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Abstract— Detecting duplicate code fragments referred as 

"clones", is essential for various aspects of software 

management, maintenance, and security. This article presents a 

novel method for detecting code fragment clones, applicable to 

source and binary code. The method addresses the limitations of 

existing tools, which often focus on detecting clones of entire 

functions and are typically specialized for either source or 

binary code, but not both simultaneously. The developed 

algorithm analyzes input code fragments against the target 

project, and outputs all detected fragment clones. For fragment 

clone detection, it uses program dependence graphs - a data 

structure unifying data and control flow for the function. In the 

first step source and binary code are converted to program 

dependence graph representation. Then unified algorithm is 

applied for maximal similar subgraphs detection. Code 

fragments corresponding to detected similar subgraphs are 

considered as clones. The experimental evaluation of the 

proposed method demonstrates its effectiveness providing an 

average 96.9% precision, 92.9% recall for binary code, and 

96.5% precision, 93.8% recall for source code.  

Keywords- code clones; program static analysis; binary code; 

source code. 

I.  INTRODUCTION 

Identifying copied code fragments, referred as fragment 
clones, are vital for software management, maintenance, and 
security. It can be applied for several purposes: 

1. Software plagiarism detection: identifying copied 
code helps ensure originality and protect intellectual property, 

2. Malware detection and classification: researchers 
can identify new malware variants by finding similar code 
patterns of known malicious software fragments, 

3. Finding known vulnerabilities and avoiding bug 
propagation: Sometimes, code fragments containing bugs and 
vulnerabilities are also copied, making the detection of these 
fragments crucial for preventing the spread of bugs. 

Beyond these specific applications, identifying and 
managing code clones improves overall software quality and 
reduces maintenance costs. Code clones can arise for a variety 
of reasons. For instance, they can occur when software 
developers copy-paste existing code fragments into their 

projects with or without modifications. Studies [1] show that 
about 20% of code is duplicated in software packages. In 
binary code, compiler optimizations like inlining, and 
transformations can also create clones. 

Modern software projects highly use third-party packages 
and libraries. A 2024 report by Synopsys [2] revealed that 
over 96% of commercial software packages incorporate open-
source code. Another study of 7,800 open-source projects has 
shown that 44% of them have at least one pair of identical 
code fragments [3]. These studies reveal the extensive use of 
code duplication in software development. 

Despite the variety of code clone detection methods and 
tools, only a few can detect clones of fragments rather than 
whole functions. Besides, existing tools are focused either on 
source or binary code clone detection. There is no unified 
approach to detect both of them. 

We propose a novel approach for accurate source and 
binary code fragments’ clones’ detection. For accuracy 
Program Dependence Graphs (PDGs) are utilized, which 
capture most of the software semantics and robust to code 
changes. Code clones are identified as maximum similar 
subgraphs for corresponding source and binary code. The core 
of the developed tools is the same for the source and binary 
code clones’ detection, where the PDG creation parts are code 
specific. We consider code fragments as a sequence of 
instructions for binary or source code. A fragment can 
correspond to a function, basic blocks, or sequences of 
instructions in a function. Two code fragments are considered 
clones if they are similar or identical. Section II gives more 
strict definitions of both binary and source code fragment 
clones. The proposed method is implemented as a tool named 
Fragment Clone Detector (FCD) that takes as input a code 
fragment, a project, and a percentage of similarity. The tool 
then outputs all fragments from the target project that are 
clones of the given fragment with the given percentage of 
similarity. 

In addition to evaluating the quality of the implemented 
method, we have designed and implemented a testing system, 
which generates tests, based on real-world projects. Then it 
executes FCD and calculates precision, recall, and Root Mean 
Square Error (RMSE) for it. The rest of the paper is organized 
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as follows: Section II defines code clone types for binary and 
source code and describes PDG. Section III explores existing 
research in the field. Sections IV and V detail the proposed 
approach for detecting code fragment clones. The testing 
system structure is presented in Section VI. Section VII of the 
paper presents the results of the experimental evaluation. The 
final section concludes the paper. 

