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Abstract—Precision agriculture is vital to ensure the 

sustainability of farming systems. Nonetheless, the selection of 

parameters to be monitored can be a difficult decision, 

especially when the required equipment has a high cost. In this 

paper, we analyze the usability of five variables, including soil 

moisture, canopy temperature and three vegetation indexes, in 

turfgrass composed of different species. Our objectives are, on 

the one hand, determine which parameter or parameters are 

more specific for determining the species which compose the 

turfgrass. On the other hand, we expect to find correlations 

between variables in order to reduce the evaluated parameters 

in the turfgrass monitoring. Our results indicated that only the 

vegetation indexes are useful for genotyping, to determine the 

species that compose the turfgrass. From the vegetation indexes, 

the green area was the one which offers the best results. On the 

other hand, correlations were found between soil moisture and 

canopy temperature, and between the different vegetation 

indexes. Thus, we can affirm that it is possible to reduce the 

measured variables in turfgrass monitoring. The most 

significant advantage is the possibility of avoiding the 

monitoring of a vegetation index, for which the calculation 

requires a specific device with higher cost. 

Keywords-precision agriculture; soil moisture; canopy 

temperature; vegetation indexes; correlations; experimental plots. 

I. INTRODUCTION  

Precision Agriculture (PA) is becoming more and more 
popular in the last years due to its benefits for farmers [1]. The 
use of technology for crops monitoring, such as Wireless 
Sensor Networks (WSN) or Internet of Things (IoT) leads the 
farming activity to a higher degree of sustainability and 
profitability. Even so, the selection of the needs of our systems 
in terms of required data, data periodicity or monitored 
variables can be confusing. In the PA, several aspects can be 
monitored, such as soil, water, and plants. In a recent work 
[2], an evaluation of included parameters in PA concludes that 
most of the IoT-based smart irrigation systems are focused on 
monitoring the soil, and few of them monitored the plants.  

The fact of measuring basically a single, or a limited 
number of parameters might be problematic. This is because 
the characteristics of soil such as Soil Moisture (SM), chiefly 
if it is measured in a unique location and close to the surface, 
can suffer abrupt changes. As the measurement of isolated 
parameters might drive the system into wrong actions, it is 
essential to combine several parameters in order to take the 
correct action. Nonetheless, it prompts us to another problem, 
the proper selection of parameters to be monitored. It is 

essential to monitor plant and soil parameters, given the fact 
that plant parameters are more stable in time than soil 
parameters [3]. Different parameters offer us different sort of 
information, which can be useful in order to take the most 
appropriate measure, i.e. when to irrigate, the required amount 
of water, required fertilizer, identification of plant diseases. 

The dilemma of using different types of devices and 
techniques when we are monitoring the performance of crops 
(or gardens) is the high cost of some devices and the required 
time to gather data manually. In addition, the data processing 
and analyses may require more time than the value of obtained 
information if we include several parameters. Therefore, it is 
necessary to evaluate, test, and validate the real value of the 
information provided by different commonly used devices in 
the monitoring of plants, soils, and agriculture. This 
evaluation is critical to allow us to minimize the number of 
monitored parameters without reducing the conclusions based 
on the gathered information and the value of gathered data. 

One of the activities which clearly demonstrate the 
possible benefits of reducing the number of monitored 
variables is public gardening. In gardening, we have one of 
the highest requirements of water and PA must help to reduce 
the irrigation [4] and evaluate the performance of different 
species to find a combination that requires less irrigation [5]. 

The aim of this paper is to evaluate, test, and validate 
which of the monitored parameters in experimental plots of 
turfgrass offers more valuable information. The objective of 
monitoring those parameters is two-fold. First, we use the 
monitored parameters to evaluate the performance of 4 grass 
combinations, including C3 and C4 plants (different in the 
water management). Furthermore, we expect to use gathered 
data to identify the grass combination, also known as 
genotyping. Therefore, we are going to gather data of 5 
variables, including three vegetation indexes, the Canopy 
Temperature (CT), and the SM. With these data, a series of 
statistical analyses will be performed to try to evaluate the 
performance of each grass combination and to genotype the 
combinations. In addition, we also expect to find a correlation 
between different pairs of variables in order to reduce the 
number of parameters that must be monitored in the future.  

