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Abstract—This paper reports on a framework for the devel-
opment and testing of complex systems. The framework provides
a meta-model for the description of systems at different levels
of abstraction which is used as a basis for the combination of
model-based testing (MBT) techniques for automated test case
generation with executable requirement monitors that continu-
ously observe the status of the System under Test (SuT) during
test execution. The overall goal is to reduce the total development
and testing effort for complex systems. This is accomplished by
enabling a high degree of automation and reuse of engineering
artefacts throughout the systems engineering lifecycle.
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I. INTRODUCTION

The ever-increasing complexity of products has a strong
impact on time to market, cost and quality. Products are
becoming increasingly complex due to rapid technological
innovations, especially with the increase in electronics and
software even inside traditionally mechanical products. This
is especially true for complex, high value-added systems in
the aerospace and automotive domain - the methodology
was developed and is therefore embedded in an aeronautic
context but generally is independent of a specific domain
- that are characterized by a heterogeneous combination of
mechanical and electronic components. System development
and integration with sufficient maturity at entry into service
is a competitive challenge in the aerospace sector. Major
achievements can be realized through efficient system testing
methods.

”Testing aims at showing that the intended and actual
behaviours of a system differ, or at gaining confidence that
they do not. The goal of testing is failure detection: observable
differences between the behaviours of implementation and
what is expected on the basis of the specification”[1].

The typical testing process is a human-intensive activity
and as such it is usually unproductive and often inadequately
done. It requires human test engineers to manually write test
cases. A test case contains a series of test inputs and expected
results. Nowadays, the test execution especially on lower levels
of testing is largely automated. Nevertheless, this process
is cumbersome and costly. Therefore, testing is one of the
weakest points of current development practices. According
to the study in [2] 50% of embedded systems development
projects are months behind schedule and only 44% of designs
meet 20% of functionality and performance expectations. This
happens despite the fact that approximately 50% of total
development effort is spent on testing [2], [3]. This shows the

importance and desirability of reducing test effort by advances
in the testing methodologies.

Testing needs to be applied as early as possible in the
lifecycle to keep the relative cost of repair for fixing a
discovered problem to a minimum. This means that testing
should be integrated into the lifecycle model so that each phase
in the development contributes to the verification of the product
as Figure 1 shows. Laycock claims that ”the effort needed to
produce test cases during each phase will be less than the
effort needed to produce one huge set of test cases of equal
effectiveness on a separate lifecycle phase just for testing”[4].

Fig. 1: Envisaged process change

This paper reports on a framework to further automate
the system testing process. It is a continuation of the work
earlier reported in [5]. The framework provides a meta-model
for the description of systems on different layers of abstrac-
tion and combines model-based testing (MBT) techniques for
automated test case generation based on a whitebox SysML
model of the system with executable requirement monitors
that continuously observe the status of the System under Test
(SuT) during test execution. The overall goal is to achieve a
high degree of automation and reuse of engineering artefacts
throughout the systems engineering lifecycle.

Paper structure: First we present background information
on SysML, MBT and monitor-based testing (Section II) before
we will explain the methodology in detail (Section III). Finally,
we propose a number of ideas for future research (Section IV)
and close with a summary of the current status (Section V).

II. BACKGROUND

This section provides background information on SysML,
Model-based testing, Monitor-based testing and related work.

A. SysML

The Unified Modeling Language (UML) [6] is a stan-
dardized general-purpose modelling language in the field of
software engineering and the Systems Modeling Language
(SysML) [7] is an adaptation of the UML aimed at systems
engineering applications. Both are open standards, managed
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and created by the Object Management Group (OMG), a
consortium focused on modelling and model-based standards.

SysML is not a methodology, i.e., it does not define
what steps need to be performed in what order and which
diagrams should be used for which step. Estefan [8] provides
an overview of existing methodologies used in industry, some
of which use UML-based languages. SysML is a graphical
modelling language, i.e., diagrams are used to create and
view model data. However, the graphical representation is
decoupled from the actual model data. The model data and its
graphical representation are typically stored in different files
in UML/SysML tools.

