
Precise Code Fragment Clone Detection

Mariam Arutunian

Center of Advanced Software Technologies

Russian-Armenian University

Yerevan, Armenia

mariam.arutunian@rau.am

Matevos Mehrabyan

Center of Advanced Software Technologies

Russian-Armenian University

Yerevan, Armenia

matevos.mehrabyan@rau.am

Sevak Sargsyan

Center of Advanced Software Technologies

Russian-Armenian University

Yerevan, Armenia
sevak.sargsyan@rau.am

Hayk Aslanyan

Center of Advanced Software Technologies

Russian-Armenian University

Yerevan, Armenia
hayk.aslanyan@rau.am

Abstract— Detecting duplicate code fragments referred as

"clones", is essential for various aspects of software

management, maintenance, and security. This article presents a

novel method for detecting code fragment clones, applicable to

source and binary code. The method addresses the limitations of

existing tools, which often focus on detecting clones of entire

functions and are typically specialized for either source or

binary code, but not both simultaneously. The developed

algorithm analyzes input code fragments against the target

project, and outputs all detected fragment clones. For fragment

clone detection, it uses program dependence graphs - a data

structure unifying data and control flow for the function. In the

first step source and binary code are converted to program

dependence graph representation. Then unified algorithm is

applied for maximal similar subgraphs detection. Code

fragments corresponding to detected similar subgraphs are

considered as clones. The experimental evaluation of the

proposed method demonstrates its effectiveness providing an

average 96.9% precision, 92.9% recall for binary code, and

96.5% precision, 93.8% recall for source code.

Keywords- code clones; program static analysis; binary code;

source code.

I. INTRODUCTION

Identifying copied code fragments, referred as fragment
clones, are vital for software management, maintenance, and
security. It can be applied for several purposes:

1. Software plagiarism detection: identifying copied
code helps ensure originality and protect intellectual property,

2. Malware detection and classification: researchers
can identify new malware variants by finding similar code
patterns of known malicious software fragments,

3. Finding known vulnerabilities and avoiding bug
propagation: Sometimes, code fragments containing bugs and
vulnerabilities are also copied, making the detection of these
fragments crucial for preventing the spread of bugs.

Beyond these specific applications, identifying and
managing code clones improves overall software quality and
reduces maintenance costs. Code clones can arise for a variety
of reasons. For instance, they can occur when software
developers copy-paste existing code fragments into their

projects with or without modifications. Studies [1] show that
about 20% of code is duplicated in software packages. In
binary code, compiler optimizations like inlining, and
transformations can also create clones.

Modern software projects highly use third-party packages
and libraries. A 2024 report by Synopsys [2] revealed that
over 96% of commercial software packages incorporate open-
source code. Another study of 7,800 open-source projects has
shown that 44% of them have at least one pair of identical
code fragments [3]. These studies reveal the extensive use of
code duplication in software development.

Despite the variety of code clone detection methods and
tools, only a few can detect clones of fragments rather than
whole functions. Besides, existing tools are focused either on
source or binary code clone detection. There is no unified
approach to detect both of them.

We propose a novel approach for accurate source and
binary code fragments’ clones’ detection. For accuracy
Program Dependence Graphs (PDGs) are utilized, which
capture most of the software semantics and robust to code
changes. Code clones are identified as maximum similar
subgraphs for corresponding source and binary code. The core
of the developed tools is the same for the source and binary
code clones’ detection, where the PDG creation parts are code
specific. We consider code fragments as a sequence of
instructions for binary or source code. A fragment can
correspond to a function, basic blocks, or sequences of
instructions in a function. Two code fragments are considered
clones if they are similar or identical. Section II gives more
strict definitions of both binary and source code fragment
clones. The proposed method is implemented as a tool named
Fragment Clone Detector (FCD) that takes as input a code
fragment, a project, and a percentage of similarity. The tool
then outputs all fragments from the target project that are
clones of the given fragment with the given percentage of
similarity.

In addition to evaluating the quality of the implemented
method, we have designed and implemented a testing system,
which generates tests, based on real-world projects. Then it
executes FCD and calculates precision, recall, and Root Mean
Square Error (RMSE) for it. The rest of the paper is organized

7Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

as follows: Section II defines code clone types for binary and
source code and describes PDG. Section III explores existing
research in the field. Sections IV and V detail the proposed
approach for detecting code fragment clones. The testing
system structure is presented in Section VI. Section VII of the
paper presents the results of the experimental evaluation. The
final section concludes the paper.

II. BACKGROUND

In this section main ideas used in the work are introduced:

code clone types and PDG. Both source and binary code

clone types are defined in the Subsection A. And the

Subsection B will cover the description of the PDG, its

components, and its uses.

