VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

Automatic Linking of Test Cases and Requirements

Thomas Noack
Berlin Institute of Technology
Daimler Center for Automotive IT Innovations (DCAITI)
Berlin, Germany
E-Mail: thomas.noack@dcaiti.com

Abstract—The paper proposes a 3-layered method which
automatically creates trace links between test cases and reused
requirements (test-links). While the first layer automates the
manual test-link reuse, subsequent layers apply elaborate filter
mechanisms. More specifically, Case-Based Reasoning is used
in the third layer for detecting scenarios where test-link reuse
is questionable. The proposed 3-layered method is explained
with the help of a clarifying example.

Keywords-Reuse; Requirements; Test cases; IBM DOORS

I. INTRODUCTION

Daimler uses the V-Model to manage methods and tools
which guide the development process. Each vehicle series
project passes the V-Model from the requirements stages
over implementation to the test stages. The vertical integra-
tion defines which stages are performed by internal engineers
and which stages are performed by external suppliers. Due to
the low vertical integration in the automotive domain many
engineers nowadays work mainly with engineering artifacts
which are located in the upper stages of the V-Model. These
artifacts are system requirements, test cases and trace links
between them. The actual implementation is often done by
suppliers.

Each new vehicle series inherits engineering artifacts from
previously completed vehicle series projects. That means,
reuse takes place from a source to a destination. The
observation of the Daimler development process revealed
several interesting facts. The reuse direction is horizontal
from a source V-Model instance to a destination V-Model
instance. Reusing system requirements is done by copying
and adapting the requirements specification. Interestingly,
test case reuse is not done via copying in practice. Instead, it
is done by setting thousands of test-links from the existing
test cases to the copied and adapted system requirements.
This paper introduces a method to automate the complex
task of setting the test-links between test cases and reused
system requirements.

The paper is structured as follows: Firstly the Daimler
specific DOORS®[1] modules and their interaction are in-
troduced. After that the 3-layered method to reuse test-links
is presented. The paper continues with a minimal example
and related work. In the conclusion section, comments are
made and future work is drawn.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

II. DOORS®MODULES IN THE UPPER V-MODEL

Daimler uses DOORS®for requirements and test engi-
neering. DOORS®manages specification documents in so
called modules. Figure 1 shows the modules in the upper
V-Model stages of the Daimler development process. The
proposed method focusses on the relationship of the three
following modules.

A. System Requirements Specification (SRS)

A vehicle is described by many SRS - one SRS for one
system. Examples for systems are Wiper Control or Outside
Light Control. The main engineering artifacts in SRS are
vehicle functions. Examples for vehicle functions are wash
windshield or activate turn-signal right. Each vehicle func-
tion is refined by specific (non-)functional requirements.

B. Test Specification (TS)

Test cases are the engineering artifacts in TS. A test case
is characterized by test actions, pre- and pass conditions,
assignments to test levels, test goals and many other proper-
ties. Test cases link to the corresponding requirements they
verify. Each SRS has at least one corresponding TS.

C. Test Concept (TC)

The TC contains the test plan which defines, what must
be tested when for which purpose. The test plan artifacts
are: test object type (What?, e.g., vehicle function), test level
(When?, e.g., vehicle integration test) and test goal (Which
purpose?, e.g., correct interaction on interfaces). The TC
defines which test-links must exist between TS and SRS in
order to fulfill the test plan. Therefore, each test case in the
TS is classified according to the test plan artifacts.

Figure 1. DOORS®modules in the upper V-Model

45

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

1
Transitive test-link reuse

3 layers

o System Requirements
Specification (SRS)
* Test Specification (TS)

2
TC-Driven test-link filtering

3
Case-Based test-link filtering

DI I M PIED I W

+ Test Concept (TC)
+ Classified test cases

+ Case Base

each has
3 phases

Analyze
modules

2

P

Analyze
test-links

Figure 2.

III. 3-LAYERED METHOD TO REUSE TEST-LINKS

This section describes the proposed 3-layered method for
automating the reuse of test-links between TS and SRS.
Figure 2 depicts the layers of the method.