II. BACKGROUND 

In this section main ideas used in the work are introduced: 

code clone types and PDG. Both source and binary code 

clone types are defined in the Subsection A. And the 

Subsection B will cover the description of the PDG, its 

components, and its uses. 

A. Code clone types 

It is accepted [4] that source code clones have four types. 
While the definition of source code clones is well-established, 
the definition of binary code clones has minor differences due 
to its specifics. The definition of source code clone types: 

 Type 1: Two source code fragments that are identical 
except for variations in whitespaces and comments, 

 Type 2: Two source code fragments that can differ 
by identifiers, literals, and types. This type also 
includes Type 1 clones, 

 Type 3: Two source code fragments with additions, 
deletions, or modifications of instructions. Includes 
Type 2 clones too. Type 3 clones are also referred to 
as non-exact clones, 

 Type 4: Two source fragments that perform the same 
calculations but use different instructions. Type 4 
clones are also referred as semantic clones. 
 

TABLE I. EXAMPLE OF SOURCE CODE CLONE TYPES. 

Original code Type-1 

float sum = 0.0; 

  for (int i = 0; i<n; i++){ 

    sum = sum + F[i]; 

  } 

 float sum = 0.0; // Comment 

  for (int i = 0; i<n; i++){ 

   ___ sum = sum + F[i]; 

  } 

Type-2 Type-3 

 int sum1 = 0; // Comment 

  for (int i = 0; i<n; i++){ 

   ___ sum1 = sum1 + F[i]; 

  } 

 int prod = 1; // Comment 

  for (int i = 0; i<n; i++) {  

    ___ prod = prod * F[i]; 

  } 

Type-4 

int factorial_rec (int n) { 

  if (n <= 1) { 

    return 1; 

  } else { 

    return n * factorial_rec (n - 1); 

  } 

} 

int factorial_iterative(int n) { 

  int result = 1; 

  for (int i = 1; i <= n; ++i) { 

    result *= i; 

  } 

  return result; 

} 

As there are no comments and whitespaces in binary code, 
a slightly different definition for binary code clone types is 
used. Binary code clone types [5] are: 

 Type 1: Two identical binary code fragments. 

 Type 2: Two binary code fragments that can differ 
by registers, literals, and operand sizes. This type 
also includes Type 1 clones. 

 Type 3: Two binary code fragments with additions, 
deletions, or modifications of instructions. Includes 
Type 2 clones too. Type 3 clones are also called non-
exact clones. 

 Type 4: Two binary fragments that have the same 
calculations but use different instructions. 

TABLE I and TABLE II present examples of source and binary 

clone types, respectively. In both tables, original code and all 

clone types are presented. 

 

TABLE II. EXAMPLE OF BINARY CODE CLONE TYPES. 

Original code BinType-1 

mov [ebp+var_1], 5 

mov eax, [ebp+var_1] 

iadd eax, [ebp+var_4] 

mov [ebp+var_1], 5 

mov eax, [ebp+var_1] 

iadd eax, [ebp+var_4] 

BinType-2 BinType-3 

mov [ebp+var_1], 10 

mov ecx, [ebp+var_1] 

iadd ecx, [ebp+var_4] 

mov [ebp+var_1], 10 

mov ecx, [ebp+var_1] 

iadd ecx, [ebp+var_4] 

BinType-4 

factorial_rec: 

        pushq   %rbp 

        movq    %rsp, %rbp 

        subq    $16, %rsp 

        movl    %edi, -4(%rbp) 

        cmpl    $1, -4(%rbp) 

        jg      .L2 

        movl    $1, %eax 

        jmp     .L3 

.L2: 

        movl    -4(%rbp), %eax 

        subl    $1, %eax 

        movl    %eax, %edi 

        call    factorial_rec 

        imull   -4(%rbp), %eax 

.L3: 

        ret 

factorial_O3: 

        movl    $1, %eax 

        cmpl    $1, %edi 

        jle     .L1 

        .p2align 4,,10 

        .p2align 3 

.L2: 

        movl    %edi, %edx 

        subl    $1, %edi 

        imull   %edx, %eax 

        cmpl    $1, %edi 

        jne     .L2 

.L1: 

        ret 

 

 

B. Program dependence graph 

PDG is a directed graph that combines data and control 

dependencies. The vertices of PDGs are program statements 
and the edges are data and control dependencies between 

them. PDGs are used in various applications, such as 

compiler optimizations, program analysis, and software 

engineering tasks (like refactoring, debugging). As PDG 

makes explicit both the data and control dependencies 

between operations of the program, that makes it useful for 

understanding complex program behaviors and improving 

software quality and efficiency. 