Neither UML nor SysML define complete model execution
semantics in their core specification. This is different from
modelling and simulation languages, such as Modelica [9],
which specify the syntax (textual notation) as well as the
execution semantics. However, work is underway to resolve
that [10], [11], [12]. In the mean time, SysML tool suppliers
often provide their own execution semantics [13], so it is
possible to include action code into models, generate code
from the models and then execute them.

B. Model-based testing

The term MBT is widely used today with slightly different
meanings. Surveys on different MBT approaches can be found
in [1], [14], [15]. The most simple one is that ”Model-based
testing (MBT) relates to a process of test generation from
an SuT model by application of a number of sophisticated
methods”[16].

Model-based testing is a variant of testing that relies on
explicit behaviour models that encode the intended behaviour
of a system and possibly the behaviour of its environment.
The use of explicit models is motivated by the observation
that traditionally, the process of deriving tests tends to be
unstructured, barely motivated in the details, not reproducible,
not documented, and bound to the creativity and expertise
of single engineers. The idea is that the existence of an
artefact that explicitly encodes the intended behaviour can help
mitigate the implications of these problems [1].

Intensive research on MBT and analysis has been con-
ducted in recent years, and the feasibility of the approach has
been successfully demonstrated, e.g., in [17], [16]. Yet, Boberg
[18] shows that most studies apply model-based testing on
the component level, or to a limited part of the system while
only few studies focus on the application of the technique on
the system or even aircraft level. The main difference being
that the goal of a system integrator such as Airbus is not
to produce code but to provide a high quality specification
that can be handed over for implementation to a supplier.
Giese [19] explains that this slow adoption is not only due
to scalability reasons but he also claims that ”to benefit from
formal verification and early simulation, a model must be
precise and detailed with respect to all aspects that are the
subject of verifiation. This can usually be carried out in the
detailed design phase at the earliest”[19].

A major distinction between the different available MBT
approaches can be made by looking at the source of the gener-
ated test cases [19]. Some approaches rely on separate explicit

test models that are disjunct from the system or specification
model, as depicted by Figure 2 while other approaches don’t
make that distinction and generate test cases from the defined
system behaviour as shown by Figure 3.

The usage of explicit test models reflects the different
objective (validation vs. solution) and point of view (tester
vs. implementer) in creating a test model rather than a spec-
ification model [20]. A test model is a model representing
all possible stimulations of input of the system interacting in
various usage contexts and normally also includes verification
points stating what is a correct response from the system to
an input and what not. It thereby follows a tester’s view who
also has to think of how to combine the possible input stimuli
of a system to achieve a high confidence in its correctness.

The main benefit of this approach is the degree of inde-
pendence it naturally entails between the generated test cases
and the system. The generated test cases can thus be used
directly to test any form of the SuT, either a model or the
implementation. Additionally, as the test model is not a part
of the design it can be optimised for validation and verification
purposes thereby increasing the chance to uncover defects that
are outside the focus of the design artefacts [19]. A drawback
of the approach is that there are two models that have to be
kept consistent with the requirements at all time which requires
further effort.

Fig. 2: Model-based testing using explicit test models

One example for an approach that does not rely on explicit
models is the work from Lettrari [21] that is the basis for
the commercially available IBM Rational Rhapsody Automatic
Test Generator (ATG) tool. Test cases are generated from
a behaviour model of the SuT using model coverage as
test selection criteria. Automated test case generation uses
constraint based symbolic execution of the model and search
algorithms.