Each layer consists of the same three phases. The spe-
cific tasks of each phase differ depending on the layers
characteristics as indicated in Figure 3. A subsequenting
layer enhances the phases of its predecessor with additional
tasks. The general tasks performed in the three phases are
as follows.

o Analyze modules: Extract information from the SRSg;..
(Source), SRS p,: (Destination), TS and TC.

o Set test-links: Set links from TS to SRS p; on the basis
of the above analysis results.

e Analyze test-links: Assess the links and highlight the
link status in SRSp,; and in TS.

The first layer can be directly integrated into the Daim-
ler development process because the process stipulates the
existence of the involved modules SRSg;.., SRSp,: and TS.

A

Link: REUSE

Link: VERIFIES —‘—0 Link: VERIFIES

—

Test'Concept

Case Base <

|:] Layer 3

€—& Similar former
reuse cases

\:I Layer 1

e

[:] Layer 2

@@ Testplan
artifacts

Known link

--» Unknown link

Figure 3. DOORS®modules needed by the layers

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

3-layered method to reuse test-links

In Figure 3, the filled boxes and link arrows show the
minimal reuse situation presumed by the first layer. When
a new vehicle series project is launched, requirements are
reused by copying the complete SRSg,. module. The re-
sulting SRS p; is then adapted to the requirements of the
new vehicle series. While the test-links from TS to SRSg,..
do exist, the test-links from TS to SRS p,; do not exist. The
first method layer automatically sets the not existing test-
links and highlights the link status in SRS pg;.

The TC shown in the lower right corner of Figure 3 is
the additional module needed by the second layer. The TC
defines which test-links must exist in order to fulfill the test
plan. The connection between TC and TS is established by
classifying the test cases within TS according to the test plan
artifacts of TC. By the virtue of taking test plan artifacts into
account, the resulting test-links and highlighted requirements
are much more comprehensive compared to the linking and
highlighting of the first layer.

The Case Base shown in the lower left corner of Fig-
ure 3 is the additional module needed by the third layer.
Case-Based Reasoning relies on two assumptions [2]: (1)
similar problems have similar solutions and (2) similar
problems occur continuously. Transfered to test reuse, these
assumptions mean that (1) similar reuse situations result
in similar reuse decisions and (2) similar reuse situations
occur continuously. The cases of a Case Base are structural
representations of previously applied knowledge [3]. Reuse
knowledge is represented by differences between previous
SRSg,c, SRSps:, TS and TC. The benefit of Case-Based
filtering is that typical situations, which disable test-link
reuse, can be recognized automatically.

Discussions with Daimler engineers led to an interesting
conclusion. Case-Based Reasoning can, in the given context,
only be used to detect situations, where test-link reuse is
not possible. If, for example, the interface specification of
a destination requirement changed, it can be assumed that a
integration test case probably must be reviewed. On the other
hand, it can not be automatically assumed that a test-link can
be reused only because the interfaces did not change.

46

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

The layers and its phases are described as follows.

A. First layer: Transitive test-link reuse

1) Analyze modules: 1If a requirement is reused in
SRS pst, it has a reuse-link to the corresponding requirement
in SRSg,.. The textual similarity between each source and
destination requirement is calculated and stored in SRSp;.
New and heavily adapted requirements of SRSps; have no
reuse-links to SRSg,...

2) Set test-links: Test-links are reused transitively. That
means, if a test case in TS verifies a requirement in SRSg,..
and if this requirement has been reused by a requirement in
SRS pst, then the test case in TS also verifies the requirement
in SRSps:. If the destination and source requirement are
textually identical, the test-link is reused. Otherwise, it must
be reviewed by the test engineer in the next phase.

3) Analyze test-links: After the test-links have been set in
the previous phase, SRS pg; is analyzed. Three scenarios can
occur for each destination requirement: (a) it is identical to
the source requirement and hence a test-link can be reused
directly (b) it has been changed slightly and, therefore, the
test-link must be approved by the engineer (c) it has no test-
link because either it has been changed heavily or it is a new
requirement or the source requirement has no test-links.