III. RELATED WORK 

There are many works related to code clone detection. 

However, most of them can find only clones of a whole 

function. Our method deals with every fragment of code 
inside a function. Obviously, it also finds function clones. 
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Code clone detection techniques are divided into the 

following groups: text-based, token-based, tree-based, 

metrics-based, graph-based, and machine-learning based. 

Also, there are numerous hybrid methods combining several 

techniques for clone detection.  
In the case of a text-based approach [6] [7] [8] [9], two 

code fragments are compared in the form of text/strings. It 

only finds Type 1 clones. In the case of a token-based 

approach [10] [11] [12] [13], the entire code is transformed 

into a sequence of tokens. It is more robust against code 

changes than text-based techniques, which allows it to find 

Type 1 and Type 2 clones. 

Tree-based approaches [14] [15] [16] [17] use parse trees 

or Abstract Syntax Trees (AST) of the analyzable code. Then, 

similar subtrees are detected using tree-matching algorithms. 

It can find all three types of clones. But as a rule, this 

approach suffers in precision for Type 3 clone detection, 
because instructions difference strongly changes the 

underlying tree structure.  

In the case of a metrics-based approach [18] [19] [20] 

[21], different types of metrics are calculated for code 

fragments. Then these metrics are compared to find similar 

code fragments. Usually, for calculating different types of 

metrics the code is converted into some graph representation, 

such as AST or PDG. This approach suffers in precision and 

produces many false positives. 

In the case of a graph-based approach [22] [23] [24] [25], 

a PDG or just a Control Flow Graph (CFG) is generated from 
the code. Then maximal isomorphic or similar (it may be 

defined differently for each method) subgraphs are searched. 

PDG-based approaches are robust to the insertion and 

deletion of code, reordered instructions, intertwined and non-

contiguous code. However, they have higher asymptotic 

complexity and may not be scalable. 

In the case of machine learning-based techniques [26] 

[27] [28] [29], the focus is on training models to classify or 

cluster similar code fragments. Patterns are learned from a 

dataset containing examples of both similar and dissimilar 

codes. Learning algorithms are well-suited for code clone 

detection tasks because they can learn and identify complex 
patterns. However, learning-based techniques need large and 

clean datasets of code clones to work properly, but these are 

not available for all programming languages. Many methods 

rely on existing code clone detection tools to gather data for 

machine learning, but these tools are often unreliable and 

prone to errors. 

In addition, there are hybrid methods, which combine 

several techniques for clone detection. Some examples are 

text-based and tree-based [30], token-based and tree-based 

[31], metric-based and graph-based [32], tree-based and 

learning-based [33] [34], etc. They addresses the challenge of 
individual methods. 

Thus, each of the discussed techniques has its advantages 

and disadvantages. An appropriate method can be selected 

based on the problem that needs to be solved. 

IV. CODE FRAGMENT CLONE DETECTION 

The developed algorithm takes a code fragment, a project, 

and a percentage of similarity as its input. It analyzes all the 

functions within the project and identifies clones of the 

specified fragment. The identified clones must have at least the 

specified percentage of similarity. It is important to note that 

we assume the provided code fragment is within a single 

function. Figure 1 provides architecture of the proposed 

method. It has two primary components: the construction of 

PDGs and the matching of these graphs.  

A. Construction of PDGs 

PDGs are constructed for the specified fragment and all 
functions of the target program. Vertices of the PDG represent 
instructions of Intermediate Representation (IR), and edges 
are constructed based on data and control dependencies 
between them. The construction process of PDGs varies for 
binary and source code as the code representation differs, and 
the specific details are outlined in the implementation section. 
For the vertices of the PDG, instead of “original form” 
instructions of IR are used, as it simplifies and standardizes 
the code, allowing tools to be reused across different 
languages and architectures. 

