
An Overview of Cloud-Native Networks Design and Testing

Zhaobo Zhang, Xinli Gu

Silicon Valley Network Technology Lab.

Futurewei Technologies Inc.

Santa Clara, CA, USA

e-mail: zzhang1@futurewei.com, xgu@futurewei.com

Abstract—Cloud-native patterns have reshaped application

development over the past decade. With the benefits of agility,

resiliency, and scalability, the network domain starts

embracing the cloud-native patterns to accelerate its evolution.

Containerization becomes another solution of network function

virtualization. Leveraging existing network services and the

mature container orchestration platform, cloud-native

networks attract wide attention, however the performance and

scalability challenges in design and testing arise as the

architecture advances. This paper presents an overview of

cloud-native networks, the design and testing challenges and

the development activities from open-source communities

towards overcoming those issues. Performance optimization

and hardware and software co-design are critical for the future

success of cloud-native networks.

Keywords—Cloud-native; Cloud-native network functions;

container; Kubernetes; continuous testing; performance testing.

I. INTRODUCTION

Since Amazon first launched cloud computing platforms,
delivering compute and storage resources through the
Internet in 2006, on-demand and scalable cloud
infrastructure has overwhelmingly reshaped the development
of software and business [1]. Application architecture shifts
from monoliths to microservices. Combining microservices
with containerization and Continuous Integration and
Continuous Delivery (CI/CD), the cloud-native concept
emerged around 2010. As one of the pioneers, Netflix
redesigned their systems in a cloud-native way and migrated
all the services and data to the cloud through a seven-year
journey, which facilitates rapid product release, new
resource-hungry features and ever-growing volumes of data
[2].

With proven success, cloud-native becomes a modern
way of developing software. In 2015, Cloud Native
Computing Foundation (CNCF) [3], a Linux Foundation
project, was founded to advance container technology and
align industry practice around its evolution. Since then, the
cloud-native technologies and tools have thrived and taken
great strides. Kubernetes [4], a container orchestration
platform for automated container deployment, scaling and
management is the first CNCF project. The plugin-based
design and high extensibility build its success and make it to
be the most adopted container orchestration system. Along
with orchestration, a configurable infrastructure layer called
service mesh is designed to ensure the security, resiliency,
and observability of the communications between services.
These two key components pave the way for container

deployment and runtime management and significantly
accelerate the cloud-native patterns adoption. In addition,
CNCF launched many other projects covering different
perspectives, including continuous integration and delivery,
container runtime, cloud-native network, etc.

In the 5G and cloud era, communication service
providers seek solutions to advance networks to meet ever-
changing customer needs, optimize network utilization, and
support new application scenarios, e.g., augmented reality,
virtual reality, Internet of things. Cloud-native principles are
meant to increase the velocity of the business. With API
enabled design, CI/CD and Development and Operations
(DevOps) practices, the cloud-native technologies improve
the service agility and time-to-market. Therefore, network
equipment vendors and communication service providers
start adopting cloud-native architecture, containerizing
network functions, more importantly, leveraging open-source
cloud-native tools to modernize networks, e.g., orchestration,
automation, monitoring. Together with application, network
development joins the cloud-native journey. Milestones are
illustrated in Figure 1.

Figure 1. Cloud-native Journey from Applications to Networks.

This paper aims to provide an overview of the current
landscape of cloud-native networks, with focus on
contributions from open-source communities. The definition
and reference architecture of cloud-native networks are first
introduced in Section II. The challenges and network specific
requirements are discussed in Section III. Good design
practice and guidance are summarized in Section IV. Testing
flow and performance testing are presented in Section V.
Conclusions are presented at the end.

II. CLOUD-NATIVE NETWORKS

Network architecture has evolved from individual
physical machines for each Physical Network Functions
(PNFs), to Virtual Network Functions (VNFs) running on
VMware or OpenStack, to what the CNCF sees as the next
wave of Cloud-native Network Functions (CNFs) running on
Kubernetes. CNFs are like VNFs, but they run on lighter
weight containers, simpler to upgrade, easier to secure, and
cheaper to operate.

14Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

mailto:zzhang1@futurewei.com

Cloud-native networks can be understood from two
perspectives. The first is networks are built with cloud-native
principles, which means network functions are containerized,
with both control and data plane composed of microservices.
The other is that networks are to provide connectivity and
security to cloud-native applications in a cloud environment.
Therefore, the network itself and the workloads that it serves
both are considerably evolved. However, considering of the
existing infrastructure, the compatibility with the PNFs and
VNFs is needed in some scenarios.

As Kubernetes is the most adopted container
orchestration platform, the cloud-native networks discussed
in the remainder of the paper are in the context of
Kubernetes. Kubernetes networking is based on a plugin
model, which is open to third-party implementations. A
network plugin needs to provide connectivity and
reachability in pod networking. A pod is a group of
containers that are deployed together on the same host in
Kubernetes. Each pod has a unique and dynamic IP. All the
pods in a cluster are connected through a flat network.
Project Container Networking Interface (CNI) defines the
standards on how network plugins should look, and how
container runtime should invoke them [5]. It also provides a
set of basic plugins as reference.

Figure 2. Container Networking Block Diagram.

In Figure 2, a simplified network block diagram is shown
to illustrate the communication between pods across two
diffident nodes. A CNF module first builds the connectivity
between the pods and host network, and then it creates the
overlay network between hosts based on different protocols,
e.g., VXLAN or IPIP. This CNF can be implemented either
in a kernel bypass manner to improve performance or with
Linux kernel networking stack for the sake of simplicity.
Together with this CNF, an agent pod is typically used for
routes and network policy configuration. Project Flannel [6]
and Calico [7] are the two commonly used CNI solutions.

III. NETWORK SPECIFIC DESIGN

Network workloads, responsible for low-level traffic
forwarding, are different from the generic application
workloads running in the cloud. A containerized network
function may require multiple interfaces, faster data pipeline,
comprehensive network policies, etc. In this section, the
network specific requirements and solutions are discussed.

A. Multiple Networks Attachment

When Kubernetes initiate a pod, only one interface is
created by default. In order to provide multiple interfaces, a
CNCF network plumbing working group was formed, and a
meta-plugin solution was proposed to create multiple

network interfaces and manage multi-network policy. An
illustration is shown in Figure 3. Compared to one standard
CNI, multiple CNI plugins can be chained to form a meta-
plugin. Then, multiple networks can be attached to a single
pod. Project Multus [8] and CNI-Genie [9] provide reference
implementations.

Figure 3. Standard vs Multiple Network Interfaces Attachment.

B. Host Networking Performance Improvement

CNI often leverages Linux host networking to implement
network functions and policy. For example, iptables, a user-
space utility program, is used to configure the IP packet filter
rules. The filters are organized in different tables of chains to
treat packets with specific rules. However, it becomes a
bottleneck when large numbers of pods are under
orchestration, since each host needs updates if any pod
changes in the cluster.

An alternative of using iptables is implementing the
function with extended Berkeley Packet Filter (eBPF), a
Linux kernel technology, which compiles user programs to
bytecode and attached to the kernel to be more performant
[10]. eBPF enables the dynamic insertion of security,
visibility, and networking control logic to the kernel. The
flow is illustrated in Figure 4. The ability to run user-
supplied programs inside the Linux kernel makes eBPF a
powerful tool in terms of performance and convenience.
Project Cilium is an eBPF-based CNI [11]. Detailed
workflow and performance improvement can be found on
Cilium’s blog [12].

Figure 4. The Flow of eBPF Program Inserted to Linux Kernel.