A. Code clone types

It is accepted [4] that source code clones have four types.
While the definition of source code clones is well-established,
the definition of binary code clones has minor differences due
to its specifics. The definition of source code clone types:

 Type 1: Two source code fragments that are identical
except for variations in whitespaces and comments,

 Type 2: Two source code fragments that can differ
by identifiers, literals, and types. This type also
includes Type 1 clones,

 Type 3: Two source code fragments with additions,
deletions, or modifications of instructions. Includes
Type 2 clones too. Type 3 clones are also referred to
as non-exact clones,

 Type 4: Two source fragments that perform the same
calculations but use different instructions. Type 4
clones are also referred as semantic clones.

TABLE I. EXAMPLE OF SOURCE CODE CLONE TYPES.

Original code Type-1

float sum = 0.0;

 for (int i = 0; i<n; i++){

 sum = sum + F[i];

 }

 float sum = 0.0; // Comment

 for (int i = 0; i<n; i++){

 ___ sum = sum + F[i];

 }

Type-2 Type-3

 int sum1 = 0; // Comment

 for (int i = 0; i<n; i++){

 ___ sum1 = sum1 + F[i];

 }

 int prod = 1; // Comment

 for (int i = 0; i<n; i++) {

 ___ prod = prod * F[i];

 }

Type-4

int factorial_rec (int n) {

 if (n <= 1) {

 return 1;

 } else {

 return n * factorial_rec (n - 1);

 }

}

int factorial_iterative(int n) {

 int result = 1;

 for (int i = 1; i <= n; ++i) {

 result *= i;

 }

 return result;

}

As there are no comments and whitespaces in binary code,
a slightly different definition for binary code clone types is
used. Binary code clone types [5] are:

 Type 1: Two identical binary code fragments.

 Type 2: Two binary code fragments that can differ
by registers, literals, and operand sizes. This type
also includes Type 1 clones.

 Type 3: Two binary code fragments with additions,
deletions, or modifications of instructions. Includes
Type 2 clones too. Type 3 clones are also called non-
exact clones.

 Type 4: Two binary fragments that have the same
calculations but use different instructions.

TABLE I and TABLE II present examples of source and binary

clone types, respectively. In both tables, original code and all

clone types are presented.

TABLE II. EXAMPLE OF BINARY CODE CLONE TYPES.

Original code BinType-1

mov [ebp+var_1], 5

mov eax, [ebp+var_1]

iadd eax, [ebp+var_4]

mov [ebp+var_1], 5

mov eax, [ebp+var_1]

iadd eax, [ebp+var_4]

BinType-2 BinType-3

mov [ebp+var_1], 10

mov ecx, [ebp+var_1]

iadd ecx, [ebp+var_4]

mov [ebp+var_1], 10

mov ecx, [ebp+var_1]

iadd ecx, [ebp+var_4]

BinType-4

factorial_rec:

 pushq %rbp

 movq %rsp, %rbp

 subq $16, %rsp

 movl %edi, -4(%rbp)

 cmpl $1, -4(%rbp)

 jg .L2

 movl $1, %eax

 jmp .L3

.L2:

 movl -4(%rbp), %eax

 subl $1, %eax

 movl %eax, %edi

 call factorial_rec

 imull -4(%rbp), %eax

.L3:

 ret

factorial_O3:

 movl $1, %eax

 cmpl $1, %edi

 jle .L1

 .p2align 4,,10

 .p2align 3

.L2:

 movl %edi, %edx

 subl $1, %edi

 imull %edx, %eax

 cmpl $1, %edi

 jne .L2

.L1:

 ret

B. Program dependence graph

PDG is a directed graph that combines data and control

dependencies. The vertices of PDGs are program statements
and the edges are data and control dependencies between

them. PDGs are used in various applications, such as

compiler optimizations, program analysis, and software

engineering tasks (like refactoring, debugging). As PDG

makes explicit both the data and control dependencies

between operations of the program, that makes it useful for

understanding complex program behaviors and improving

software quality and efficiency.

III. RELATED WORK

There are many works related to code clone detection.

However, most of them can find only clones of a whole

function. Our method deals with every fragment of code
inside a function. Obviously, it also finds function clones.

8Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

Code clone detection techniques are divided into the

following groups: text-based, token-based, tree-based,

metrics-based, graph-based, and machine-learning based.

Also, there are numerous hybrid methods combining several

techniques for clone detection.
In the case of a text-based approach [6] [7] [8] [9], two

code fragments are compared in the form of text/strings. It

only finds Type 1 clones. In the case of a token-based

approach [10] [11] [12] [13], the entire code is transformed

into a sequence of tokens. It is more robust against code

changes than text-based techniques, which allows it to find

Type 1 and Type 2 clones.

Tree-based approaches [14] [15] [16] [17] use parse trees

or Abstract Syntax Trees (AST) of the analyzable code. Then,

similar subtrees are detected using tree-matching algorithms.

It can find all three types of clones. But as a rule, this

approach suffers in precision for Type 3 clone detection,
because instructions difference strongly changes the

underlying tree structure.

