introduction A constraint introduction is
performed if either a firing edge has a guard on a
clock or an invariant on a clock is present in a current
location and the bound is more restrictive than the
current constraint on the involved clock. In that case
the relevant matrix entry is set to the new constraint
and for all other entries in the matrix it is checked
whether the new bound induces stricter bounds.

• Bound Elimination Bound elimination is performed
when a new location is entered. All bounds on clock
constraints of the form c − 0 < n are removed,
i.e., the upper bounds on clocks are removed. Bound
elimination is equivalent to setting the first matrix
column except the top-most value to ∞.

• Intersection An intersection is performed if a state is
constrained by multiple constraints. In that case all
constraints are applied individually and their results
are intersected to obtain the final result. Intersecting
multiple DBMs is achieved by finding the minimum
value for every matrix entry from all intersecting
matrices.

• Urgency Introduction An urgency introduction is per-
formed if an urgent or committed location is entered or
an entered location has an outgoing, enabled transition
that synchronizes on an urgent channel. Unlike the
previous transformations, urgency is a modeling con-
struct specific for UPPAAL to prevent time from pass-
ing. An urgency introduction is semantically equiv-
alent to introducing a fresh clock on the incoming
edge and adding a new invariant on that clock with a
bound of 0 to the location. An urgency introduction
thus can be derived from a clock reset and a constraint
introduction.

Returning to the example model (Figure 1) the individual
transitions can now be broken down into their respective
transformations. The initial location Init induces a bound elim-
ination on the initial state where all clocks are set to zero. The

transition from Init to Inv yields a constraint introduction for
the guard (x >= 3) and a subsequent clock reset (x = 0,
c = 0). The reset of the bounded integer c is ignored here
as c is part of the data state. The location Inv results in a
bound elimination and a following constraint introduction to
accommodate the invariant (x <= 2). The transition from Inv
to Count simply induces a single clock reset transformation
before the location Count eliminates the bound on the state
space again. Lastly, the transition from Count to Inv introduces
the same kind of transformations as the transition from Init to
Inv: both perform a constraint introduction and a clock reset.
The values computed for the clock variable x are as follows:

1) Location Init
a) Initial: x = 0
b) Bound Elimination: x ∈ [0,∞)

2) Transition Init −→ Inv
a) Constraint Introduction: x ∈ [3,∞)
b) Clock Reset: x = 0

3) Location Inv
a) Bound Elimination: x ∈ [0,∞)
b) Constraint Introduction: x ∈ [0, 2]

4) Transition Inv −→ Count
a) Clock Reset: x = 0

5) Location Count
a) Bound Elimination: x ∈ [0,∞)

6) Transition Count −→ Inv
a) Constraint Introduction: x ∈ [3,∞)
b) Clock Reset: x = 1

7) Location Inv
a) Bound Elimination: x ∈ [1,∞)
b) Constraint Introduction: x ∈ [1, 2]

B. Reconstructing UPPAAL States

In many models a large number of previous transitions do
not have an impact on the current state space. In the example
model (Figure 1) this behavior can be observed: in the location
Count the clock x is in the range [0,∞). This valuation was
completely created by the clock reset of the ingoing edge
and the bound elimination of the location itself. Previous
state space transformations do not have any influence on the
valuation of x. Therefore, instead of executing the transition
sequence Init −→ Inv −→ Count totaling 7 transformations
only 3 transformations are required. The introduction of a new
initial state and the direct transition to Count with an update
x = 0 is sufficient to recreate the state space.

During reconstruction it is thus beneficial to exploit the
fact that effects of certain state space transformations are
overwritten by subsequent transformations. The key idea of our
approach is the construction of use-definition chains to identify
transformations that may be removed. A use-definition chain is
a data structure that provides information about the origins of
variable values: for every use of a variable the chain contains
definitions that have influenced the variable and ultimately lead
to the current value. Our idea is to adapt the definition-use
chain technique from static data flow analysis on a program’s
source code to the state space reconstruction: every entry in
the model’s difference bound matrix is treated as variable and
thus is observed for uses and modifications. DBM entries are

23Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

only modified by applying a state space transformation on the
DBM. We thus analyzed the read and write access to matrix
entries for every transformation to derive the use-definition
chains where the transformations are the basic operations.