To construct the PDG for the specified fragment, the PDG 
for the entire function containing the fragment is first created. 
Then, a subgraph corresponding to the specified fragment is 
extracted to serve as the final PDG of the fragment. Basically, 
it is the smallest induced subgraph of the entire function’s 
PDG that includes all instructions of the specified fragment. 
For simplicity, we will call it a fragment's PDG. The 
constructed graphs are then utilized in the next step, where 
instructions from the specified fragments are matched against 
all instructions within the functions throughout the entire 
project. 

B. Graphs’ matching 

Once the PDGs are constructed, the algorithm starts 

matching the vertices of the fragment's PDG with the vertices 

Figure 1. Architecture of the method. 
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of each function's PDG. It is important to note that within a 

single function's PDG, there can be detected multiple 

matches indicating the existence of several clones of the 

specified fragment within that function. 
Similarity percentage for the detected fragment clone is 

calculated by the following formula: 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑐𝑜𝑚𝑚𝑜𝑛 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑐𝑜𝑢𝑛𝑡

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑃𝐷𝐺′𝑠 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑐𝑜𝑢𝑛𝑡
∗ 100% 

The matching algorithm between the fragment's and a 

function's PDGs involves the following phases: 

1. Construction of the set of initial matched vertex 

pairs, 

2. Iterative expansion of matched vertex pairs. 

The first vertex of each pair is from the fragment’s PDG 

and the second is from the function’s PDG. Corresponding 

instructions for the vertices of each pair have the same 

operation code. The algorithm then selects one of the 

unconsidered pairs from the set to start expanding process. 
From the selected pair, the algorithm temporarily matches 

previously unmatched pairs of vertices using specific 

subroutines. These subroutines match vertices based on their 

features and adjacent edges, ensuring that vertices with 

identical operation codes are paired. If the temporarily 

matched vertices meet all specified conditions, they are 

finally matched. This process is repeated for all vertices that 

are not matched yet. The expanding phase stops when no new 

temporarily matched pairs can be identified. The output of 

this process is the list of sets, where each set contains 

matched vertex pairs. Further details will be provided later in 
the text. For simplicity, we will be using some notations that 

are described below: 

 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 - PDG of the given function, 

 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 - PDG of the given fragment, 

 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠  - the set of initial pairs of vertices 

(𝑣, 𝑣 ∗) , where 𝑣 ∈ 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 , 𝑣 ∗∈

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺, 

 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠  - the set of pairs 

(𝑣, 𝑣 ∗) , where 𝑣 ∈ 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 , 𝑣 ∗∈
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺, which are temporarily matched, but 

need to pass several checks before final matching, 

 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 - the set of pairs (𝑣, 𝑣 ∗), where 𝑣 ∈

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 , 𝑣 ∗∈ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 , which are 

finally matched,  

 𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝐺) – the set of finally matched vertices of 

graph 𝐺, 

 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠  - the set of (𝑣, 𝑣 ∗) 

incompatible pairs of vertices, where 𝑣 ∈
𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺, 𝑣 ∗∈ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺, 

 𝑜𝑝𝑐𝑜𝑑𝑒(𝑣) - is an operation code corresponding to a 

vertex 𝑣, 

 𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑣)/ 𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑣) - the set of predecessor / 

successor vertices of 𝑣 by control dependence, 

 𝑝𝑟𝑒𝑑_𝑑𝑎𝑡𝑎(𝑣) / 𝑠𝑢𝑐𝑐_𝑑𝑎𝑡𝑎(𝑣)  - the set of 

predecessor / successor vertices of 𝑣  by data 

dependence, 

 𝑏𝑏(𝑣) - the list of vertices in the same basic block as 

vertex 𝑣, 

 𝑝𝑟𝑒𝑑_𝑏𝑏(𝑣)/ 𝑠𝑢𝑐𝑐_𝑏𝑏(𝑣) - the list of vertices in the 

predecessor / successor basic blocks of vertex 𝑣. 