In the case of a metrics-based approach [18] [19] [20]

[21], different types of metrics are calculated for code

fragments. Then these metrics are compared to find similar

code fragments. Usually, for calculating different types of

metrics the code is converted into some graph representation,

such as AST or PDG. This approach suffers in precision and

produces many false positives.

In the case of a graph-based approach [22] [23] [24] [25],

a PDG or just a Control Flow Graph (CFG) is generated from
the code. Then maximal isomorphic or similar (it may be

defined differently for each method) subgraphs are searched.

PDG-based approaches are robust to the insertion and

deletion of code, reordered instructions, intertwined and non-

contiguous code. However, they have higher asymptotic

complexity and may not be scalable.

In the case of machine learning-based techniques [26]

[27] [28] [29], the focus is on training models to classify or

cluster similar code fragments. Patterns are learned from a

dataset containing examples of both similar and dissimilar

codes. Learning algorithms are well-suited for code clone

detection tasks because they can learn and identify complex
patterns. However, learning-based techniques need large and

clean datasets of code clones to work properly, but these are

not available for all programming languages. Many methods

rely on existing code clone detection tools to gather data for

machine learning, but these tools are often unreliable and

prone to errors.

In addition, there are hybrid methods, which combine

several techniques for clone detection. Some examples are

text-based and tree-based [30], token-based and tree-based

[31], metric-based and graph-based [32], tree-based and

learning-based [33] [34], etc. They addresses the challenge of
individual methods.

Thus, each of the discussed techniques has its advantages

and disadvantages. An appropriate method can be selected

based on the problem that needs to be solved.

IV. CODE FRAGMENT CLONE DETECTION

The developed algorithm takes a code fragment, a project,

and a percentage of similarity as its input. It analyzes all the

functions within the project and identifies clones of the

specified fragment. The identified clones must have at least the

specified percentage of similarity. It is important to note that

we assume the provided code fragment is within a single

function. Figure 1 provides architecture of the proposed

method. It has two primary components: the construction of

PDGs and the matching of these graphs.

A. Construction of PDGs

PDGs are constructed for the specified fragment and all
functions of the target program. Vertices of the PDG represent
instructions of Intermediate Representation (IR), and edges
are constructed based on data and control dependencies
between them. The construction process of PDGs varies for
binary and source code as the code representation differs, and
the specific details are outlined in the implementation section.
For the vertices of the PDG, instead of “original form”
instructions of IR are used, as it simplifies and standardizes
the code, allowing tools to be reused across different
languages and architectures.

To construct the PDG for the specified fragment, the PDG
for the entire function containing the fragment is first created.
Then, a subgraph corresponding to the specified fragment is
extracted to serve as the final PDG of the fragment. Basically,
it is the smallest induced subgraph of the entire function’s
PDG that includes all instructions of the specified fragment.
For simplicity, we will call it a fragment's PDG. The
constructed graphs are then utilized in the next step, where
instructions from the specified fragments are matched against
all instructions within the functions throughout the entire
project.

B. Graphs’ matching

Once the PDGs are constructed, the algorithm starts

matching the vertices of the fragment's PDG with the vertices

Figure 1. Architecture of the method.

9Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

of each function's PDG. It is important to note that within a

single function's PDG, there can be detected multiple

matches indicating the existence of several clones of the

specified fragment within that function.
Similarity percentage for the detected fragment clone is

calculated by the following formula:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑐𝑜𝑚𝑚𝑜𝑛 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑐𝑜𝑢𝑛𝑡

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑃𝐷𝐺′𝑠 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑐𝑜𝑢𝑛𝑡
∗ 100%

The matching algorithm between the fragment's and a

function's PDGs involves the following phases:

1. Construction of the set of initial matched vertex

pairs,

2. Iterative expansion of matched vertex pairs.

The first vertex of each pair is from the fragment’s PDG

and the second is from the function’s PDG. Corresponding

instructions for the vertices of each pair have the same

operation code. The algorithm then selects one of the

unconsidered pairs from the set to start expanding process.
From the selected pair, the algorithm temporarily matches

previously unmatched pairs of vertices using specific

subroutines. These subroutines match vertices based on their

features and adjacent edges, ensuring that vertices with

identical operation codes are paired. If the temporarily

matched vertices meet all specified conditions, they are

finally matched. This process is repeated for all vertices that

are not matched yet. The expanding phase stops when no new

temporarily matched pairs can be identified. The output of

this process is the list of sets, where each set contains

matched vertex pairs. Further details will be provided later in
the text. For simplicity, we will be using some notations that

are described below:

 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 - PDG of the given function,

 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 - PDG of the given fragment,

 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠 - the set of initial pairs of vertices

(𝑣, 𝑣 ∗) , where 𝑣 ∈ 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 , 𝑣 ∗∈