In the following, our reconstruction approach is presented
using the clock reset transformation as a leading example.
First, we discuss the derivation of use-definition chains from
the transformation. Then we lay out the use of reference
counters as a memory structure to identify removable transfor-
mations. Lastly, we give a short overview on model synthesis
based on the shortened transformation sequence. Altogether
the adaptation of the use-definition chain approach to the
reconstruction process results in the following steps:

1) Initialization Canonize model by introducing general
starting points for later synthesis, extract necessary
information from the model.

2) Simulation Select transitions in the model according
to intended behavior, execute and store them. Simul-
taneously break them down into matching state space
transformations and apply them internally to con-
struct the use-definition chains of the transformations.
Remove unnecessary transformations on-the-fly using
reference counters for the transitions derived from the
use-definition chains.

3) Synthesis Group the sequence of reduced transforma-
tions to form transitions and add the transitions to a
newly created model obtained from the original one.
Match the last transition to the current location state
and update the data state on that transition.

Starting points for the reconstruction algorithm are the
algorithms for the original transformations. Figure 2 lists as
an example an algorithm for the clock reset transformation on
the difference bound matrix D according to Johan Bengtsson
[4]. Examination of the algorithm yields that all values in the
row and column that are associated with the reset clock are
written and all values in the top-most row and left-most column
are read: lines 3 and 4 of the algorithm write Dij and Dji and
read Di0 and D0i. Note that index j is always greater than 0
as it is a real clock and not the 0-clock. Therefore, the reset
transformation creates a use for every value in the top-most
row and left-most column and a definition for every value in
the row and column for the clock in question. Taking into
consideration that the value Djj will always evaluate to zero
and no definition needs to be generated we construct a modified
algorithm that captures the definitions and uses generated by
the transformation. Figure 3 shows the modified algorithm.
It has an additional parameter T , which is a matrix that
contains the transformations that are responsible for the current
DBM values. Additionally to the functionality of the original
algorithm the new algorithm updates this matrix and creates
the necessary definition and use information: in lines 6 and 7
we store that the reset transformation uses the transformations
T0i and Ti0 and lines 8 and 9 update the matrix to show the
reset transformation is now responsible for the values Dji and
Dij .

We designed the transformation matrix data structure for
the use-definition chains to allow on-the-fly removal of unnec-
essary transformations: as soon as a transformation is overwrit-
ten in the matrix a following transformation cannot have a de-
pendency on that transformation. Thus, the transformation may

1: procedure RESET(D, xj = m)
2: for i← 0, n do
3: Dji ← (m,≤) +D0i

4: Dij ← Di0 + (−m,≤)
5: end for
6: end procedure

Figure 2. Reset Transformation Algorithm [4]

1: procedure RESET(D, T , xj = m)
2: for i← 0, n do
3: if i 6= j then
4: Dij ← Di0 + (−m,≤)
5: Dji ← (m,≤) +D0i

6: Use(T0i)
7: Use(Ti0)
8: Tji ← this
9: Tij ← this

10: end if
11: end for
12: end procedure

Figure 3. Modified Reset Transformation Algorithm

be directly removed if no intermediate transformation depends
on it. If intermediate transformations exist the transformation
can be deleted as soon as those are removed. To accurately
track needed transformations the data structure uses reference
counters: every transition is assigned a counter to indicate
how often it is referenced and every transformation updates
this counter. The benefit of the on-the-fly removal is reduced
memory usage for the data structure and shorter processing
time during transformation execution.

We analyzed all relevant DBM transformations for their
reads and writes and adapted the algorithms to update the
transformation matrix and the reference counters accordingly.
Special attention had to be given to the intersection algorithm:
if two transformations are applied to a DBM and only one
of them writes a certain value but the previous value is the
stronger bound the transformation that did not modify the
matrix is responsible for the resulting entry. This behavior
needs to be introduced during the intersection algorithm as
the original transformation only creates relations for entries it
can potentially modify. Also the reference counters have to be
propagated accordingly. We encapsulate read-write relations
of transformations in special linker objects such that other
transformations may influence them later on and the effects
of the transformation on the data structure may be deferred to
appropriate times to manage the reference counters.

The synthesis of the actual UPPAAL model from the cal-
culated transformation sequence has to take into consideration
that UPPAAL allows a single automaton to be instantiated
multiple times with possibly different parameters. During ini-
tialization of the reconstruction we therefore analyze the model
definitions for automaton instantiation and save the relevant
parameters. Also, as the location space needs to be correctly
reconstructed an automaton that is instantiated multiple times
has multiple initializations transitions for every instantiation.
We use a single bounded integer variable in conjunction
with appropriate guards to correctly order these transitions.
Another important aspect of the synthesis step is that the
model initialization needs to be self-contained, i.e., the ini-

24Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

c = 1, __uoi_edges = 0
__uoi_c?