B. Second layer: Test-Concept-Driven test-link filtering

1) Analyze modules: Based on the analysis of the TC,
a 3-dimensional test plan cube is constructed. The cube
dimensions are the test plan artifacts: test object type, test
level and test goal. An example of a cube cell would be the
triple (vehicle function, integration test, verify interface).

2) Set test-links: This phase enhances the first layer with
a filtering mechanism enabled by the cube. In particular, the
necessity of the test case is examined by passing the test case
classification to the cube. Only if a test case is considered
as needed by the cube, i.e., as needed to verify a test goal
for a test object type on a test level, the test-link is set.

3) Analyze test-links: While the first layer can only
make statements about the pure existence of test-links the
second layer also considers test plan artifacts. Therefore,
for each destination requirement the following more detailed
scenarios arise: (a) a test case for a specific test object type
is missing (b) a test case for a specific test goal is missing
and (c) a test case for a specific test level is missing.

C. Third layer: Case-Based test-link filtering

1) Analyze modules: In this most sophisticated layer,
Case-Based Reasoning (CBR) is utilized to filter test-links
based on previous reuse experience. More specifically, a
current reuse situation is constructed for each potentially
reusable test-link by extracting relevant information from
SRSs,c, SRSps:, TS and TC. The situations are then
converted into structural case representations to enable sim-
ilarity search in the next phase.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

2) Set test-links: For each constructed current reuse
situation, a similar case in the Case Base is searched.
Therefore, similarity measures, as shown in [4], are applied.
If a similar negative reuse case, i.e. where link reuse has
been questionable, is found for a current test-link, its reuse
possibility is also marked as questionable.

3) Analyze test-links: The third layer extends the previous
layers with additional analysis possibilities with respect to
not reusable test-links. For each classifying property more
fine-grained scenarios arise, e.g., (a) interface has been
changed thus an integration test case is questionable or (b)
safety relevance has been changed thus a safety test case is
questionable.

IV. EXAMPLE

Figure 4 depicts an example to show the application of
all three layers. The following subsections describe, how the
3-layered method extends the current module landscape.

A. Current state of the modules

Currently, SRSps:, SRSg,. and TS are stipulated by the
Daimler development process. While the TC has been rolled
out lately, the Case Base is a new module which only exists
conceptually. The SRS modules in Figure 4 contain the
textual requirements Srcx and Dstx and columns of their
properties.The TS contains test cases which trace link to
SRS modules.

B. Reuse relationship between SRSs,. and SRSps;

Srci49 in SRSg,. and Dsty o in SRSp,, are in a reuse
relationship. Since Dst; has not been changed textually, it
is 100% similar to Srcy. Dsty has been modified in order
to adapt the changed needs of a new vehicle series. The
textual similarity of Dsty and Srco is 80%. For further
considerations we assume that 80% is within the borders
of the reuse threshold. Dst; has changed heavily and the
reuse relationship to Srcs could not be detected technically.
Dsty4 is a new requirement.

C. Transitive reuse of test-links

The test cases Testy in TS have test-links to the require-
ments Srcx in SRSg;.. These test-links between Src; 4o and
Test; o are reused to link to the corresponding requirements
Dsty o in SRSps;. While the test-link between Test; and
Dst; has been reused directly, the test-link between Tests
and Dsty, must be reviewed because the requirements Dst
and Srco, are not identical. The test-link between Dstg and
Tests is not set because Dst3 and Srcz have no reuse-link.

D. TC and classified test cases in TS

The TC stipulates that each test object of the type vehicle
function must be verified on integration (Int) and system
(Sys) test level. The test goal functionality must be verified
by both, integration and system test. Correct interaction on
interfaces has to be verified on the integration test level

