
Formal Composition Based on Roles within a Model Driven Engineering Approach

Cédrick Lelionnais
Jérôme Delatour

and Matthias Brun
ESEO-TRAME

Angers, FRANCE
{cedrick.lelionnais,jerome.delatour,matthias.brun}@eseo.fr

Olivier H. Roux
and Charlotte Seidner

IRCCyN - Université de Nantes
École Centrale de Nantes

Nantes, FRANCE
{olivier-h.roux,charlotte.seidner}@irccyn.ec-nantes.fr

Abstract—Faced with the increasing complexity of Real-
Time Embedded Systems, Model Driven Engineering offers the
possibility of developping frameworks in which transformations
are used to generate either executable code or formal models.
However, these transformations themselves are generally not
formalized. Correctness of transformations could therefore be
called into question. This paper proposes a formalization of a
transformation step, namely: the composition of formal fragments
describing the behavior of a real-time system. These fragments
are described using an extension of the classical Time PetriNets,
where the notion of roles was added to perform the composition
of the fragments. This formalization increases confidence in
transformations.

Keywords—Model Driven Engineering, Real-time operating sys-
tems, Behavioral modeling, Transformation, Verification,Time Petri
Nets, Application deployment

I. I NTRODUCTION

Real-Time Embedded Systems (RTESs) increasingly sur-
round us in various domains (aircrafts, automotive sector,cell
phones, robotics, etc.). RTES engineers are confronted with the
challenge of developing more complex, higher quality systems,
with shorter development cycles at lower costs. Model Driven
Engineering (MDE) [7] helps engineers to develop frameworks
for partially automating the development of RTESs. Thanks to
transformations, those frameworks produce either executable
code or formal models from high-level descriptions of RTESs.

However, many frameworks do not consider the description
of Real-Time Operating Systems (RTOSs) [4]. RTOSs have
indeed an impact on the behavior of RTESs. In addition,
in spite of the fact that the behavior of RTOSs starts to
be considered, transformations have often been implemented
within frameworks without formalization. Correctness of the
transformation could therefore be called into question. Confi-
dence in those frameworks could also be reduced.

The general approach presented in this paper aims to create
a formal model of the whole system deployed on a RTOS.
This approach was thought regardless of the intended RTOS.
To do this, a transformation process is currently in progress to
compose several behavioral fragments, each one describinga
part of this system. Those fragments come from a model of
the targeted RTOS, which is considered through the process
execution. However, composition rules must be chained in a
right sequence in order to avoid any ambiguity. As a basis of
the construction, the use of roles formally identify connection
points, which will be used as a glue of the system parts.

This paper is divided into the following sections. Section 2
refers briefly to the frameworks chosen for this contribution.

The latter is presented in Section 3, highlighting both the
deployment process and the use of roles. Section 4 deals
with Time Petri Nets (TPNs) as translation formalism. A
new syntax is then defined formalizing the composition of
TPNs based on roles. Relying on this definition, Section 5
formalizes the construction of an application deployment in
TPN. Consequently, the benefits and limits of this approach
are discussed in Section 6. Finally, we conclude in Section 7.

II. RELATED WORKS

A first presentation of related works in conjunction with
the consideration of RTOSs has already been presented in a
previous contribution [4]. For this reason, frameworks in line
with the consideration of RTOSs will only be presented here.

We have opted for frameworks in which the intervention
of each stakeholder has been made more flexible. Indeed, the
domain skills (RTOSs structure, transformations, deployments
choice, etc.) are correctly separated with these frameworks.
This has been made possible thanks to an explicit approach,
which consists in considering each RTOS description without
modifying the transformation rules. This strategy offers the
possibility to capitalize most descriptions in a generic way.
Furthermore, other works [3] [4] are based on the behavioral
consideration of RTOSs. These contributions search for refin-
ing models of applications deployed on RTOS with the aim of
verifying properties.

We can note the MARTE UML profile [8] in which
the Software Resource Modeling (SRM) approach [12] has
been integrated. With SRM, RTOSs can be modeled using
stereotyped concepts from the real-time software domain. For
another example, Software Execution Platform Inside Tools
(SExPIsTools) is involved in the tooling of development pro-
cesses. Real-Time Embedded Platform Modeling Language
(RTEPML) [2] was developped in this sense, with the aim
of defining concepts dedicated to the real-time domain for
modeling RTOSs.