The remainder of this paper is structured as follows. The 
presentation and analysis of the related work are presented in 
Section 2. Section 3 describes the materials and methods that 
have been used for this experiment. The results are detailed 
and discussed in Section 4. Finally, Section 5 outlines the 
main conclusions of this work. 
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II. RELATED WORK 

In this section, we describe several papers which analyze 

the correlation of parameters monitored in PA and the use of 

parameters for genotyping and monitoring crops and gardens.  

First of all, the different vegetation indexes and their use 

are described. We have selected three vegetation indexes 

which are the most used vegetation indexes is the Normalized 

Difference Vegetation Index (NDVI). The NDVI is widely 

used for monitoring plant vigour in different crops. In a 

previous work, Marin et al. [5] have used the NDVI 

compared with RGB information, Green Area (GA) and the 

Greener Area (GGA), to compare the performance of grass 

combinations. They conclude that NDVI, GA and GGA can 

be used in the grass as an indicator of biomass and to estimate 

the resistance of the plant combinations to water restriction. 

However, the NDVI, GA, and GGA are not only used for 

grass monitoring but also crop assessment. In particular, its 

use is extended in cereal crops [6]-[8]. In [6], Fernandez-

Gallego et al. used the aforementioned indexes for grain yield 

estimation in wheat as a low-cost option, compared with 

other existing methods. They conclude that the change in 

canopy colour from green to yellow is the most useful 

indicator for grain yield estimation. Yousfi et al. in [7] used 

NDVI, GA, Canopy Temperature Depression, and Stable 

Carbon Isotope Composition to determine the wheat grain 

yield under different irrigation and fertigation conditions. 

Their results pointed out the relevance of different indexes to 

estimate wheat harvest. In addition, the GA and the Stable 

Carbon Isotope Composition were the unique methods that 

offer a correlation with harvest in all the evaluated scenarios. 

In [8], Buchaillot et al. performed a similar study, including 

a Soil Plant Analysis Development (SPAD) sensor in maize 

fields. For the calculation of indexes, images captured with a 

drone and with a regular camera were used and correlated. 

Their results highlight the relevance of the evaluated indexes 

and the SPAD in grain yield estimation. It is important to note 

that, although some indexes might be attained with remote 

sensing, some of the included parameters cannot be measured 

with existing sensors. Therefore, the correlation or estimation 

of variables is crucial to reduce the number of sensors and 

simplify the infrastructure of WSN or IoT systems.   

Another vital parameter, which is not monitored in most 

of the IoT proposals for irrigation is the CT [2]. The CT has 

a high relevance when drought-tolerant crop cultivars and the 

irrigation are being monitored. In [9], Zhang et al. gather data 

of the CT jointly with RGB and thermal images with a drone 

to evaluate the water stress of the crops. Their results indicate 

the importance of combining the CT with other technologies 

as the image gathered with the drone for a proper assessment 

of maize in water stress conditions. The use of CT for 

irrigation is discussed by Kumar et al. in [10]. In their 

experiments, the authors kept wheat plants under different 

degrees of water stress, CT and SM were monitored. Their 

results clearly indicate that using both variables in an 

algorithm for triggering irrigation events save up to 20% of 

water for irrigation. The CT measurement can be easily 

included in IoT systems or WSN with thermal cameras or 

infrared thermometers.  

The measurement of CT in turfgrass is less standard but 

we can find some examples where the CT is monitored. In 

[11], Culpepper et al. developed an experiment combining 

different types of grasses and exposing them to different 

irrigation levels. The CT was useful to identify the plants kept 

with or without irrigation, but only in specific periods of the 

experiment. Meanwhile, the NDVI was not useful for 

differentiating the two scenarios. Another example can be 

found in Hong et al. [12]. The authors maintain Agrostis 

stolonifera under different regimes (100 to 15% of 

evapotranspiration) and images were captured using a 

thermal camera mounted over a drone. The CT has a high 

correlation with the irrigation regimes (-0.65 to 0.82) in 

different moments. Nevertheless, in general terms, other 

variables such as NDVI presented higher correlations. 