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺,

 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 - the set of pairs

(𝑣, 𝑣 ∗) , where 𝑣 ∈ 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 , 𝑣 ∗∈
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺, which are temporarily matched, but

need to pass several checks before final matching,

 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 - the set of pairs (𝑣, 𝑣 ∗), where 𝑣 ∈

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 , 𝑣 ∗∈ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 , which are

finally matched,

 𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝐺) – the set of finally matched vertices of

graph 𝐺,

 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠 - the set of (𝑣, 𝑣 ∗)

incompatible pairs of vertices, where 𝑣 ∈
𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺, 𝑣 ∗∈ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺,

 𝑜𝑝𝑐𝑜𝑑𝑒(𝑣) - is an operation code corresponding to a

vertex 𝑣,

 𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑣)/ 𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑣) - the set of predecessor /

successor vertices of 𝑣 by control dependence,

 𝑝𝑟𝑒𝑑_𝑑𝑎𝑡𝑎(𝑣) / 𝑠𝑢𝑐𝑐_𝑑𝑎𝑡𝑎(𝑣) - the set of

predecessor / successor vertices of 𝑣 by data

dependence,

 𝑏𝑏(𝑣) - the list of vertices in the same basic block as

vertex 𝑣,

 𝑝𝑟𝑒𝑑_𝑏𝑏(𝑣)/ 𝑠𝑢𝑐𝑐_𝑏𝑏(𝑣) - the list of vertices in the

predecessor / successor basic blocks of vertex 𝑣.

1) Construction of the set of initial matched vertex pairs.

The phase of selecting initial pairs of vertices aims to find

such pairs of vertices from 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 and

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 , which are likely to be matched together.

Afterward, they are used as a starting point for the graphs’

matching process. The amount of such vertices should be as

small as possible for efficiency. To achieve this, the initial

vertices in PDGs are selected using various subroutines,

chosen based on their effectiveness during the experimental

evaluation.

The first subroutine selects all vertices (𝑣, 𝑣 ∗)with no

incoming edges in both PDGs, where 𝑣 ∈ 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺

and 𝑣 ∗∈ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 . These vertices typically

correspond to the first instructions of the specified fragment
and the function. Then, from the obtained sets of vertices, the

subroutine constructs all possible combinations of pairs,

where the corresponding instructions have the same

operation code, and adds them to 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠.

The second subroutine collects vertices with the

maximum incoming data dependencies in 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺.

Then it collects vertices from 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 that have an

equal or greater number of incoming data dependencies. Like

the first subroutine, this one also creates all possible
combinations of pairs from the obtained sets (ensuring that

the corresponding instructions have the same operation code)

and adds them to 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠 set.

The third subroutine identifies all the instructions from

the code fragment that have the maximum number of

corresponding IR instructions. It then selects instructions

from the function with the same number of corresponding IR

instructions. Subsequently, the subroutine collects vertices

corresponding to the first IR instructions of the mentioned

instructions. Finally, similar to other subroutines, it generates

all possible combinations of pairs from the obtained sets,
ensuring that the corresponding instructions have the same

operation code, and adds them to 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠 set.

2) Iterative expansion of matched vertex pairs.

The expanding phase temporarily matches unconsidered

vertices from 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 and the 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 .

Next, it checks temporarily matched vertices for conditions.

If a pair passes conditions checking, it is placed to

𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 list, otherwise it is placed to

𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠 list. Expanding starts from

𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠 and iteratively matches vertices until no

temporarily matched vertices can be detected.

10Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

a) Temporarily matching.

The matching algorithm involves five temporary

matching subroutines. The results obtained from these

subroutines are then checked against several conditions

(described in the next section), and some of the temporarily
matched pairs may be filtered out. The matching process is

complete when no new pairs of vertices are temporarily

matched, meaning that the algorithm has exhausted all

possible matches between the fragment's PDG and the

function's PDG.

For each pair of vertices (𝑢, 𝑢 ∗) temporary matching

is allowed if 𝑜𝑝𝑐𝑜𝑑𝑒(𝑢) == 𝑜𝑝𝑐𝑜𝑑𝑒(𝑢 ∗) , the size

of 𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑢) equals to the size of 𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑢 ∗), and

the size of 𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑢) equals to the size of 𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑢 ∗),

where (𝑢, 𝑢 ∗) ∉ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 and (𝑢, 𝑢 ∗) ∉

𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠.

In all subroutines, two vertices (𝑣, 𝑣 ∗) can be

temporarily matched if (𝑣, 𝑣 ∗) ∉ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 ,
(𝑣, 𝑣 ∗) ∉ 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠 and corresponding

instructions have the same opcode. The subroutines are

applied in the specific order, and if one of them temporarily
matches a pair, the others will not be applied. At the

beginning 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 ← ∅ . Below are

descriptions of five temporarily matching subroutines:

1. For each pair (𝑣, 𝑣 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠

temporarily match vertices (𝑢, 𝑢 ∗), where 𝑢 ∈
𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑣) and 𝑢 ∗∈ 𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑣 ∗) sets, and add them

to 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 if temporary matching is

allowed. Do the same for vertices (𝑢, 𝑢 ∗) from

𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑣) and 𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑣 ∗) sets. If

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 is not empty, go to

conditions checking phase.
2. For each pair (𝑣, 𝑣 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠

temporarily match vertices (𝑢, 𝑢 ∗), where 𝑢 ∈ 𝑏𝑏(𝑣) and

𝑢 ∗∈ 𝑏𝑏(𝑣 ∗) lists, and add them to

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 if temporary matching is

allowed. If 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 is not empty, go

to conditions checking phase.