The main benefit is that the approach does not require the
creation and maintenance of a separate test model. On the
other hand, since the test case generation is not guided by a
test engineer it cannot distinguish between ”good” and ”bad”
test cases. The only goal for the generator is to achieve a high
degree of model and/or code coverage by generating stimuli
that force the executable system model to visit all states and
transitions and call all functions of the system’s components.
Furthermore, there is no independence between the generated
test cases and the system model. This means that the test cases
cannot be used to test the model they were generated from if
the test success criteria is that the observed behaviour and the
test case behaviour are the same.
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Fig. 3: Model-based testing using design/specification models

C. Monitor-based testing

The idea for formalizing a natural language requirement
statement into a requirement monitor is similar to the monitor
concept used in runtime verification [22], [23]. Like in runtime
verification, the main purpose of the requirement violation
monitor is to detect requirement violations without intervening
into the analyzed system. A more formal definition states, that
”Runtime verification is the discipline of computer science that
deals with the study, development, and application of those
verification techniques that allow checking whether a run of a
system under scrutiny satisfies or violates a given correctness
property”[22].

Runtime verification itself deals with the detection of
violations of correctness properties. Thus, whenever a violation
is observed, it typically does not influence or change the
programs execution, say for trying to repair the observed
violation. Checking whether an execution meets a correctness
property is typically performed using a monitor. In its simplest
form, a monitor decides whether the current execution satises
a given correctness property by outputting either yes/true or
no/false [22].

D. Related Work

In [24], Artho et. al. propose a method for combining test
case generation and runtime verification for software systems.
In their framework they combine automated test case genera-
tion, which is based on a systematic exploration of the input
domain of the tested software system using a model checker
that is extended with symbolic execution capabilities with
runtime verification techniques, that monitor execution traces
and verify them against properties expressed in a temporal
logic notation. They include further capabilities for the analysis
of concurrency errors, such as deadlocks and data races. The
paper also provides a description of the application of the
method using a NASA rover controller.

While similar on an abstract level, our work differs from
the work by Artho et. al. in some major points. Firstly, the
test oracles are written as temporal logic formulas whereas
we use SysML for both the modelling of the system as well
as the requirement monitors. Secondly, the test scenarios are
generated based on a definition of all possible inputs using a
model checker, whereas we generate the test scenarios from a
whitebox model of the system under test.

III. METHODOLOGY FOR DEVELOPMENT AND TESTING
OF COMPLEX AIRCRAFT SYSTEMS

This section provides a description of our methodology in
terms of the overall concept, the underlying metamodel and
the envisaged process.

A. Concept

Our methodology combines monitor- and model-based
testing to test the system model and the resulting system. Our
aim is to achieve a high degree of reuse of artefacts from
early development stages at later development stages and a
high degree of automation throughout the process. Since we
consider multiple levels of abstraction in our metamodel it
is necessary to provide means which can verify a model at
any abstraction level or the final product without the need for
redeveloping the verification means for each verification stage.
To this end, we use executable requirement monitors, which
can be built very early on as soon as the first requirements
are defined and which can be adapted easily for verifying the
models or the product. Also, these monitors can be reused for
testing different variants and/or design alternatives.

Figure 4 provides an overview of the main artefacts in-
volved and their relations.

A requirement monitor is an exectuable model representing
one requirement that, at any point in time, indicates the
requirement violation status. The status should be enumerated
with at least the following values:

• Not evaluated (default value), to indicate that the
requirement has not been evaluated yet. Typically, this
means that a necessary precondition has not been met
yet.

• Not violated, to indicate that no violation has hap-
pened and implying that the requirement has been
evaluated.

• Violated, to indicate a violation of the requirement and
implying that the requirement has been evaluated.

This enumeration is referred to as three-valued semantics in
[22] with the literals inconclusive, false and true respectively.

The monitor status can be obtained from a monitor at
any point in time and can change between not evaluated,
not violated and violated in any possible way. Following this
approach, the status of the individual reuqirement monitors that
are instantiated during one test can be used in aggregation to
derive the test verdict. Removing the test verdict from the test
cases will enable the reuse of test cases, that we now call test
scenarios, for the verification against several requirements.