INITIALIZED

__uoi_edges == 0

UOI_INIT

x = 0,
c = (c + 1) % 7

x = 0,
c = 0

x = 1

x = 0, __uoi_edges++
x <= 2

InvInit

Count

UOI_INIT_Process

__uoi_c!

x >= 3

__uoi_edges == 0

x >= 3

Figure 4. Reconstructed example model

TABLE I. EVALUATION RESULTS

Model
Transitions Transformations

Before After Reduction Before After Reduction
2doors 100 65.89 34.1% 364.7 254.46 30.2%
bridge 100 68.21 31.8% 188.39 144.09 23.5%

train-gate 100 66.18 33.8% 320.09 214.17 33.1%
fischer 100 91.27 8.7% 345.33 249.46 27.7%

csmacd2 100 100 0% 709.71 434.19 38.8%
csmacd32 75.58 75.58 0% 1818.6 327.49 79.7%

tdma 100 68.16 31.8% 719.88 240.11 66.6%

2doors 1000 627.9 37.2% 3722.3 2612.9 29.8%
bridge 1000 641.3 35.9% 1882.8 1436.4 23.7%

train-gate 1000 606.1 39.4% 3200.1 2194.1 31.4%
fischer 1000 853 14.7% 3455.3 2486.8 28%

csmacd2 1000 1000 0% 7238.1 4375.5 39.5%
csmacd32 619.6 619.6 0% 22491.1 2540.3 84%

tdma 1000 663.1 33.7% 6446.3 2651.5 58.9%

tialization of multiple automata needs to finish synchronously
to prevent parts of the model from advancing prematurely.
As the initialization transitions per automaton may differ in
length we employ a broadcast channel to synchronize the last
transition to the original model. We use these final transitions
to initialize the data variables as well. In case global variables
are present an additional init automaton is introduced for
their initialization. Figure 4 shows the reconstruction model
(right) for the example model (Figure 1) after 2 transitions.
The additional initialization automaton (left) sets the global,
bounded integer c to 1. The clock x is set to 0 and the
location is correctly initialized to Count after an initial first
transition. The reconstructed model only needs to execute
a single transition in contrast to the original model, which
uses two, to reach the correct state. For transformations the
reconstructed model uses 3 time state transformations while
the original model needs 7.

IV. EVALUATION

We evaluated our use-definition reconstruction method by
applying it to seven different UPPAAL models and comparing
it to the naive reconstruction approach. The models 2doors,
bridge, train-gate, and fischer are part of the UPPAAL example
model suite. The csmacd models and tdma were taken from
case studies. We ran two test sets for every model. The first
test executed 100 times 100 random transitions of the model
before reconstructing the state. The second test set executed
1000 random transitions 10 times. For the csmacd32 model it
was not always possible to execute the maximum number of
transitions during simulation as the model exhibits deadlock
states. Table I shows our evaluation results. In the top half the
results of the first test set and in the bottom half the results
of the second test set are shown. All values are averages over
the respective test runs but their variances are small. In our

experiments the reduction of transformations is between 23%
and 84% while the reduction of transitions is between 0%
and 39.4%. This difference mainly stems from the fact that to
delete a single transition all induced transformations need to
be removed. However, our model synthesis algorithm still is
unoptimized and sometimes produces unnecessary transitions.
In cases where the transition reduction is higher than the
transformation reduction the removal of transformations made
it possible to merge multiple transitions. Interestingly, the cs-
macd models contain use-definition chains spanning the whole
simulation, which prevent removal of transitions though many
transformations are irrelevant to the state. Future work will
need to address this issue, e.g., by also evaluating concrete state
values. Regarding total execution time, our adjustments have a
small impact as the model checking procedure consumes most
of the time. Also, compared to the model checking part our
approach scales well with the complexity of the used models.