As far as we know, the use and evaluation of NDVI, GA, 

GGA, CT, and SM to assess water stress or its correlation is 

not performed with Poa pratensis mixed with other C3. It is 

essential to evaluate if a reduction in the monitored 

parameters can be applied, to simplify the required sensor in 

the future deployment of WSN and IoT systems. 

III. MATERIAL AND METHODS 

In this section, the equipment and process used to gather 
the data, software employed to analyze it, and the details of 
the mixed plant species are portrayed. 

A. Experimental plots 

A total of 3 grass combinations, which include C3 and C4 
species, have been tested in the research facilities of IMIDRA 
during 8 months. The mixtures of C3 and C4 grasses are kept 
in experimental plots of 4.5m2 (1m per 3.5m). As a C3 grass, 
the Poa pratensis represents 75% of the planted seeds. As a C4 
(25% of the plot) we include three different species combined 
individually with the C4 (Cynodon dactylon (PC), Buchloe 
dactyloides (PB), and Zoysia japonica (PZ)). Each one of the 
selected combinations is repeated six times in individual plots. 
In addition, the most used grasses combination in ornamental 
gardening is tested to serve as a control. This Control is 
composed of Festuca arundinacea (70%), Lolium perenne 
(15%), and Poa pratensis (15%). 

Thus, a total of 22 plots are included in the experiment. All 
the plots have the same environmental conditions of soil and 
irrigation. The irrigation was automatically calculated by the 
Rain Bird [13]. In Figure 1, we can see a representation of the 
3 combinations. The presence of pluviometers used to check 
the uniformity of irrigation can be seen in some of the plots. 

 

 

Figure 1.  Experimental plots from up to down Control, Poa pratensis 

mixed with Cynodon dactylon, Zoysia japonica, and Buchloe dactyloides.  
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B. Data gathering 

During the experimental period, which had a duration of 6 
weeks, data was gathered in each plot one per week, from 
October to November. The data gathered include different 
types of variables related to the soil (soil moisture) and plant 
(canopy temperature and vegetation indexes).  

To gather these data, different devices have been used. For 
the SM, the Time-Domain Reflectometry (TDR) 350 
FieldScout was selected [14]. One measure is taken in each 
plot. Regarding the CT, a Fluke 561 was used [15]. This 
device allows us to collect the mean temperature of each plot.  

Finally, for the lectures of the electromagnetic spectrum of 
the plant to regions are considered, the visible and the infrared. 
Two instruments were used, the first of them was a SONY 
DSC-W120, selected to obtain pictures of each plot. With this 
camera, we gather information about the visible spectrum. 
Meanwhile, the Handheld Crop Sensor GreenSeeker [16] was 
used to measure the information related to the red and infrared 
region. The GreenSeeker allows us having a mean value of the 
NDVI of the entire plot. The information gathered with the 
camera and the GreenSeeker were obtained, placing both 
instruments at 1.5m from the soil.  

C. Data processing 

Once the data were gathered, different processes are 
carried out. The first of them was to analyze the images with 
specific software, the BreedPix. It is open-source software, 
mainly used for cereal crops. With this software, we can 
obtain information about the GA and GGA contained in the 
picture. The GA contains the portion of the picture with pixels 
from yellow to bluish-green. On the other hand, the GGA 
excludes the yellowish-green tones.  

Thus, for each plot, we have five variables (soil moisture 
(SM), canopy temperature (CT), NDVI, GA, and GGA). The 
variables were included in statistical software to analyze the 
relationship between variables and to analyze the performance 
of different grass species. The used software for data 
processing was the Statgraphics Centurion. Two different 

statistical tests were carried out. First, the ANalysis Of 
Variance (ANOVA) is performed to compare the mean and 
variances of included variables for each grass combination. To 
determine the existence of similitudes or differences between 
the evaluated grass combinations, the Tukey Honestly 
Significant Difference (HSD) was selected. Finally, bivariate 
correlations for each pair of variables are performed.  