C. Data Plane Acceleration

When a packet goes from user space to kernel space, an
expensive copy occurs. To avoid the copy overhead, DPDK
is widely used to process packets in user space and directly
interact with network hardware bypassing the Linux kernel
[13][14]. A data path comparison is shown in Figure 5. To
further improve the performance, a high-performance virtual
switch, e.g., Open vSwitch (OVS) can be added too. Project
Antrea implemented OVS based CNI. With offloading the
OVS function to supported Network Interface Card (NIC),

15Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

the network bandwidth is increased by more than 3 times
[15]. In order to provide high performance computing and
networking in hyperscale data centers, hardware acceleration
moves beyond CPUs and turn to dedicated chips [16].
Fortunately, Kubernetes provides a device plugin framework
to allow specific hardware in the cluster, e.g., Graphic
Processing Unit (GPU), NIC, which provides more
possibilities for hardware acceleration.

Figure 5. Data Plane Acceleration Bypass Linux Kernel.

D. Hybrid Multi-cloud Networking Orchestration

So far, the networks discussed above are intra-cluster
networks, i.e., the communication is within the same cluster.
However, as multi-cloud and hybrid cloud become more
prevalent in today’s business model, the inter-cluster
network becomes a critical problem.

Figure 6. Multi-cluster Networking.

To connect two different clusters, traffic typically goes
through the public Internet. An IPsec tunnel is often the
choice to ensure secure communication. Figure 6 shows a
simplified architecture of multi-cluster networking. A broker
is used to exchange the information between clusters, and a
gateway node is responsible for establishing IPsec tunnels
and updating local cluster information to the central broker.
Route agent runs on each node to configure the routes and
rules. Project Submariner is a reference solution for this
architecture [17]. For more comprehensive networking
features, Project Network Service Mesh (NSM) [18] and
Tungsten Fabric [19] can be referred.

IV. DESIGN PRINCIPLES

According to Sections II and III, the cloud-native
networks typically consist of agents on each node to forward
traffic and implement policies, a centralized control module
to communicate with the container runtime and agents, and a
data store to keep configurations and states. To design such a
system with cloud-native principles, the following guidance
is summarized from the best practices.

• Modularization
Each network function should be packed in its own

container and orchestrated in a dynamic way. Complex
network functions can be created by service function

chaining. Service dependency can be programmed through a
Helm chart in a unified format. Kubernetes style API is
recommended to allow unified control.

• State Separation
Network functions should be separated to stateless and

stateful, in order to scale the stateless functions smoothly.
The states of stateful functions can be stored in etcd, a
distributed key-value store in Kubernetes.

• Infrastructure as code

Network resources should be managed with machine-
readable files. All the changes should be documented into
files. Therefore, tasks like provision and roll back can be
easily automated. Compared to the traditional management
with command-line interface, automation removes the risk
associated with human error and decreases system
downtime.

• Low-Level Acceleration

Dedicated chips and hardware components are essential
to build future intelligent cloud infrastructure [13]. With
Kubernetes’s device plugin feature, hardware functions can
be exposed to containers for performance improvement. The
design of hardware APIs should be consistent and reusable.

• Built-in Observability and Analytics (AI ready)

The observability of CNFs should be considered during
the design phase, in order to enable continuous monitoring
and automated troubleshooting. Output formats should be
standardized and compatible with existing monitoring tools
like Prometheus [20] and Grafana [21]. Thus, full-stack
performance monitoring and analytics, from infrastructure to
application, can be supported. In addition, structured data
make artificial intelligence easy to apply and pave the way to
autonomous network.

• Platform Agnostic

The network services should be able to be deployed and
orchestrated seamlessly among public cloud, private cloud,
and edge cloud. The CNFs should require no changes under
different platforms.

V. TESTING METHODOLOGIES

Software testing today has been modernized by CI/CD
and DevOps, two important characteristics of cloud-native
patterns. Testing becomes a continuous activity in design,
deployment, and operation. In this section, the generic test
flow under CI/CD is first introduced, followed by
performance testing. Lastly, the observability in CNFs is
discussed.