47

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

Source SRS Destination SRS Test Concept (TC)
Requirements H | Interface ‘ Reused? | Tested? | Requiremerts E | Interface| Reuses?| S\milarity‘ Tested? |Test details | Test plan
1 A function : 1 A function - Not all requirements (1) I S
— — - Test goal missing (2+3) n ¥
Srcl Yes Yes - Interface t s
Src2 Sys1 Yes fes - Test level missing (2+3) -
Test Is: Vi -
Sre3 Na 1es - Vehicle integration es gf)a - erify
Dst 1: Equal L4 es 100 ves .. functionality X | %
Dst 2: Slightly differ. % Sys1 ves 80 - Req text changed (1) - interface X
Sys 2 - Interface changed (3) Test object type:
Dst 3: Very different No MNo Vehicle function % | %
Dst 4: New No Io
Case Base Test Specification (TS)
Cases E | Reuse? ‘Snun:e Destination Test cases E |Test goal | Test level | Reuse? | Reuse documentation |
1 Cases 1 Tests
Interface SRS.Interface SRS.Interface = Test 1 ¥ Functionality System ves - 5rc 1 reused (1)
changed =["sys1"] ["Sys 1", "Sys 2'] Test 2 Interface Integr. - Src 2 reused but changed (1)
- Interface changed (2+3)
Test 3 il Configurability Module No - Src 3 not reused (1)

Figure 4. Minimal example (DOORS®module state after running layer 3)

only. The test cases in the TS are classified by the test plan
artifacts fest goal and test level. Tests verifies the test goal
configurability. Because this test goal is not considered by
TC, a potential test-link from Tests would not be set.

E. Case Base

The requirements Srco and Dsty have a common property:
Interface. While Srco has an interface to the system [’Sys
1’], the system dependencies of Dsty are ['Sys 17, ’Sys 2’].
This current reuse situation is transformed to a case.

The search in the Case Base returns the case Interface
changed, which is identical to the current reuse situation.
The reuse decision Review of the case is applied to the
current situation between Testy and Dsts.

V. STATE OF THE ART

There are two possible sources from which reused test
cases can originate: they come from already existent test
cases or have been generated from reused test models.
Because this work is located in the upper V-Model stages it
clearly focusses on the first possible source.

Three works mainly inspired the 3-layered method. Gep-
pert et al. describe, how textual test cases can be transformed
to product line test cases [5]. Nebut et al. propose a
requirement-based approach for testing product families [6].
They generate textual test cases from the so called Use Case
Transition System, which is formed by trace links between
Use Cases. Minor and Hanft use Case-Based Reasoning for
reusing test cases by analyzing textual similarity [7].

VI. CONCLUSION AND FUTURE WORK

This Work in Progress paper proposed the basic function-
ality of a 3-layered method which has been developed for
supporting the industrial test case reuse process pragmati-
cally. The first method layer has been piloted successfully in

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

the automotive domain with real specification modules from
the Wiper Control System and the Rain Closing System.
Implementation details and field study results of each layer
follow in future publications.

The proposed method does not only exclusively sup-
port the automotive domain. It is located in the upper V-
Model stages and thus can be applied generally to each
environment, where test cases and system requirements are
connected by test-links.

REFERENCES

[1] IBM, “Rational DOORS,” http://www-03.ibm.com/software/
products/us/en/ratidoor/ [Last access: 19/06/2013].

[2] D. B. Leake, “CBR in Context : The Present and Future,”
in Case-Based Reasing: Expericences, Lessons and Future
Directions. MIT Press, 1996, ch. 1, pp. 1-35.

[3] R. Bergmann, J. Kolodner, and E. Plaza, “Representation in
Case-Based Reasoning,” The Knowledge Engineering Review,
vol. 20, pp. 209-213, 2006.

[4] F. Brosius, “Distanz- und AhnlichkeitsmaBe (engl.: Distance
and Similarity Measures),” in SPSS 2/. mitp, 2013, ch. 31,
pp. 693-709.

[5] B. Geppert, J. Li, F. Rossler, and D. M. Weiss, “Towards Gen-
erating Acceptance Tests for Product Lines,” in Proceedings of
the 8th International Conference on Software Reuse, Madrid,
Spain, 2004, pp. 35-48.

[6] C. Nebut, F. Fleurey, Y. L. Traon, and J.-M. Jézéquel, “A
Requirement-based Approach to Test Product Families,” in
Proceedings of the 5th International Workshop on Software
Product-Family Engineering, Siena, Italy, 2003, pp. 198-210.

[7]1 M. Minor and A. Hanft, “The life cycle of test cases in a
CBR system,” Advances in Case-Based Reasoning, pp. 455—
466, 2000.

48