1) Construction of the set of initial matched vertex pairs. 

The phase of selecting initial pairs of vertices aims to find 

such pairs of vertices from 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺  and 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 , which are likely to be matched together. 

Afterward, they are used as a starting point for the graphs’ 

matching process. The amount of such vertices should be as 

small as possible for efficiency. To achieve this, the initial 

vertices in PDGs are selected using various subroutines, 

chosen based on their effectiveness during the experimental 

evaluation. 

The first subroutine selects all vertices (𝑣, 𝑣 ∗)with no 

incoming edges in both PDGs, where 𝑣 ∈ 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺 

and 𝑣 ∗∈ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 . These vertices typically 

correspond to the first instructions of the specified fragment 
and the function. Then, from the obtained sets of vertices, the 

subroutine constructs all possible combinations of pairs, 

where the corresponding instructions have the same 

operation code, and adds them to 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠. 

The second subroutine collects vertices with the 

maximum incoming data dependencies in 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺. 

Then it collects vertices from 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 that have an 

equal or greater number of incoming data dependencies. Like 

the first subroutine, this one also creates all possible 
combinations of pairs from the obtained sets (ensuring that 

the corresponding instructions have the same operation code) 

and adds them to 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠 set. 

The third subroutine identifies all the instructions from 

the code fragment that have the maximum number of 

corresponding IR instructions. It then selects instructions 

from the function with the same number of corresponding IR 

instructions. Subsequently, the subroutine collects vertices 

corresponding to the first IR instructions of the mentioned 

instructions. Finally, similar to other subroutines, it generates 

all possible combinations of pairs from the obtained sets, 
ensuring that the corresponding instructions have the same 

operation code, and adds them to 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠 set. 

2) Iterative expansion of matched vertex pairs.  

The expanding phase temporarily matches unconsidered 

vertices from 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺  and the 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 . 

Next, it checks temporarily matched vertices for conditions. 

If a pair passes conditions checking, it is placed to 

𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠  list, otherwise it is placed to 

𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠 list. Expanding starts from 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠  and iteratively matches vertices until no 

temporarily matched vertices can be detected. 
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a) Temporarily matching. 

The matching algorithm involves five temporary 

matching subroutines. The results obtained from these 

subroutines are then checked against several conditions 

(described in the next section), and some of the temporarily 
matched pairs may be filtered out. The matching process is 

complete when no new pairs of vertices are temporarily 

matched, meaning that the algorithm has exhausted all 

possible matches between the fragment's PDG and the 

function's PDG. 

For each pair of vertices (𝑢, 𝑢 ∗) temporary matching 

is allowed if 𝑜𝑝𝑐𝑜𝑑𝑒(𝑢) == 𝑜𝑝𝑐𝑜𝑑𝑒(𝑢 ∗) , the size 

of 𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑢) equals to the size of 𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑢 ∗), and 

the size of 𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑢) equals to the size of 𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑢 ∗), 

where (𝑢, 𝑢 ∗) ∉ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠  and (𝑢, 𝑢 ∗) ∉

𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠. 

In all subroutines, two vertices (𝑣, 𝑣 ∗)  can be 

temporarily matched if (𝑣, 𝑣 ∗) ∉ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 , 
(𝑣, 𝑣 ∗) ∉ 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠  and corresponding 

instructions have the same opcode. The subroutines are 

applied in the specific order, and if one of them temporarily 
matches a pair, the others will not be applied. At the 

beginning 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 ← ∅ . Below are 

descriptions of five temporarily matching subroutines: 

1. For each pair (𝑣, 𝑣 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 

temporarily match vertices (𝑢, 𝑢 ∗),  where 𝑢 ∈
𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑣) and 𝑢 ∗∈ 𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑣 ∗) sets, and add them 

to 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 if temporary matching is 

allowed. Do the same for vertices (𝑢, 𝑢 ∗)  from 

𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑣)  and 𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑣 ∗)  sets. If 

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠  is not empty, go to 

conditions checking phase. 
2. For each pair (𝑣, 𝑣 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 

temporarily match vertices  (𝑢, 𝑢 ∗), where 𝑢 ∈ 𝑏𝑏(𝑣) and 

𝑢 ∗∈ 𝑏𝑏(𝑣 ∗) lists, and add them to 

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠  if temporary matching is 

allowed. If 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 is not empty, go 

to conditions checking phase. 