CI is to establish a consistent and automated pipeline to
build, package and test applications. With regularly
checking new code, testing and integrating it with other
parts of the system, organizations can reduce development
and testing time from months down to days, even hours.
Test suites are often written alongside new features. Unit
tests ensure the committed code itself works. Integration
tests ensure no breaks are introduced into the main code
line. End-to-end tests ensure end user’s experience by
testing the entire product. Common CNF CI jobs provide
the test coverage on command-line interface, authorization,

16Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

storage, connectivity, network policy, etc. Security scan and
compliance tests are typically included as well.

CD automates the software delivery process. It ensures
the verified code changes from development environments
can be pushed into production seamlessly. An interesting
feature brought by CI/CD is canary testing, which releases
the new version of the software only to a small percentage
of users, to perform in-production test. New versions can be
easily rolled back with Kubernetes orchestration.

Besides functional testing, performance testing is critical
for cloud-native networks. The performance requirements of
cloud-native networks are twofold. One is the performance
of a CNF alone, e.g., how many packets a CNF can process
per second. The other is the scalability of handling large
amounts of network requests from web scale services, e.g.,
how fast the CNFs can provision one thousand endpoints or
update network policies on thousands of hosts. In order to
enable organizations to reliably test and compare
performance between VNFs and CNFs, CNCF launched the
CNF Testbed project in 2019.

The CNF Testbed project targets to build a repeatable test
environment by using immutable hardware, version control
on all configurations including underlay networking, and
bootstrapping workload repeatably with automation pipeline
[22]. The test framework typically includes a Kubernetes
cluster with CNFs under test, traffic generator, and underlay
networks illustrated in Figure 7. Traffic can be generated
either within the cluster or from an external generator. The
test steps are listed in TABLE I. The performance metrics
evaluated often include CNF deployment time, endpoints
provisioning time, network policy update time, idle-time
CPU and memory usage, runtime CPU and memory usage,
network throughput and latency.

Figure 7. CNF Testbed Framework.

TABLE I. PERFORMANCE TESTING STEPS

1. Provision hardware and Kubernetes cluster
2. Deploy CNFs

3. Deploy traffic generator

4. Run the traffic benchmarks and tests
5. Collect performance metrics

According to CNF Testbed’s initial results, from VNFs to

CNFs, the change will not affect the overall networking
performance [22]. In fact, the lightness of container
technology allows switching user context more quickly than
with VM Hypervisors, and containerized workload could
have a more direct interaction with underlying hardware.
Communities are looking for more use cases to make more
comprehensive comparison.

Since continuous testing and continuous monitoring
become the norm today, the observability is critical.

Observability includes tracing, metrics, and logs at various
levels like cluster level, container level and kernel level.
Kernel level tracing is particularly important for the CNFs.
Standard Linux tracing tools like perf, ftrace, SysDig can be
leveraged. To customize the network tracing, eBPF can be
used to translate and load user programs to the kernel.
Therefore, kernel networking events can be probed and
monitored. Furthermore, the probes can be added into the
CNFs program as well. Project IOVisor [23] implemented
eBPF based monitoring tools, e.g., trace TCP passive and
active connections, trace TCP packet drops with details,
trace TCP retransmits. In a customized CNF, eBPF
programs can be added to trace the changes of interface
counters, interface address, routing tables and network
address translation sessions, etc. It is an ongoing project to
enrich eBPF-based monitoring tools. With more detailed
and critical information extracted, fine-grained testing, fault
isolation, and smart analytics are possible [24].

VI. CONCLUSIONS

Cloud-native principles and technologies bring
tremendous benefits in terms of business agility, scalability
and resiliency. Modern networks adopt this trend to
accelerate development speed, improve resiliency with
dynamic scaling and safe upgrades, and reduce costs.
Kubernetes, a powerful production-grade orchestration
platform with high extensibility, accelerates the process of
network function containerization.

From PNFs to VNFs and CNFs, the implementation of
network functions keeps evolving. There are advantages and
issues for each paradigm. Although CNF brings many
benefits, not all the workloads could fit perfectly for
containers. Considering the performance advantages of
network specific hardware, the data plane acceleration with
hardware offloading cannot be neglect. This also brings new
opportunities for next-generation hardware design. Network
equipment and service providers could take a top-down
approach, according to the requirements of containerized
applications to do the hardware and software co-design, in
order to achieve the optimal network solutions and meet the
market needs in the cloud era.