However, as introduced previously, the processes imple-
mented in those frameworks have not yet been formalized. We
have therefore decided to carry on developping SExPIsTools
by experimenting the formalization.

III. C ONTEXTUALIZATION IN A MDE APPROACH

This section is divided into two parts. The first part presents
the SExPIsTools framework and the language RTEPML [2].
This presentation details the notion of role, which is used for
the composition of behavioral descriptions. The second part
specifies the language adopted for formalizing.

27Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

A. SExPIsTools Framework

SExPIsTools (Figure 1) allows to generate code from high-
level descriptions [2] to several RTOSs. The RTOS description
(i.e., the Platform Description Model) is a parameter of the
generic transformation made possible thanks to the notion
of role. A role explicitly establishes a relationship between
abstract concepts of RTOSs (i.e., the notion of task), their
properties (priority of task) and their services (creationor
destruction of task). The transformation rules rely on both
concepts and roles. For each Platform Description Model,
translation of roles is given in the Application Programming
Interface (API) of the targeted RTOS. The descriptions are
realized by the modeling language RTEPML.

Fig. 1: SExPIsTools Process within MDE Context

RTEPML has been extended [4] to describe RTOSs be-
havior in a formal way. The purpose of formalizing was to
allow model-checking. For each concept and service of the
RTOS, a formal description (called fragment) is given. The
transformation process leads to the composition of fragments.
To facilitate this composition, some roles were added.

B. Choice of formal language

We have chosen TPNs [6] [1] to translate behavioral
fragments because we need a formalism which expresses
models with synchronism and parallelism for multitasking.
Lastly, RTOSs imply time constraints. The chosen formalism
needs to have clocks to represent time evolution.

IV. TPN COMPOSITION BASED ONROLES

In order to compose fragments in TPN, we have projected
roles on those fragments. To perform the composition, we have
decided to assign roles to places. The interest of such a method
is to merge places [11] [10], which are the connection points
of the system that must be modeled in TPN.

In this section, TPNs with roles are firstly defined. The
definition of the instanciation of TPN with roles is then given.
Finally, the composition of TPNs is highlighted through a
synchronization formalism based on roles.

A. TPNs

TPNs are a timed extension of classical Petri nets. Infor-
mally, to each transition of the net is associated an implicit
clock and an explicit time interval. The clock measures the
time since the transition has been enabled and the time interval

is interpreted as a firing condition: the transition may fire if
the value of its clock belongs to the time interval.

Definition 1 (TPN): A TPN is a tuple T =
〈P, T,Pre,Post, m0, Is〉 where:

• P is a finite non-empty set ofplaces;

• T is a finite non-empty set oftransitions;

• Pre : P ×T → N is thebackward incidencefunction;

• Post : P × T → N is the forward incidencefunction;

• m0 : P → N is the initial marking of the net;

• Is : T → N × (N ∪ {+∞}) assigns astatic time
interval to each transition.

A marking of T is an application fromP to N. Let m be
a marking ofT . Then, for any placep ∈ P , we say thatp
containsm(p) tokens. A transitiont ∈ T is said to be enabled
by the markingm if ∀p ∈ P,m(p) ≥ Pre(p, t). This is denoted
by t ∈ enabled(m). For any intervalIs, we denote byIs

↓ the
smallest left-closed interval with lower bound0 that contains
Is. For each transitiont there is an associated clockxt. We
consider valuations on the set of clocks{xt|t ∈ T } and we will
slightly abuse the notations by writingv(t) instead ofv(xt).

Let m be a marking of the net andt a transition in
enabled(m). Let m′ be the marking obtained fromm by
firing t. Let m′′ be the intermediate markingdefined by
∀p,m′′(p) = m(p)−Pre(p, t). A transitiont′ is newly enabled
by the firing oft from m, and we notet ∈ ↑enabled(m, t) if
t′ ∈ enabled(m′) \ enabled(m′′) ∪ {t}

The operational semantics of the TPNT =
〈P, T,Pre,Post, m0, Is〉 is defined by the time transition
systemST = (Q, q0,→) such that:

• Q = N
P × R

T
≥0

• q0 = (m0,0)

• →∈ Q×(T∪R≥0)×Q is the transition relation includ-
ing a discrete transition and a continuous transition.