The task of converting the natural language statement into
a formal language will require a correct interpretation of the
requirement statement and the ability to translate the meaning
into a model that expresses exactly the same. The general
systematic way for deriving a monitor from natural language
requirement is as follows:

1) Read the requirement statement
2) Identify properties that can be quantified either by

explicit numbers or by logical conditions
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3) Identify pre-conditions (if any), which must be satis-
fied before the requirement can be evaluated

4) Express when the requirement is violated and when
not

Neither a particular design of the system nor scenarios are
needed for formalizing a requirement. The resulting monitor
can be used for the verification of any design alternative of the
system using any scenario. Generally, the task of formalizing a
requirement into a requirement monitors can be accomplished
in many different ways using different formalisms. We decided
to use SysML for the task because using the same notation for
design and testing artefacts enables integrated development and
testing without the need for additional tools or data converters.

We drive the tests using scenarios that we generate from
the system models using MBT technology. Since we derive
the test verdict from the requirement monitors independently
from the system model we can use the scenarios derived from
the system model to actually verify the system model as well
as the final product.

Fig. 4: Model-based testing using monitors

B. Meta-model

For our purpose, we extended the already established meta
model for functional and systems architecture modeling [25]
to allow a distinction between the functional, logical and the
technical architecture of the system as depicted by Figure 5.

Fig. 5: Levels of abstraction

The main rationale for the distinction between these differ-
ent layers is reusability. Between different aircraft programmes
the functional architecture of a system is quite stable whereas

the implementation can differ drastically. For a given aircraft
programme the logical architecture is fixed quite early but
different technical implementations might be considered and
compared in trade studies. Ideally, we can now reuse the same
functional architecture that is mature and proven and derive
different logical and even more possible technical implemen-
tations that satisfy these functional needs.

The functional architecture, consisting of functions and
data exchanges via functional dependencies is mapped to a
logical system architecture, consisting of logical components
that are instances of logical component classes and logical
links between these components. This logical architecture can
then in turn be mapped to the technical architecture of the
system, which contains technical components, i.e., devices, and
technical connectors, i.e., cables that connect the components.
As can be seen from Figure 6 the relations between the ele-
ments in the different modelling layers allow a full traceability.
This is crucial especially for maintaining the consistency of the
models after changes.

Fig. 6: Meta-model for current approach

While the modelling of the functional architecture in our
approach is purely descriptive, the logical and the technical
system architecture models are fully executable. Typically, the
complexity of the models increases from the functional over
the logical to the technical model. This is mainly due to two
reasons: Firstly, when following this top down approach for
systems modelling the level of abstraction decreases, which
in turn increases the level of detail and complexity. Secondly,
most aircraft systems require a certain degree of redundancy
to abide by the safety constraints. A fact which is normally
not considered during the functional analysis, only partly in
the logical design but has the most impact on the technical
architecture.

C. Process

The overall process underlying our methodology is straight
forward and consists of the following steps:

1) Formalize requirements: create a violation monitor
for each requirement

2) Build system models
3) Generate test scenarios from system models using

MBT
4) Prepare the test environment: instantiate the monitors

of the requirements that can be tested using the
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available scenarios and connect them to the SuT
(models or real hardware) appropriately

5) Execute tests: run all defined scenarios
6) Evaluate tests: aggregate the individual statuses of the

requirement monitors that were active during a test
to derive a test verdict

IV. FUTURE WORK

This section provides a couple of topics for current or
future work for extending the approach described in this paper.
Apart from extensions to the framework, we are also working
on the application of the methodology for a concrete industrial-
based use case to validate the framework.