REFERENCES

[1] R. Aljamal, A. El-Mousa and F. Jubair, "A User Perspective
Overview of The Top Infrastructure as a Service and High
Performance Computing Cloud Service Providers," IEEE
Jordan International Joint Conference on Electrical
Engineering and Information Technology, 2019, pp. 244-249.

[2] M. Villamizar et al., "Infrastructure Cost Comparison of
Running Web Applications in the Cloud Using AWS Lambda
and Monolithic and Microservice Architectures," 16th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, 2016, pp. 179-182.

[3] CNCF, https://www.cncf.io/, [retrieved Oct. 2020].

[4] Kubernetes, https://kubernetes.io/, [retrieved Oct. 2020].

[5] CNI, https://github.com/containernetworking/cni, [retrieved
Oct. 2020].

[6] Flannel, https://github.com/coreos/flannel, [retrieved Oct.
2020].

17Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

https://www.cncf.io/
https://kubernetes.io/
https://github.com/containernetworking/cni

[7] Calico, https://www.projectcalico.org/, [retrieved Oct. 2020].

[8] Multus, https://github.com/intel/multus-cni, [retrieved Oct.
2020].

[9] CNI-Genie, https://github.com/cni-genie/CNI-Genie,
[retrieved Oct. 2020].

[10] S. Miano, M. Bertrone, F. Risso, M. Tumolo and M. V.
Bernal, "Creating Complex Network Services with eBPF:
Experience and Lessons Learned," IEEE 19th International
Conference on High Performance Switching and Routing
(HPSR), 2018, pp. 1-8.

[11] Cilium, https://cilium.io/, [retrieved Oct. 2020].

[12] Cilium Performace, https://cilium.io/blog/2020/10/09/cilium-
in-alibaba-cloud, [retrieved Oct. 2020]

[13] N. Pitaev, M. Falkner, A. Leivadeas, and I. Lambadaris,
“Characterizing the performance of concurrent virtualized
network functions with OVS-DPDK, FD.IO VPP and SR-
IOV”, in Proc. Of ACM International Conference on
Performance Engineering, 2018, pp 285-292.

[14] L. Linguaglossa et al., "Survey of Performance Acceleration
Techniques for Network Function Virtualization," in Proc. of
the IEEE, vol. 107, no. 4, pp. 746-764, 2019.

[15] Antrea, https://antrea.io/, [retrieved Oct. 2020].

[16] D. He, Z. Wang and J. Liu, "A Survey to Predict the Trend of
AI-able Server Evolution in the Cloud," in IEEE Access, vol.
6, pp. 10591-10602.

[17] Submarine, https://submariner.io/, [retrieved Oct. 2020].

[18] NSM, https://networkservicemesh.io/, [retrieved Oct. 2020].

[19] Tungsten Fabric, https://tungsten.io/, [retrieved Oct. 2020].

[20] Prometheus, https://prometheus.io/, [retrieved Oct. 2020].

[21] Grafana, https://grafana.com/, [retrieved Oct. 2020].

[22] CNF Testbed, https://github.com/cncf/cnf-testbed, [retrieved
Oct. 2020].

[23] IOVisor, https://www.iovisor.org/, [retrieved Oct. 2020].

[24] C. Cassagnes, L. Trestioreanu, C. Joly and R. State, "The rise
of eBPF for non-intrusive performance monitoring,"
IEEE/IFIP Network Operations and Management
Symposium, 2020, pp. 1-7.

18Copyright (c) IARIA, 2020. ISBN: 978-1-61208-830-3

VALID 2020 : The Twelfth International Conference on Advances in System Testing and Validation Lifecycle

https://github.com/intel/multus-cni
https://github.com/cni-genie/CNI-Genie
https://cilium.io/
https://antrea.io/
https://submariner.io/
https://networkservicemesh.io/
https://github.com/cncf/cnf-testbed