◦ The discrete transition is defined∀t ∈ T by
(m, v)

t∈T
−−→ (m′, v′) iff:

t ∈ enabled(m);
∀p ∈ P,m′(p) = m(p) − Pre(p, t) +
Post(p, t);
v(t) ∈ Is(t);
∀k ∈ [1, |T |], v′k(tk) =
{

0 if tk ∈ ↑enabled(m, t)

vk(tk) otherwise

◦ The continuous transition is defined by

(m, v)
d∈R≥0
−−−−→ (m, v + d) iff ∀t′ ∈

enabled(m) , ∀0 < d′ ≤ d, (v + d′)(t′) ∈
I↓s (t

′).

Definition 2 (TPN with roles):A TPN with roles is a tuple
N = 〈T , R, λ〉 where:

• T is a TPN,

• R is a finite set of roles,

• λ : P → R ∪ {⊥} is the function assigning a role to
a place and⊥ denoting that no role is assigned to a

28Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

place. Hereafter, some notations and properties of this
function are enumerated :

1) Pλ = {p ∈ P | λ(p) 6= ⊥} is the set of places
with role.

2) λ\Pλ
: Pλ → R is an injective function;

3) λ−1 : R ∪ {⊥} → P ∪ {∅} such that

∀r ∈ R, λ−1(r) =

{

p if λ(p) = r

∅ otherwise
λ−1(⊥) = ∅

The operational semantics of the TPN with rolesN =
〈T , R, λ〉 is the same as that of TPN. Indeed, the use of roles
within the definition of TPN does not impact its semantics.

B. Instanciation of TPN with roles

As seen previously, some fragments of TPN are instan-
ciated before being composed. In order to distinguish the
fragments to compose, all roles in a same fragment must be
renamed according to the name of the instance.

Let N be the TPN to instanciate andx the label given to
the instance. The renaming function⇁ is a function fromR
to Ri where assigned roles are involved in parameters.

Definition 3 (Instanciation of TPN with roles):The
instanciation ofN with m renamings is denoted by

Ni = Ins(N , x) = N r1 ⇁ r1 x
. . .
rm ⇁ rm x

with m = |R| , ∀j ∈ [1,m] , rj ∈ R, rj x ∈ Ri and∀k ∈
[1,m], k 6= j → rk 6= rj

C. TPNs Synchronization based on roles

In order to synchronize some TPNs, we must precise the
definition of the composition of TPNs, which will be based
on roles assigned to places. LetN1, . . . ,Nn be n TPNs with
Ni = 〈Pi, Ti,Prei,Posti,m0i , Isi , Ri, λi〉 such that∀k 6= k′ ∈
[1, n] =⇒ Tk ∩ Tk′ = ∅ andPk ∩Pk′ = ∅. The composition
N = 〈P, T,Pre,Post,m0, Is, R, λ〉 of the previous TPNs with
roles will be denoted byN = N1||N2|| . . . ||Nn. Linked to
this composition, we define a function leading to the merging
of places whose assigned roles will be taken into account in
parameters.

The merging function֒→ is a partial function from(R1 ∪
{•})× (R2 ∪ {•})× · · · × (Rn ∪ {•}) → P ×R where• is a
special symbol used when a TPN is not involved in a particular
merge of the global system. We then extend the definition of
the assigning inverse function withλ−1(•) = ∅

The composition ofn TPN with m merging is denoted by
(

N1|| . . . ||Nn

)

(r1
1
, . . . , r1

n
) →֒ (p1, r1)

. . .
(rm

1
, . . . , rm

n
) →֒ (pm, rm)

with ∀i ∈ [1, n], ∀j ∈ [1,m] , rji ∈ Ri, rj ∈ R andpj ∈ P ,
and∀k ∈ [1,m], k 6= j ⇒ rki 6= r

j
i

We will subsequently use the following notations:

• Let P
merged
i ⊆ Pi be the set of places of the net

Ni merged by the composition. FormallyPmerged
i =

⋃

∀j∈[1,m]

{λ−1
i (rji)}

• Let P →֒ ⊆ P be the set of places of the netN ob-
tained by the merging. FormallyP →֒ =

⋃

∀j∈[1,m]

{pj}

Definition 4 (Composition of TPNs with roles):The com-
position of then TPN Ni with the merging֒→ denoted by:

N =
(

N1|| . . . ||Nn

)

(r1
1
, . . . , r1

n
) →֒ (p1, r1)

. . .
(rm

1
, . . . , rm

n
) →֒ (pm, rm)

is defined by:

• R =

(

⋃

∀i∈[1,n]

(

Ri\
⋃

∀j∈[1,m]

{rji }
)

)

∪

(

⋃

∀j∈[1,m]

{

rj
}

)

;

• P =

(

⋃

∀i∈[1,n]

Pi \ P
merged
i

)

∪ P →֒;

• T =
⋃

∀i∈[1,n]

Ti;

• λ : P → R is defined by:
◦ ∀p ∈ P \P →֒ meaning that∃i such thatp ∈ Pi

thenλ(p) = λi(p)
◦ ∀pj ∈ P →֒, meaning thatp is the result of a

merging,λ(pj) = rj

• Pre : P ×T → N is defined∀p ∈ P and∀t ∈ Ti ⊆ T
by

Pre(p, t) =

Prei(p, t) if p ∈ P \ P →֒ andp ∈ Pi

Prei(p
′, t), if

p ∈ P →֒ andp′ ∈ Pi

(. . . , rki , . . .) →֒ (p, λ(p))

λi(p
′) = rki

0 otherwise.

• Post : P×T → N is defined∀p ∈ P and∀t ∈ Ti ⊆ T
by

Post(p, t) =

Posti(p, t) if p ∈ P \ P →֒ andp ∈ Pi

Posti(p
′, t), if

p ∈ P →֒ andp′ ∈ Pi

(. . . , rki , . . .) →֒ (p, λ(p))

λi(p
′) = rki

0 otherwise.

• m0 : P → N is defined∀p ∈ P by:

m0(p) =

m0i(p) if p ∈ P \ P →֒ andp ∈ Pi

n
∑

i=1

m0i

(

λ−1(rki)
)

if

{

p ∈ P →֒

(rk1 , . . . , r
k
n) →֒ (p, λ(p))

• Is : T → I is defined∀t ∈ T by: Is(t) = Isi(t) if t ∈
Ti

As an example,N =
(

N1||N2||N3

)

(r1, r2, •) →֒ (p, r)

is the parallel composition of the 3 TPNs, i.e.,N1, N2 and
N3, where the placep1 ∈ P1 such thatλ1(p1) = r1 and the
placep2 ∈ P2 such thatλ2(p2) = r2 are merged. The name
of the place obtained by this merging inN is p ∈ P and its
role is λ(p) = r ∈ R.

Property 1 (Associativity):The composition of TPNs with
roles is associative in the following sense:

(

N1||N2||N3

)

(r1, r2, r3) →֒ (p, r)

=

(

(

N1||N2

)

(r1,r2) →֒(p12,r12)
||N3

)

(r12,r3) →֒(p,r)

29Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

=

(

N1||

(

N2||N3

)

(r2,r3) →֒(p23,r23)

)

(r1,r23) →֒(p,r)

Property 2 (Commutativity):The composition of TPNs
with roles is commutative:

(

N1||N2

)

(r11 , r12) →֒ (p1, r1)

. . .

(rk1 , rk2) →֒ (pk, rk)

=

(

N2||N1

)

(r12 , r11) →֒ (p1, r1)

. . .

(rk2 , rk1) →֒ (pk, rk)

V. CONSTRUCTION AND ILLUSTRATION

The definitions presented above will help the formal con-
struction of behavioral models in TPN. This construction
will serve as a basis of the transformation process within
SExPIsTools framework (Figure 1). To better understand the
concepts involved in this construction, we must specify the
major categories of concepts in RTEPML [2]. At the moment,
three of them were selected from a behavioral point of view:
concurrent resources (i.e., tasks, interruptions, alarms, etc.),
interaction resources (i.e., semaphores, message queues,shared
data, events, etc.) and routines (i.e., application code).For the
sake of clarity, the construction has deliberately been splitted
into four composition operations. The overall construction is
a sequence of four operations.

A construction example in TPN is provided to illustrate
the method. Figure 2 presents some TPN fragments instanti-
ated with roles (in boxes), prepared for construction. Every
operation details the fragments involved in the composition.
The mergeable places are represented in double circle and
those ready to be merged are connected by a hook-dotted arc
with the number of the construction. The roles are assigned
to the right above of places. The whole model is describing
a monoprocessor applicationProc with two periodic tasks
Task1 andTask2 sharing the same semaphoreSem1.

a) Construction for each routine:The routines serve
as executive body of concurrent resources. They consist of
an ordered sequence of call services. The list of services
considered in RTEPML is not exhaustive at the moment. The
instructions described in TPN are: activation and termination
of task, acquisition and release of semaphore and waiting,
notification and inhibition of event.