3. For each pair (𝑣, 𝑣 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠

temporarily match vertices(𝑢, 𝑢 ∗), where 𝑢 ∈ 𝑝𝑟𝑒𝑑_𝑏𝑏(𝑣)

and 𝑢 ∗∈ 𝑝𝑟𝑒𝑑_𝑏𝑏(𝑣 ∗) lists, and add them to

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 if temporary matching is

allowed. Do the same for vertices from 𝑠𝑢𝑐𝑐_𝑏𝑏(𝑣) and

𝑠𝑢𝑐𝑐_𝑏𝑏(𝑣 ∗) . If 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 is not

empty, go to conditions checking phase.

4. For each pair (𝑣, 𝑣 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠

temporarily match vertices (𝑢, 𝑢 ∗) , where 𝑢 ∈
𝑝𝑟𝑒𝑑_𝑑𝑎𝑡𝑎(𝑣) and 𝑢 ∗∈ 𝑝𝑟𝑒𝑑_𝑑𝑎𝑡𝑎(𝑣 ∗) sets, and add to

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 if temporary matching is

allowed. Do the same for vertices from 𝑠𝑢𝑐𝑐_𝑑𝑎𝑡𝑎(𝑣) and

𝑠𝑢𝑐𝑐_𝑑𝑎𝑡𝑎(𝑣 ∗) sets. If 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 is

not empty, go to conditions checking phase.

5. Temporarily match pairs(𝑢, 𝑢 ∗) ∈ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠 ,

and add to 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 , if (𝑢, 𝑢 ∗) ∉
𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 and (𝑢, 𝑢 ∗) ∉ 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠.

b) Conditions checking.

The next stage is the checking of temporarily matched

pairs. After each iteration of temporarily matching, each pair

(𝑣, 𝑣 ∗) ∈ 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 is checked for

conditions. If the pair satisfies all conditions, it is moved to

𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 , otherwise to 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠 . The

conditions are described below:

1. 𝑝𝑟𝑒𝑑_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑣, 𝑣 ∗) returns 𝑓𝑎𝑙𝑠𝑒 if ∃𝑝 ∈

𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑣) where 𝑝 ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺) and

∄𝑝 ∗∈ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 such that 𝑝 ∗∈ 𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑣 ∗) and

(𝑝, 𝑝 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠, otherwise returns 𝑡𝑟𝑢𝑒.

2. 𝑠𝑢𝑐𝑐_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑣, 𝑣 ∗) returns 𝑓𝑎𝑙𝑠𝑒 if ∃𝑠 ∈
𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑣) where 𝑠 ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺) and

∄𝑠 ∗∈ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 such that 𝑠 ∗∈ 𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑣 ∗) and

(𝑠, 𝑠 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠, otherwise returns 𝑡𝑟𝑢𝑒.

V. IMPLEMENTATION

We implemented the proposed method in a tool called
FCD. It is a command-line tool, that receives the following
inputs:

1. The project path and the function name containing
the code fragment to be analyzed,

2. The boundaries of the code fragment: the start and
end line numbers for source code, the start and end memory
relative addresses for binary code,

3. The project in which to search for clones of the
specified fragment,

4. An optional minimum similarity percentage
parameter, which is used to filter out clones that are less
similar than the specified value. This parameter belongs to (0,
100], and has a default value of 90. The 90% similarity is
chosen to detect highly similar code fragments, which is more
of the interest to developers.

The process of PDG’s generation differs for source and
binary code, however, the matching parts are the same. For
source code PDG’s generation FCD uses LLVM intermediate
representation [35]. To get PDGs for source code a new pass
is added in LLVM, which uses control flow information, use-
def chains and alias analysis. For binary code PDGs
generation FCD uses REIL [36] intermediate representation.
At first, it uses IDA Pro [37] disassembler to restore assembler
and control flow graphs. Then the obtained assembler is
translated to the REIL intermediate language using Binnavi
[38]. Lastly, it uses Binside [39] to generate PDGs, which was
developed by our team previously.

Code fragment clone detection algorithm is implemented
in C++ language. The output of the tool consists of a set of
JSON files containing information about the detected clones.
This information includes functions’ names corresponding to
matched fragments, similarity percentage, all pairs of matched
instructions, and other relevant details.

11Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

VI. TESTING SYSTEM

To evaluate FCD algorithm, we have designed and
implemented a testing system, which generates tests, executes
FCD and calculates precision, recall, and Root Mean Square
Error (RMSE) to assess their effectiveness. Test generation is
done using PDGs of real-world projects. For each PDG, it
creates a duplicate, removes some vertices, and considers it as
fragment's PDG. It randomly selects a basic block and
removes corresponding vertices until the desired similarity
percentage is reached. After removing a vertex, its
predecessor vertices are connected with the successor ones. If
all vertices in the chosen basic block are removed and the
provided similarity is still not met, the system randomly
selects a new basic block and starts removing consecutive
vertices from that block. This process continues until the
required similarity percentage is not met.

It then runs the FCD algorithm on generated PDGs’ pairs
and compares the resulting similarity percentage with the one
specified to testing system. Ideally, the similarity percentages
of the created PDGs’ pairs by the testing system should match
with the results from the FCD algorithm. The testing system
saves information about the correspondence of the original
and the generated PDG vertices, which is used to calculate
precision, recall, and RMSE.

VII. RESULTS

FCD is tested with the discussed testing system on projects

OpenSSL, JasPer, c-ares, Rsync. Tables TABLE III and TABLE IV

present the results of source and binary code clone detection,

respectively. The results are averaged across similarity

thresholds 100%, 90%, 80%, and 70%.

The tool achieves perfect results when generated clones

are 100% similar. Furthermore, FCD consistently

demonstrated high accuracy across lower thresholds, as

reflected in the averaged results in the tables. However,

binary code clone detection’s speed is slow compared to
source code clone’s detection time, as for binary bigger

PDG’s are generated.

TABLE III. SOURCE CODE CLONE RESULTS

P
ro

je
c
t

C
/C

+
+

 c
o

d
e

li
n

e
s

P
re

c
is

io
n

R
e
c
a

ll

R
M

S
E

F
C

D
 s

p
e
e
d

c-ares

1.15.0
61087 97.5 95.2 6.1 0m 0.29s

jasper

1.900.1
28279 95.4 93 6 0m 15s

openssl

1.0.2t
310922 97 95.1 7.7 0m 2s

rsync

3.1.3
44832 96 91.9 10.7 0m 26s

On average, FCD has 96.5% precision, 93.8% recall and

7.6% RMSE for source code. And on average, FCD has

96.9% precision, 92.9% recall and 5.4% RMSE for binary

code. Despite high rates of the tool’s precision and recall,

there are still certain cases that the tool may not detect

correctly. This occurs when the copied code is modified by

adding a new instruction between each original instruction,

i.e., one instruction from the original code, followed by one

new instruction, then another from the original, and so on.
However, if the copied code is modified in such a way that a

whole basic block is added the tool identifies it correctly.

TABLE IV. BINARY CODE CLONE RESULTS

The tool is not compared with the related tools as there is

no common benchmark for evaluation. While there are some

benchmarks available for C/C++ languages, they include

only Type-4 clones, which our tool does not detect.

Additionally, each tool uses its own method to calculate

similarity levels, which results in inconsistent evaluations of

the same code fragments.

VIII. CONCLUSION

The study proposes a novel technique to identify

duplicated code fragments. It overcomes limitations of

existing clone detection tools, which typically target only full

functions and specialize in either source or binary code

analysis. Experimental evaluation on real-world software

projects demonstrates the high precision and effectiveness of

the proposed clone detection approach for source and binary

code. As conclusion we can clearly see that PDG captures

enough information for source and binary code to enable

accurate clone detection for both cases. Moreover, a unified

algorithm can be used for maximal similar subgraphs

detection in both cases.

P
ro

je
c
t

S
iz

e
 o

f
th

e

b
in

a
ry

A
rc

h
it

e
c
tu

re

P
re

c
is

io
n

R
e
c
a

ll

R
M

S
E

F
C

D
 s

p
e
e
d

libcares 2.3.0

(c-ares 1.15.0)

86

KiB
x86-64 98.9 95.6 4.6 0m 41s

libcares 2.3.0

(c-ares 1.15.0)

96

KiB
x86 97.9 93.4 5.5 0m 43s

libcares 2.3.0

(c-ares 1.15.0)

146

KiB
ARM 98.9 95.6 4.6 0m 49s

jasper 1.900.1
1.5

MiB
x86-64 96 92.1 5.4 3m 5s

jasper 1.900.1
368

KiB
x86 95 90 6.5 2m 1s

jasper 1.900.1
478

KiB
ARM 94.1 89.8 6.1 2m 8s

openssl 1.0.2t
536

KiB
x86-64 99.9 98.1 3.8 1m 10s

openssl 1.0.2t
507

KiB
x86 98.8 95.8 3.9 0m 57s

openssl 1.0.2t
634

KiB
ARM 97.9 95.6 4.4 1m 25s

rsync 1.3.2
1.7

MiB
x86-64 96 91 6.6 3m 34s

rsync 1.3.2
1.6

MiB
x86 94.9 88.9 6.7 3m 21s

rsync 1.3.2
1.8

MiB
ARM 94.1 88.8 7.4 3m 58

12Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

ACKNOWLEDGMENT

The work was supported by the Science Committee of RA,
in the frames of the research project 21SCG-1B003.