IV. RESULTS 

In this section, we present our results and discuss their 
importance. First, the identification of differences between 
different plots is detailed. Finally, the correlation between the 
analyzed parameters is described. 

A. Testing the benefits of sensing devices to evaluate the 

performance of different grass combinations 

Considering that in each plot we obtain an individual 
measure of each one of the evaluated parameters and we have 
22 plots monitored during six weeks, a total of 132 
observations were carried out for each variable, which is 
considered a significant amount of data. It is important to note 
that at plain sight, it is not easy to differentiate between 
combination. Only experts are capable of identifying the 
differences in their leaves.  

Before performing the ANOVA to evaluate if the user 
devices can be useful to differentiate between different 
combinations (genotyping), it is essential to confirm that data 
follows a normal distribution. It is a prerequisite for the 
ANOVA. In Table 1, we have included the skewness and 
kurtosis if obtained indexes are between ±2 we can use the 
ANOVA tests. Data included in Table 1 indicates that SM, 
CT, and GA follow normal distributions and ANOVA tests 
can be performed. Nonetheless, the variables NDVI and GGA 
do not follow a normal distribution; thus, alternative tests must 
be performed. In this case, the test median of Mood will 
substitute to the ANOVA, and the Kruskal-Wallis will be used 
to estimate the different groups. The results of variance 
analyses are summarized in Table 2.  

TABLE I.  SUMMARY SKEWNESS AND KURTOSIS OF DATA. 

 Skewness Kurtosis 

 SM CT NDVI GA GGA SM CT NDVI GA GGA 
Control 0.686056 0.904177 -0.8997 0.138911 0.929755 -0.56894 -0.187175 -0.9178 -1.28267 -0.76948 

PC 0.325911 1.36113 -1.7536 -0.14744 1.29273 -0.60346 0.335747 -0.7891 -1.09587 -0.94227 

PB 1.4669 1.31779 -2.460 -0.43471 2.36019 -0.37907 0.00324324 0.9359 -0.32923 0.109402 

PZ 1.07606 1.55038 -2.1278 0.999044 1.52993 -0.54186 0.0515326 0.4999 -0.89322 -0.67507 

Normal 

Distribution 
Yes Yes No Yes No 

     

TABLE II.  SUMMARY OF ANOVA AND KRUSKAL-WALLIS. SIGNIFICANCE LEVELS: NS, NOT SIGNIFICANT; * P < 0.05; ** P < 0.01 AND *** P < 0.001. 
THE DIFFERENT LETTER SUCCEEDING THE MEANS ARE SIGNIFICANTLY DIFFERENT (P < 0.05) ACCORDING TO TUKEY’S HONESTLY SIGNIFICANT DIFFERENCE 

(HSD) TEST. 

 SM CT NDVI GA GGA 

Control 35.2583 a 14.6125 a 0.76 a 0.67875 b 0.35 a 

PC 35.5 a 14.8417 a 0.745 a 0.61805 a 0.295 a 

PB 34.3944 a 14.6056 a 0.79 b 0.77944 c 0.48 b 

PZ 36.3722 a 14.4694 a 0.77 b 0.76472 c 0.425 b 

Level of significance 0.8727 ns 0.9579 ns 0.0005*** 0.0000*** 0.0000*** 
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According to the data presented in Table 2, we can affirm 
that SM and CT have no variation, which means that those 
parameters cannot be used to identify the different 
combinations. Thus, SM and CT are variables which are not 
useful for genotyping. In addition, those variables are 
profoundly affected by environmental conditions and can 
experience huge variations along the day.  

On the other hand, the variables that consider the 
electromagnetic spectrum of the plants (visible and infrared) 
are offering more remarkable information. We need to remark 
that this data is more stable in the time, there is no variation 
along the day and it is not quickly affected by the 
environmental parameters such as solar radiation, wind, or 
rain among others.  

With the data of NDVI, it is possible to identify two groups 
of genotypes. The first group includes the mixture of C3 
species (Control) and the Poa with Cynodon. Meanwhile, the 
mixtures of Poa with Zoysia and Buchloe have different 
values and belong to a separate group. Therefore, information 
of NDVI is not suitable to identify the presence of C4 species 
in all cases. The highest NDVI values are linked to the second 
group (PZ and PB). 