V. RELATED WORK

The on-line model checking approach our reconstruction
method is complementing and thus closest to has recently
been proposed by Li et al. [5], [6]. They employ a hybrid
automata model to ensure correct usage of a laser scalpel
during laser tracheotomy to prevent burns to the patient. Yet,
the necessary model initialization and reconstruction step is a
custom solution and is not presented in detail. In the context of
on-line model checking with UPPAAL, the UPPAAL variant
UPPAAL Tron has been developed [7]. UPPAAL Tron is an
on-line testing tool that can generate and execute test cases
on-the-fly based on a timed automata system model. While
the tool focus lies on input/output testing using a static system
model the fact that the underlying model is an UPPAAL model
means that our reconstruction approach might be beneficial
for tests when the system model is inaccurate or still needs
to be developed. Other related work falls in two categories:
different ways to use or implement on-line model checking,
and different ways to optimize state space exploration and
representation in model checkers.

Qi et al. propose an on-line model checking approach
to evaluate safety and liveness properties in C/C++ web
service systems [8]. Their focus lies on consistency checks
for distributed states to debug a system from known source
code. Reconstruction is not an issue because the source code is
static during execution. Easwaran et al. use a control-theoretic
approach to the general runtime verification problem [9]. They
introduce a steering component featuring a model to predict
execution traces. Their approach uses a fixed prediction model
while our reconstruction is for adapting inaccurate models.
Sauter et al. address the prediction of system properties using
previously gathered time series of measurements, e.g., taken
by sensors [10]. They propose a split into an on-line and an
off-line computation and to precompute expensive parts of
the prediction step to reduce on-line work load. While their
scenario of adapting using sensor measurements is applicable
to our medical scenario with inaccurate patient models they
focus on the verification load problem while we address
the model inaccuracy. Harel et al. propose usage of model
checking during the behavior and requirement specification
step during development. Instead of interactively guiding the
system to derive requirements a model checker executes the
model and generally finds more adequate requirements. While

25Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

their approach employs on-line model checking their goal
thus lies on early requirement development. In contrast our
approach is useful in adaptation of deployed systems to ensure
safety. Arney et al. present a recent patient-in-the-loop case
study for automatic monitoring and treatment where UPPAAL
and Simulink models were developed to verify safety questions
beforehand [11]. They monitor heart rate and blood oxygen
levels of the patient and automatically control drug infusion
via a remote pump. On-line model-checking could benefit this
scenario as currently a generalized patient model is employed
and drug absorption rates may vary per patient.

Alur and Dill introduced timed automata and the under-
lying theory in 1994 [12] and Yi et al. developed the first
implementation of the model-checker UPPAAL shortly after
[13]. Many improvements have been made to the model-
checking approach over the years. Larsen et al. proposed
symbolic and compositional approaches to reduce the state-
space explosion problem [14]. Partial order reduction on the
state space was employed by Bengtsson [15]. Larsen et al.
reduced memory usage on-the-fly using an algorithm that
exploits the control structure of models [2], [16]. Further
memory reductions were achieved by Bengtsson et al. with
efficient state inclusion checks and compressed state-space
representations [17]. Behrmann et al. provide an overview on
current functionality and the usage of UPPAAL [3]. They also
provide a more detailed presentation of UPPAAL’s internal
representations [18]. For a summary on timed automata, the
semantics, used algorithms, data structures, and tools see [1].
Bengtsson’s PhD thesis provides more in-detail information on
difference bounded matrices [4].

VI. CONCLUSION AND FUTURE WORK

In this paper we addressed the problem of state recon-
struction of UPPAAL models in the context of on-line model
checking. Our reconstruction method uses use-definition chains
to track influence of individual transformations on the state
space during model simulation. With the chains constructed
and the additional use of reference counters we are able
to identify and remove transformations in the transformation
sequence that do not have an impact on the final state space.
A prototype implementation was developed and compared to
the naive reconstruction approach, which does not remove
any transformations. Seven UPPAAL models from different
sources were analyzed and our approach reduced the amount
of transformations necessary for reconstruction by 23% to 84%
and reduced model transitions by up to 39.4%.

In general, the proposed reconstruction method still yields
infeasible reconstruction sequences for real-time on-line model
checking as the reconstruction sequence length still grows
over time. A reconstruction sequence of constant length is
desirable to ensure real-time properties. Future research thus
could focus on further optimizing the proposed reconstruction
method. For example, the proposed method currently only
relates transformations according to read and write accesses.
Concrete variable values are not taken into account. Transfor-
mations that produce the same values could be removed, but
are currently not. Experience during development has shown
that such transformations occur often especially in periodic
use-definition chains that arise due to cycles in the model.

Removal of them could improve the reconstruction sequence
significantly by breaking such cycles.