Let n be the number of call services described follow-
ing: {NS1,NS2, . . . ,NSn} such that∀i ∈ [1, n],NSi

=
Ins(NS , Si) with NS the TPN describing a service. The
routine construction then impliesn − 1 compositions, each
one havingmj mergings of places withj ∈ [1, n − 1]. The
construction of a routine instanceNR is given by (1).

Illustration 1 (See Figure 2):In accordance with
NR, ∀l ∈ [1, 2], NTasklBody is built from TPNs
{NGetl(Sem1),NReleasel(Sem1),NTerminatel(Taskl)}. This
sequence describes in the order, an acquisition ofSem1, a
release ofSem1 and a termination ofTaskl.

b) Construction for each entry point of a concurrent
resource: Each resource points to a routine described byNR

previously formed. Only one operation composesNR with
NCλ = Ins(NC , Cλ). NC is the TPN describing a concurrent
resource. The construction of a concurrent resource instance
with its executive bodyNCR is given by (2) form mergings.

Illustration 2 (See Figure 2):In accordance withNCR,
∀l ∈ [1, 2], NTaskl withBody is built composingNTaskl

with
its entry pointNTasklBody.

c) Construction for concurrent resources:At this stage,
concurrent resources must be attached together with the aim
of being scheduled by the same processor.

Let qC be the number of concurrent resources with their
composed executive bodies such that∀iC ∈ [1, qC], each
resource is described byNCRiC

in accordance withNCR

previously formed. The construction then impliesqC −1 com-
positions, each one havingmjC mergings withjC ∈ [1, qC−1].
The construction ofNW is given by (3).

Illustration 3 (See Figure 2):In accordance withNW ,
NwithoutProc is firstly composed ofNTask1 withBody and
NTask2 withBody.

d) Global construction with processor and interaction
resources:Note that the processor is also a shared resource.
It will therefore be considered as an interaction resource.

Let qI be the number of interaction resources consid-
ered such that∀iI ∈ [1, qI], each resource is described
by NIiI

= Ins(NI , IiI) with NI the TPN describing an
interaction resource. Each interaction resource is composed
with NW previously formed. The global construction then
implies qI compositions, each one havingmjI mergings with
jI ∈ [1, qI]. The global compositionNG is given by (4).

Illustration 4 (See Figure 2):In accordance withNG,
NDeployedApplication is finalized by composingNwithoutProc,
NSem1 andNProc.

VI. B ENEFITS AND L IMITS

The use of TPNs with roles and the composition based on
roles has allowed to detect several errors within the SExPIs-
Tools transformation process. Those errors were bad transfor-
mation rules between concepts and roles, bad descriptions of
the behavioral fragments.

That has also clarified the chaining of the transformation
rules. As a result, a part of the transformation prototype has
been rewritten. This approach has increased the confidence in
SExPIsTools framework and its generated formal models.

Although SExPIsTools can consider several RTOSs, we
have only defined fragments for OSEK/VDX [9] in TPN.
Moreover, some complex real-time mechanisms, such as pri-
ority ceiling protocol or special queues of message box show
the limits of the expressiveness of TPNs. For this reason, we
could not model those mechanisms.

VII. C ONCLUSION

An approach has been presented to build a formal model of
RTESs taking into account a RTOS description. A new defini-
tion has extended the modeling in TPN to compose fragments
with roles. The formalized composition will be used as a basis
of the transformation process. The process implementation
in SExPIsTools is in progress. The framework integrates a
modeling language called RTEPML designed to describe the
behavior of RTOSs. During the process running, only the
description of the target execution platform is considered.

The main idea of this process is to maintain a genericity of
implementation. Composition rules introduced in this paper are
independant of any RTOSs thanks to role notion. This notion
is an essential point of our strategy and brings an advantage
in relation to other existing approaches. Future prospectsare
scheduled in order to take into account other RTOS descrip-
tions. Another important point is the consideration of more

30Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

NR =

(

(

(

NS1 ||NS2

)

(end S1, start S2) →֒ (SS1→S2
,⊥)

(r2
S1

, r2
S2

) →֒ (p2
S2

, r2
S2

)

. . .