With regard to the information from the visible spectrum, 
different results were obtained with GA and GGA. In both 
cases, the results of the tests have pointed out that there are 
differences in the observed grass species since the p-values are 
lower than 0.05. The GGA index can identify differences in 
two groups of plots. The Control and te PC mixtures form the 
groups on the one hand, and PB and PZ on the other hand. 
These results are coupled with the outcome obtained with the 
NDVI. 

On the contrary, the results obtained with GA data are 
more specific than with GGA and NDVI. Again, the ANOVA 
indicate with a p-value lower than 0.05 that there are 
differences statistically significant among the different grass 
combinations tested. In this case, the multiple range test 
indicates that it is possible to identify three different groups. 
PC mixture is included in the first group. The second group is 
composed solely by the Control grass combination. Finally, 
PZ and PB are the mixtures identified as the third group. The 
different groups and distribution of data can be seen in the Box 
diagram of Figure 2. In this graphic, the mean, median outliers 
and other relevant information are summarized. Figure 2 

presents clearly the similarity in the data of PB and PZ, which 
cannot be differentiated with GA data.  

Thus, the data of GA offers better results than the other 
variables. It is important to note that with NDVI and GGA 
data we have worked with non-parametric statistical tests due 
to the distribution of the data, and those tests tend to be less 
powerful to identify differences than parametric tests. To 
obtain better results with GGA and NDVI, we would need a 
larger amount of data. Therefore, it is possible that GGA and 
NDVI can be used in the future with similar accuracy than GA 
if the amount of data increase. 

B. Correlation between evaluated variables 

The seek of correlations between data, we aim to find the 

relation between variables in order to reduce the number of 

controlled variables in experimental plots. The fact of 

gathering data from several variables implies an elevated time 

consumption in the plots using diverse types of equipment. In 

addition, some of the used equipment (particularly the 

GreenSeeker) have a high cost and having the opportunity of 

using another tool, as the digital pictures, to estimate the value 

of NDVI is vital to save costs.  

Thus, we are going to focus the correlation between 

variables in trying to obtain an equation that allows us to 

obtain or predict the value of NDVI based on the information 

obtained from the digital pictures. In addition, we will seek to 

have a correlation between SM and CT, since the 

measurement of the CT is much faster, and the required 

equipment is cheaper than the required for SM measuring.  

To explore the existing correlation in the gathered data, 

and to attend to the non-normal distribution of some variables, 

Spearman correlation is selected. Although it is less powerful 

than the Pearson correlation, the existence of variables 

without normal distribution force us to use this test. The first 

outcome of the correlation test is the correlation graphic, in 

which the X-Y distributions of each pair of variables, also 

known as Dispersion Matrix, can be seen in Figure 3 a). 

Therefore, we can have in a simple graphic the tend of data of 

all the included variables in the test. According to the results 

of presented in Figure 3, we can identify at plain sight that 

some of the variables are highly correlated.  

 

 

Figure 2.  Box Diagram with GA data for the different grass combinations where the different distribution of data can be identified. 
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a)  

b)  

Figure 3.  Correlation between different variables, a) Dispersion Matrix, b) 
Spearman Correlation Graphic (where X means that their correlation is not 

statistically significant, and the numbers indicate the strength of correlations 

from -1 to +1). 

Meanwhile, in Figure 3 b) we depict the strength of 
correlations between each pair of variables. The values close 
to +1 indicate a strong and positive correlation, while values 
close to -1 indicate a strong negative correlation. The strongest 
correlations for the variables of plant aspect, or 
electromagnetic spectrum, are found for GA with GGA (0.86), 
and GA with NDVI (0.64). The correlation between GGA and 
NDVI is much lower. On the other hand, regarding the plant-
soil interaction, a correlation was found between SM and CT 
(0.58). Last but not least, another interesting correlation 
between SM and NDVI was also found; however, the strength 
of this correlation is lower than 0.50 (0.47).  