3. For each pair (𝑣, 𝑣 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 

temporarily match vertices(𝑢, 𝑢 ∗), where 𝑢 ∈ 𝑝𝑟𝑒𝑑_𝑏𝑏(𝑣) 

and 𝑢 ∗∈ 𝑝𝑟𝑒𝑑_𝑏𝑏(𝑣 ∗)  lists, and add them to 

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠  if temporary matching is 

allowed. Do the same for vertices from 𝑠𝑢𝑐𝑐_𝑏𝑏(𝑣)  and 

𝑠𝑢𝑐𝑐_𝑏𝑏(𝑣 ∗) . If 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠  is not 

empty, go to conditions checking phase. 

4. For each pair (𝑣, 𝑣 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 

temporarily match vertices  (𝑢, 𝑢 ∗) , where 𝑢 ∈
𝑝𝑟𝑒𝑑_𝑑𝑎𝑡𝑎(𝑣) and 𝑢 ∗∈ 𝑝𝑟𝑒𝑑_𝑑𝑎𝑡𝑎(𝑣 ∗)  sets, and add to 

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠  if temporary matching is 

allowed. Do the same for vertices from 𝑠𝑢𝑐𝑐_𝑑𝑎𝑡𝑎(𝑣) and 

𝑠𝑢𝑐𝑐_𝑑𝑎𝑡𝑎(𝑣 ∗)  sets. If 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠  is 

not empty, go to conditions checking phase. 

5. Temporarily match pairs(𝑢, 𝑢 ∗) ∈ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝𝑎𝑖𝑟𝑠 , 

and add to 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 , if (𝑢, 𝑢 ∗) ∉
𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 and (𝑢, 𝑢 ∗) ∉ 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠. 

b) Conditions checking. 

The next stage is the checking of temporarily matched 

pairs. After each iteration of temporarily matching, each pair 

(𝑣, 𝑣 ∗) ∈ 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑙𝑦_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠  is checked for 

conditions. If the pair satisfies all conditions, it is moved to 

𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 , otherwise to 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒_𝑝𝑎𝑖𝑟𝑠 . The 

conditions are described below: 

1. 𝑝𝑟𝑒𝑑_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑣, 𝑣 ∗)  returns 𝑓𝑎𝑙𝑠𝑒  if ∃𝑝 ∈

𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑣)  where 𝑝 ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺)  and 

∄𝑝 ∗∈ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 such that  𝑝 ∗∈ 𝑝𝑟𝑒𝑑_𝑐𝑡𝑟𝑙(𝑣 ∗)  and 

(𝑝, 𝑝 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠, otherwise returns 𝑡𝑟𝑢𝑒. 

2. 𝑠𝑢𝑐𝑐_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑣, 𝑣 ∗)  returns 𝑓𝑎𝑙𝑠𝑒  if ∃𝑠 ∈
𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑣)  where 𝑠 ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡_𝑃𝐷𝐺)  and 

∄𝑠 ∗∈ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑃𝐷𝐺 such that 𝑠 ∗∈ 𝑠𝑢𝑐𝑐_𝑐𝑡𝑟𝑙(𝑣 ∗)  and 

(𝑠, 𝑠 ∗) ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑝𝑎𝑖𝑟𝑠, otherwise returns 𝑡𝑟𝑢𝑒. 

V. IMPLEMENTATION 

We implemented the proposed method in a tool called 
FCD. It is a command-line tool, that receives the following 
inputs: 

1. The project path and the function name containing 
the code fragment to be analyzed, 

2. The boundaries of the code fragment: the start and 
end line numbers for source code, the start and end memory 
relative addresses for binary code, 

3. The project in which to search for clones of the 
specified fragment, 

4. An optional minimum similarity percentage 
parameter, which is used to filter out clones that are less 
similar than the specified value. This parameter belongs to (0, 
100], and has a default value of 90. The 90% similarity is 
chosen to detect highly similar code fragments, which is more 
of the interest to developers. 