(r
m1
S1

, r
m1
S2

) →֒ (p
m1
S2

, r
m1
S2

)

||NS3

)

(end S2, start S3) →֒ (SS1S2→S3
,⊥)

(r2
S1S2

, r2
S3

) →֒ (p2
S3

, r2
S3

)

. . .

(r
m2
S1S2

, r
m2
S3

) →֒ (p
m2
S3

, r
m2
S3

)

. . . ||NSn

)

(end Sn−1, start Sn) →֒ (SS1S2...Sn−1→Sn
,⊥)

(r2
S1S2...Sn−1

, r2
Sn

) →֒ (p2
Sn

, r2
Sn

)

. . .

(r
mn−1
S1S2...Sn−1

, r
mn−1
Sn

) →֒ (p
mn−1
Sn

, r
mn−1
Sn

)

(1)

with ∀k ∈ [1,mj] andn ≥ 2 if k ≥ 2 thenrkS1...Sj
= rkSj+1

NCR =
(

NCλ
||NR

)

(start Cλ, start S1) →֒ (S, ⊥)
(end Cλ, end Sn) →֒ (E, ⊥)

(r3
Cλ

, r3
R

) →֒ (p3
R

, r3
R

)

. . .

(rm
Cλ

, rm
R

) →֒ (pm
R

, rm
R

)

(2)

with ∀k ∈ [1,m] if k ≥ 3 thenrkCλ
= rkR

NW =

(

(

NCR1
||NCR2

)

(processor CR1, processor CR2) →֒ (PCR1→CR2
, processor Proc)

(r2
CR1

, r2
CR2

) →֒ (p2
CR2

, r2
CR2

)

. . .

(r
m1
CR1

, r
m1
CR2

) →֒ (p
m1
CR2

, r
m1
CR2

)

. . . ||NCRqC

)

(processor CRqC−1, processor CRqC
) →֒ (PCR1...CRqC−1→CRqC

, processor PROC)

(r2
CR1...CRqC−1

, r2
CRqC

) →֒ (p2
CRqC

, r2
CRqC

)

. . .

(r
mqC−1
CR1...CRqC−1

, r
mqC−1
CRqC

) →֒ (p
mqC−1
CRqC

, r
mqC−1
CRqC

)

(3)

with ∀kC ∈ [1,mjC] andqC ≥ 2 if kC ≥ 2 thenrkC

CR1...CRjC
= rkC

CRjC+1

NG =

(

(

NW ||NI1

)

(r1
P

, r1
I1

) →֒ (p1
I1

, r1
I1

)

. . .

(r
m1
P

, r
m1
I1

) →֒ (p
m1
I1

, r
m1
I1

)

. . . ||NIqI

)

(r1
PI1...IqI−1

, r1
IqI

) →֒ (p1
IqI

, r1
IqI

)

. . .

(r
mqI
PI1...IqI−1

, r
mqI
IqI

) →֒ (p
mqI
IqI

, r
mqI
IqI

)

(4)

with ∀kI ∈ [1,mjI] andqI ≥ 1, rkI

PIjI−1
= rkI

IjI

complex RTOSs mechanisms. The use of high-level Petri Nets
such as Scheduling TPNs [5] is also planned.

Finally, a more long-term goal is planned to check the cor-
rectness of the transformation. A formal comparison between
an application model projected on a more abstract platform
and a deployed application model generated by SExPIsTools
could allow this verification.

REFERENCES

[1] M. Boyer and O.H. Roux, “On the compared expressiveness of arc, place
and transition time Petri nets,” Fundamenta Informaticae,August. 2008,
pp. 88(3):225-249.

[2] M. Brun and J. Delatour, “Contribution on the software execution
platform integration during an application deployment process,” First
Topcased Day, Toulouse, February. 2011.

[3] W. El Hajj Chehade, A. Radermacher, S. Gérard, and F. Terrier, “De-
tailed Real-Time Software Platform Modeling,” Software Engineering
Conference (APSEC), 17th Asia Pacific, November. 2010, pp. 108-117.

[4] C. Lelionnais, M. Brun, J. Delatour, O.H. Roux, and C.Seidner, “Formal
Behavioral Modeling of Real-Time Operating Systems,” ICEIS(2) -
Proceedings of the 14th International Conference on Enterprise Infor-
mation Systems (Special Session on Model Driven Development for
Information Systems: Techniques, Tools, and Methodologies - MDDIS
2012), Wroclaw, Poland: June. 2012, pp. 407-414.