A. Combination of model-based testing and model-based anal-
ysis

Dijkstra’s famous aphorism holds that tests can only show
the presence of errors not their absence [26]. Analysis tech-
niques, e.g., model checking can be used to proof required
characteristics of a system. Model-based analysis (MBA) and
testing are complementary quality assurance techniques since
static and dynamic analysis provide altogether different types
of information: typically, static analysis provides general in-
formation about a model of the system while dynamic testing
provides specific information about the system under test itself.
Substantial quality and cost improvement can be obtained
when they are systematically applied in combination.

One example for such a combination of MBT and MBA
is the application of MBA in form of a model checker to
improve the completeness of a test suite generated from a
whitebox model using MBT as Figure 7 shows. The problem
that is addressed by this method is that the automatic test
scenario generator does not always achieve to generate a
test suite with 100% coverage (coverage for this scenario
means model/code coverage). At the moment, manual effort
is required to complete a test suite to achieve 100% coverage.
This manual effort can be replaced by the application of a
model checker. If a test case generator manages to cover 95
out of 100 states of a model using test scenarios then we can
write properties that check the reachability of the remaining
five states. If the model checker manages to reach a state then
the proof trace provided by the model checker can be directly
added to the test suite as a new test scenario. If the model
checker cannot find a solution for reaching a state then the
model needs to be adapted.

Fig. 7: Combination of model-based testing and model-based analysis

B. Combination of test scenarios obtained from different
sources

Evluation of different MBT approaches and tools in the
recent past, e.g., [27], [28] showed, that each tool has specific

strengths and weaknesses and almost none of them can replace
additional manual test scenario creation completely. If we use
more than one test scenario generation approach and if we
allow test scenario generation at different levels of abstraction
as Figure 8 shows, then there is a high probability that the
resulting test suite contains a high amount of redundant test
scenarios. In order to test efficiently, especially when we are
in the phase of hardware testing where a test run is much
more expensive than a test run on a model, the redundancy
in the test suite must be reduced to find an optimal test suite.
Adaptation of previous work, e.g., [29], on that topic to our
overall development and testing approach is currently being
investigated.

Fig. 8: Optimal test suite from different sources

C. Automated model-composition and results evaluation

The creation of models that integrate requirement monitors,
a SuT system model and scenarios, i.e., the finding of suitable
combinations of system model, scenarios and requirements,
can be automated. Such a combined test model consists of one
system model, which can be logical or technical, one scenario
that can stimulate the design alternative and a set of require-
ments, which can be tested using the selected scenario. To
automate the process further information is needed to evaluate
the suitability of a combination of a test scenario and a design
model, a test scenario and a requirement or a requirement and
a system model. An approach for encoding this information
and thereby enabling the automated composition of such test
models is presented in [30]. Combining this approach with
the one presented here is ongoing work. Additionally, running
the tests, post-processing of the test results, and presenting
the verification results appropriately can also be done in an
automated fashion.

V. CONCLUSION

We presented a framework for an integrated development
and testing approach of complex systems. The main driver
behind this development was the need for more efficient
testing. This was succesfully achieved by increasing the degree
of reusability of engineering artefacts and automation of the
testing process in the following way:

• Reusability
◦ Explicit modelling of different architecture lev-

els enables reuse of architectures.
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◦ Requirement monitors can be reused for testing
different architecture levels as well as the real
hardware product.

◦ Removing verdicts from test cases allows using
the same test scenario for testing multiple
requirements. Additionally, testing a require-
ment in different test scenarios increases the
confidence in the conclusions drawn from the
test results.

• Automation
◦ Executable requirement monitors allow auto-

mated test verdict derivation.
◦ Generation of scenarios using MBT.
◦ Automated test execution of formal test sce-

narios.

The approach requires, as most model-based approaches,
a frontloading of effort, a personnel shift and a different
education of the involved people compared to the current state
of practice. While evidence suggests that, through the high
degree of reuse and automation, the effort for model-based
testing is only slighly higher than the one for traditional testing
[31] the adoption of the presented approach in an industrial
environment nevertheless requires a rethinking of traditional
roles and process steps.
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