Considering the results of the correlation test, we are going 
to focus on the relation between GA and GGA, GA and NDVI 
and TC and SM. The objective, as described before, is to 
reduce the number of required measures and required 
equipment for grass monitoring. The relation between 
variables GA and GGA can be explained with a linear model, 
in which given a certain value of GA it is possible to estimate 
the GGA for the picture. The proposed mathematical model is 
described in (1). It is important to note that this model is 
developed for the different combinations of Poa pratensis 
with other C4 species and include the Control mixture. The 
proposed model is characterized by a correlation coefficient 
of 0.83 and an R2 of 70% and can be seen in Figure 4. 
Although there are other models which can explain with 
higher accuracy the relation between both variables (R2 of 
76%), we have selected the linear model due to its higher 
simplicity and lower complexion in the calculation.  

Concerning the relation between variables GA and NDVI, 
again a linear model, in which given a specific value of GA, it 

is possible to estimate the NDVI, is presented. Equation (2) 
described the linear mathematical model that related both 
variables. In this case, among all the evaluated mathematical 
models, the linear regression was the one that offered higher 
accuracy. The proposed model is characterized by a 
correlation coefficient of 0.65 and an R2 of 43% and can be 
seen in Figure 5. The equation of the proposed model is 
detailed in (2).  

Finally, the correlation found between SM and CT is 
displayed. In this case and given the low accuracy of the linear 
model, we have selected the “S-Curve” model. The S-Curve 
model, which can be seen in Figure 6 has a correlation 
coefficient of -0.57 and an R2 of 33.25. The equation that 
follows the model is depicted in (3).  

 

  

Figure 4.  Simple regression between GA and GGA with a lineal 

mathematic model 

 

Figure 5.  Simple regression between GA and NDVI with a lineal 

mathematic model 

 

Figure 6.  Simple regression between CT and SM with an S-Curve 

mathematic model 

GGA =1.16152*GA -0.395785                (1)  
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NDVI = 0.513359 + 0.329084*GA       (2) 
SM (%) = exp(4.38257 – 12.0825/CT (ºC))            (3) 

 
The obtained results will allow the attainment of two 

objectives. First, we verify a methodology to identify the 
species that compose a lawn of Poa pratensis with other 
grasses. Secondly, we present the correlation of variables that 
will allow a reduction in the number of monitored parameters 
in future experiments in which WSN and IoT are deployed. 
We can use only one type of camera to monitor the GA and 
estimate the GGA and NDVI from (1) and (2). Furthermore, 
we will avoid the need of CT measurement by estimating this 
value from the SM data. Thus, we will have the deployed 
sensor underground instead than at certain height, as need for 
CT measurement. This will facilitate the integration of IoT 
systems with the daily activities carried out in lawns such 
mowing or irrigating, which can be problematic with sensor 
deployed over the ground.  

It is important to note that the obtained results are only 
based on data from Poa pratensis and more data must be 
gathered to extrapolate our results to general turfgrass 
assessment.  

V. CONCLUSION 

The fact of using several devices for monitoring 
agriculture, or gardening, is widely discussed in this paper. 
The tradeoff between the relevance of gathered information 
and required time and costs to obtain this data is presented. To 
solve this problem, we have evaluated the existing correlation 
between different variables. Furthermore, the effectiveness of 
each studied parameter for monitoring grass performance and 
genotyping different species is presented.  

In this paper, five different variables monitored in 
precision agriculture are evaluated for genotyping, and the 
existing correlation between variables is explored. Our results 
point out that the variable which offers better results for 
genotyping different grass combinations, including C3 and C4 
plants, is the GA index. Other evaluated indexes such as GGA 
and NDVI offered promising results, but more data is required 
to evaluate their capabilities. With regards to existing 
correlations, we found a correlation between CT and SM, GA 
and NDVI, and GA and GAA. From those correlations, the 
most interesting one is the possibility of estimating the SM 
based on the CT.  

In future work, we are going to include the measure of the 
temperature of the soil surface, with no coverage, in our 
datasets in order to obtain a more accurate estimation of SM 
from the data of CT and soil temperature and the estimation 
of coverage based on [17]. On the other hand, for the 
genotyping, we will include data of other grass mixtures to 
determine if GA by itself can identify more genotypes.  
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