REFERENCES

[1] C. K. Roy and J. R. Cordy, "An empirical study of function clones

in open source software systems," in Proceedings of the 15th

Working Conference on Reverse Engineering, 2008, pp. 81-90.

[2] "Synopsis," 2024 Open Source Security and Risk Analysis Report,

[Online]. Available:

https://www.synopsys.com/content/dam/synopsys/sig-

assets/reports/rep-ossra-2024.pdf. [retrieved: 08.2024].

[3] R. Koschke and S. Bazrafshan, "Software-clone rates in open-source

programs written in c or c++," 2016 IEEE 23rd International

Conference on Software Analysis, Evolution, and Reengineering

(SANER), vol. 3, pp. 1-7, 2016.

[4] C. K. Roy, J. R. Cordy, and R. Koschke, "Comparison and

evaluation of code clone detection techniques and tools: A

qualitative approach," Science of Computer Programming, vol. 74,

no. 7, pp. 470-495, 2009.

[5] H. K. Aslanyan, "Effective and Accurate Binary Clone Detection,"

Mathematical Problems of Computer Science, vol. 48, pp. 64-73,

2017.

[6] D. Tukaram and U. Maheswari B, "Design and development of

software tool for code clone search, detection, and analysis," in 2019

3rd International conference on Electronics, Communication and

Aerospace Technology (ICECA), pp. 1002-1006, 2019.

[7] C. Ragkhitwetsagul and J. Krinke, "Using

compilation/decompilation to enhance clone detection," in 2017

IEEE 11th International Workshop on Software Clones (IWSC),

IEEE, pp. 1–7, 2017.

[8] T. Kamiya, "An execution-semantic and content-and-context-based

code-clone detection and analysis," in 2015 IEEE 9th International

Workshop on Software Clones, IWSC 2015 - Proceedings, pp. 1–7,

2015.

[9] J. Chen, M. H. Alalfi, T. R. Dean, and Y. Zou, "Detecting Android

malware using clone detection," Journal of Computer Science and

Technology, vol. 30, pp. 942-956, 2015.

[10] L. Yang, Y. Ren, J. Guan, B. Li, and J. Ma, "FastDCF: a partial index

based distributed and scalable near-miss code clone detection," in

Parallel and Distributed Computing, Applications and

Technologies: 22nd International Conference, PDCAT 2021, pp.

210-222, Guangzhou, China, 2021.

[11] Y.-L. Hung and S. Takada, "CPPCD: a token-based approach to

detecting potential clones," in IEEE 14th International Workshop on

Software Clones (IWSC), IEEE, pp. 26–32, 2020.

[12] Y. Wu et al., "SCDetector: software functional clone detection based

on semantic tokens analysis," in Proceedings of the 35th IEEE/ACM

International Conference on Automated Software Engineering, , pp.

821–833, New York, NY, USA: ACM, 2020.

[13] K. E. Rajakumari, "Comparison of token-based code clone method

with pattern mining technique and traditional," in Proceedings of

2019 3rd IEEE International Conference on Electrical, Computer

and Communication Technologies, ICECCT 2019, pp. 1–6, 2019.

[14] Y. Yu, Z. Huang, and G. Shen, "ASTENS-BWA: searching partial

syntactic similar regions between source code fragments via,"

Science of Computer Programming, vol. 222, p. 102839, 2022.

[15] W. Wen et. al., "Cross-project software defect prediction based on

class code similarity," IEEE Access, vol. 10, p. 105485–105495,

2022.

[16] Y. Gao et al., "TECCD: A Tree Embedding Approach for Code

Clone Detection," in 2019 IEEE International Conference on

Software Maintenance and Evolution, ICSME 2019, pp. 145–156,

2019.

[17] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, "DECKARD :

Scalable and accurate tree-based detection of code clones," in

Proceedings of the 29th International Conference on Software

Engineering, 2007.

[18] S. Parsa, M. Zakeri-Nasrabadi, and M. Ekht, "Method name

recommendation based on source code metrics," Journal of

Computer Languages, vol. 74, no. 101177, pp. 1-13, 2023.

[19] H. Jin, Z. Cui, S. Liu, and L. Zheng, "Improving code clone

detection accuracy and efficiency based on code complexity

analysis," in n 2022 9th International Conference on Dependable

Systems and Their Applications (DSA), IEEE, pp. 64–72, 2022.