REFERENCES

[1] J. Bengtsson and W. Yi, “Timed Automata: Semantics, Algorithms and
Tools,” in Lectures on Concurrency and Petri Nets, J. Desel, W. Reisig,
and G. Rozenberg, Eds. Springer Berlin Heidelberg, 2004, ch. 3, pp.
87–124.

[2] K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi, “Efficient verification
of real-time systems: compact data structure and state-space reduction,”
in Real-Time Systems Symposium, San Francisco, CA, USA, 1997, pp.
14–24.

[3] G. Behrmann, A. David, and K. G. Larsen, “A Tutorial on Uppaal
4.0,” Department of Computer Science, Aalborg University, Aalborg,
Denmark, Tech. Rep., 2006.

[4] J. Bengtsson, “Clocks, DBMs and States in Timed Systems,” Ph.D.
dissertation, Uppsala University, 2002.

[5] T. Li et al., “From offline long-run to online short-run: Exploring a new
approach of hybrid systems model checking for mdpnp,” in 2011 Joint
Workshop on High Confidence Medical Devices, Software, and Systems
and Medical Device Plug-and-Play Interoperability (HCMDSS-MDPnP
2011), 2011.

[6] T. Li et al., “From Offline toward Real-Time: A Hybrid Systems Model
Checking and CPS Co-design Approach for Medical Device Plug-and-
Play (MDPnP),” in Proceedings of the 3rd ACM/IEEE International
Conference on Cyber-Physical Systems - ICCPS ’12. Beijing, China:
IEEE, April 2012, pp. 13–22.

[7] A. Hessel et al., “Testing real-time systems using UPPAAL,” in Formal
Methods and Testing, R. M. Hierons, J. P. Bowen, and M. Harman,
Eds. Springer Berlin Heidelberg, 2008, pp. 77–117.

[8] Z. Qi, A. Liang, H. Guan, M. Wu, and Z. Zhang, “A Hybrid Model
Checking and Runtime Monitoring Method for C++ Web Services,”
in 2009 Fifth International Joint Conference on INC, IMS and IDC.
Seoul, South Korea: IEEE, 2009, pp. 745–750.

[9] A. Easwaran, S. Kannan, and O. Sokolsky, “Steering of Discrete Event
Systems: Control Theory Approach,” Electronic Notes in Theoretical
Computer Science, vol. 144, no. 4, 2006, pp. 21–39.

[10] G. Sauter, H. Dierks, M. Fränzle, and M. R. Hansen, “Light-weight
hybrid model checking facilitating online prediction of temporal prop-
erties,” in 21st Nordic Workshop on Programming Theory, NWPT 09,
vol. 2, Lyngby, Denmark, 2009.

[11] D. Arney et al., “Toward patient safety in closed-loop medical device
systems,” in Proceedings of the 1st ACM/IEEE International Conference
on Cyber-Physical Systems - ICCPS ’10. Stockholm, Sweden: ACM
New York, NY, USA, 2010, pp. 139–148.

[12] R. Alur and D. L. Dill, “A Theory of Timed Automata,” Theoretical
Computer Science, vol. 126, no. 2, 1994, pp. 183–235.

[13] W. Yi, P. Pettersson, and M. Daniels, “Automatic verification of real-
time communicating systems by constraint-solving,” in 7th International
Conference on Formal Description Techniques, D. Hogrefe and S. Leue,
Eds., 1994, pp. 223–238.

[14] K. G. Larsen, P. Pettersson, and W. Yi, “Compositional and symbolic
model-checking of real-time systems,” in Real-Time Systems Sympo-
sium, Pisa, Italy, 1995, pp. 76–87.

[15] J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi, “Partial order reductions
for timed systems,” in CONCUR’98 Concurrency Theory, D. Sangiorgi
and R. de Simone, Eds. Springer Berlin Heidelberg, 1998, pp. 485–
500.

[16] K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi, “Compact Data
Structures and State-Space Reduction for Model-Checking Real-Time
Systems,” Real-Time Systems, vol. 25, no. 2-3, 2003, pp. 255–275.

[17] J. Bengtsson, “Reducing memory usage in symbolic state-space ex-
ploration for timed systems,” Department of Information Technology,
Uppsala University, Uppsala, Sweden, Tech. Rep. May, 2001.

[18] G. Behrmann et al., “UPPAAL Implementation Secrets,” in Formal
Techniques in Real-Time and Fault-Tolerant Systems, W. Damm and
E.-R. Olderog, Eds. Oldenburg, Germany: Springer-Verlag Berlin,
2002, pp. 3–22.

26Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