[5] D. Lime and O.H. Roux, “Formal verification of real-time systems
with preemptive scheduling,” Journal of Real-Time Systems, Springer,
February. 2009, pp. 41(2):118-151.

[6] M. Merlin, “A study of the recoverability of computing systems,”
PhD dissertation, Univ. of California, Department of Information ans
Computer Science, Irvine, 1974.

[7] J. Miller and J. Mukerji, “Model Driven Architecture (MDA) Guide,
version 1.0.1.,” Technical report, Object Management Group, June. 2003.

[8] Object Management Group (OMG), “UML Profile for Modelingand
Analysis of Real Time and Embbeded systems (MARTE), version1.1.,”
Technical report, June. 2011.

[9] OSEK/VDX Group, “OSEK/VDX Operating System Specification, ver-
sion 2.2.3.,” Technical report, February. 2005.

[10] F. Peres, B. Berthomieu, and F. Vernadat, “On the composition of
Time Petri Nets,” Discrete Event Dynamic Systems, September. 2011,
pp. 21(3):395-424.

[11] F. Taı̈ani, M. Paludetto, and J. Delatour, “Composing real-time objects:
a case for Petri nets and Girard’s linear logic,” Object-Oriented Real-
Time Distributed Computing, ISORC-2001. Proceedings. Fourth IEEE
International Symposium on, May. 2001, pp. 298-305.

[12] F. Thomas, S. Gérard, J. Delatour, and F. Terrier, “Software Real-Time
Resource Modeling,” Embedded Systems Specification and Design Lan-
guages, Lecture Notes in Electrical Engineering, SpringerNetherlands,
2008, pp. 10:169-182.

31Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

ENABLE

enabling Task1

CLOCK

ACTIV ATION

activation Task1

SUSPENDED

terminatedState Task1

[inc; inc]

increment

TRIGGER

[period; period]

cycle

TRIGGER

[0; 0]

resuming

TRIGGER

READY

activatedState Task1

[0; 0]activation

TRIGGER
PROCESSOR

processor Task1

resumedState Task1

RUNNING

start Task1

START

[0; 0]TRIGGER

end Task1

END

NTask1

NTask1 withBody

ENABLE

enabling Task2

CLOCK

ACTIV ATION

activation Task2

SUSPENDED

terminatedState Task2

[inc; inc]

increment

TRIGGER

[period; period]

cycle

TRIGGER

[0; 0]

resuming

TRIGGER

READY

activatedState Task2

[0; 0] activation

TRIGGER
PROCESSOR

processor Task2

resumedState Task2

RUNNING

start Task2

START

[0; 0] TRIGGER

end Task2

END

NTask2

NTask2 withBody

end Sem1

END

count Sem1

FREE

discount Sem1

BUSY

start Sem1

START

[0; 0]

TRIGGER

[0; 0]bypass

TRIGGER

NGet1(Sem1)

end Sem1

END

count Sem1

FREE

discount Sem1

BUSY

start Sem1

START

[0; 0]

TRIGGER

[0; 0] bypass

TRIGGER

NGet2(Sem1)

end Sem1

END

count Sem1

FREE

discount Sem1

BUSY

start Sem1

START

[0; 0]

TRIGGER

[0; 0] bypass

TRIGGER

NRelease1(Sem1)

end Sem1

END

count Sem1

FREE

discount Sem1

BUSY

start Sem1

START

[0; 0]

TRIGGER

[0; 0]bypass

TRIGGER

NRelease2(Sem1)

PROCESSOR

processor Task1

end Task1

END

resumedState Task1

RUNNING

terminatedState Task1

SUSPENDED

start Task1

START

[0; 0]

TRIGGER

NTerminate1(Task1)

PROCESSOR

processor Task2

end Task2

END

resumedState Task2

RUNNING

terminatedState Task2

SUSPENDED

start Task2

START

[0; 0]

TRIGGER

NTerminate2(Task2)

NTask1Body NTask2Body

PROCESSOR

processor Proc
NProc

count Sem1

FREE

discount Sem1

BUSY

NSem1

NDeployedApplication

(a)

(a)

(a)

(a)

(a) (a)

(a) (a)

(b) (b)

(b) (b)

(b) (b)

(b) (b)

(b)(b)

(c)

(c)

(c)

(d)

(d)

(d)

Fig. 2: Deployed application of semaphore sharing composedin TPN

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