[20] K. W. Nafi, T. S. Kar, B. Roy, C. K. Roy, and K. A. Schneider,

"CLCDSA: cross language code clone detection using syntactical

features and API documentation," in 2019 34th IEEE/ACM

International Conference on Automated Software Engineering, ASE

2019, pp. 1026–1037, 2019.

[21] M. Sudhamani and L. Rangarajan, "Code similarity detection

through control statement and program features," Expert Systems

with Applications, vol. 132, no. 15, pp. 63-75, 2019.

[22] W. Wen et al., "Cross-project software defect prediction based on

class code similarity," IEEE Access, vol. 10, pp. 105485-105495,

2022.

[23] H. K. Aslanyan, S. F. Kurmangaleev, V. G. Vardanya, M. S.

Arutunian, and S. S. Sargsyan, "Platform-independent and scalable

tool for binary code clone detection," in Proceedings of the Institute

for System Programming of the RAS, pp. 215-226, 2016.

[24] Z. Xue et al., "SEED: semantic graph based deep detection for type-

4 clones," in International Conference on Software and Software

Reuse, pp. 120–137, 2022.

[25] N. Mehrotra et al., "Modeling functional similarity in source code

with graph-based Siamese networks," IEEE Transactions on

Software Engineering, vol. 48, no. 10, pp. 3771-3789, 2022.

[26] A. Zhang et al., "Learn to align: a code alignment network for code

clone detection," in 2021 28th Asia-Pacific Software Engineering

Conference (APSEC), pp. 1-11, 2021.

[27] N. D. Q. Bui, Y. Yu, and L. Jiang, "InferCode: Self-Supervised

Learning of Code Representations by Predicting Subtrees," in 2021

IEEE/ACM 43rd International Conference on Software Engineering

(ICSE), pp. 1186-1197, 2021.

[28] Y. Li, C. Yu, and Y. Cui, "TPCaps: a framework for code clone

detection and localization based on improved CapsNet," Applied

Intelligence, vol. 53, p. 16594–16605, 2022.

[29] S. Patel and R. Sinha, "Combining holistic source code

representation with siamese neural networks for detecting code

clones," in IFIP International Conference on Testing Software and

Systems, pp. 148–159, 2022.

[30] A. Schafer, W. Amme, and T. S. Heinze, "Stubber: compiling source

code into bytecode without dependencies for Java code clone

detection," in 2021 IEEE 15th International Workshop on Software

Clones (IWSC), IEEE, pp. 29-35, Oct. 2021.

[31] W. Wang, Z. Deng, Y. Xue, and Y. Xu, "CCStokener: Fast yet

accurate code clone detection with semantic token," Journal of

Systems and Software, vol. 199, p. 111618, May 2023.

[32] H. Aslanyan et al., "Scalable Framework for Accurate Binary Code

Comparison," in 2017 Ivannikov ISPRAS Open Conference

(ISPRAS), pp. 34-38, 2017.

[33] A. Zhang, L. Fang, C. Ge, P. Li, and Z. Liu, "Efficient transformer

with code token learner for code clone detection," Journal of

Systems and Software, vol. 197, p. 111557, Mar. 2023.

[34] Y. Wu, S. Feng, D. Zou, and H. Jin, "Detecting semantic code clones

by building AST-based Markov chains model," in 37th IEEE/ACM

13Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

International Conference on Automated Software Engineering, pp.

1-13, New York, NY, USA, Oct. 2022.

[35] "The LLVM Compiler Infrastructure," [Online]. Available:

www.llvm.org. [retrieved: 08.2024].

[36] "REIL - The Reverse Engineering Intermediate Language.

Zynamics," [Online]. Available:

https://www.zynamics.com/binnavi/manual/html/reil_language.htm

. [retrieved: 08.2024].

[37] "IDA Pro," [Online]. Available: https://hex-rays.com/ida-pro/.

[retrieved: 08.2024].

[38] "BinNavi," [Online]. Available:

https://www.zynamics.com/binnavi.html. [retrieved: 08.2024].

[39] H. Aslanyan, M. Arutunian, G. Keropyan, S. Kurmangaleev, and V.

Vardanyan, "BinSide : Static Analysis Framework for Defects

Detection in Binary Code," in 2020 Ivannikov Memorial Workshop

(IVMEM), pp. 9-14, Orel, Russia, 2020.

14Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

	I. Introduction
	II. Background
	A. Code clone types
	B. Program dependence graph

	III. Related Work
	IV. Code Fragment Clone Detection
	A. Construction of PDGs
	B. Graphs’ matching
	1) Construction of the set of initial matched vertex pairs.
	The phase of selecting initial pairs of vertices aims to find such pairs of vertices from 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 and 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺, which are likely to be matched together. Afterward, they are used as a starting point for the graphs’ matchi...
	2) Iterative expansion of matched vertex pairs.
	a) Temporarily matching.
	b) Conditions checking.

	V. Implementation
	VI. Testing System
	VII. Results
	VIII. Conclusion
	Acknowledgment

	References