The process of PDG’s generation differs for source and 
binary code, however, the matching parts are the same. For 
source code PDG’s generation FCD uses LLVM intermediate 
representation [35]. To get PDGs for source code a new pass 
is added in LLVM, which uses control flow information, use-
def chains and alias analysis. For binary code PDGs 
generation FCD uses REIL [36] intermediate representation. 
At first, it uses IDA Pro [37] disassembler to restore assembler 
and control flow graphs. Then the obtained assembler is 
translated to the REIL intermediate language using Binnavi 
[38]. Lastly, it uses Binside [39] to generate PDGs, which was 
developed by our team previously.  

Code fragment clone detection algorithm is implemented 
in C++ language. The output of the tool consists of a set of 
JSON files containing information about the detected clones. 
This information includes functions’ names corresponding to 
matched fragments, similarity percentage, all pairs of matched 
instructions, and other relevant details. 
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VI. TESTING SYSTEM 

To evaluate FCD algorithm, we have designed and 
implemented a testing system, which generates tests, executes 
FCD and calculates precision, recall, and Root Mean Square 
Error (RMSE) to assess their effectiveness. Test generation is 
done using PDGs of real-world projects. For each PDG, it 
creates a duplicate, removes some vertices, and considers it as 
fragment's PDG. It randomly selects a basic block and 
removes corresponding vertices until the desired similarity 
percentage is reached. After removing a vertex, its 
predecessor vertices are connected with the successor ones. If  
all vertices in the chosen basic block are removed and the 
provided similarity is still not met, the system randomly 
selects a new basic block and starts removing consecutive 
vertices from that block. This process continues until the 
required similarity percentage is not met. 

It then runs the FCD algorithm on generated PDGs’ pairs 
and compares the resulting similarity percentage with the one 
specified to testing system. Ideally, the similarity percentages 
of the created PDGs’ pairs by the testing system should match 
with the results from the FCD algorithm. The testing system 
saves information about the correspondence of the original 
and the generated PDG vertices, which is used to calculate 
precision, recall, and RMSE. 

VII. RESULTS 

FCD is tested with the discussed testing system on projects 

OpenSSL, JasPer, c-ares, Rsync. Tables TABLE III and TABLE IV 

present the results of source and binary code clone detection, 

respectively. The results are averaged across similarity 

thresholds 100%, 90%, 80%, and 70%. 

The tool achieves perfect results when generated clones 

are 100% similar. Furthermore, FCD consistently 

demonstrated high accuracy across lower thresholds, as 

reflected in the averaged results in the tables. However, 

binary code clone detection’s speed is slow compared to 
source code clone’s detection time, as for binary bigger 

PDG’s are generated. 

TABLE III. SOURCE CODE CLONE RESULTS 
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c-ares 

1.15.0 
61087 97.5 95.2 6.1 0m 0.29s 

jasper 

1.900.1 
28279 95.4 93 6 0m 15s 

openssl 

1.0.2t 
310922 97 95.1 7.7 0m 2s 

rsync 

3.1.3 
44832 96 91.9 10.7 0m 26s 

On average, FCD has 96.5% precision, 93.8% recall and 

7.6% RMSE for source code. And on average, FCD has 

96.9% precision, 92.9% recall and 5.4% RMSE for binary 

code. Despite high rates of the tool’s precision and recall, 

there are still certain cases that the tool may not detect 

correctly. This occurs when the copied code is modified by 

adding a new instruction between each original instruction, 

i.e., one instruction from the original code, followed by one 

new instruction, then another from the original, and so on. 
However, if the copied code is modified in such a way that a 

whole basic block is added the tool identifies it correctly. 

TABLE IV. BINARY CODE CLONE RESULTS 

The tool is not compared with the related tools as there is 

no common benchmark for evaluation. While there are some 

benchmarks available for C/C++ languages, they include 

only Type-4 clones, which our tool does not detect. 

Additionally, each tool uses its own method to calculate 

similarity levels, which results in inconsistent evaluations of 

the same code fragments. 

VIII. CONCLUSION 

The study proposes a novel technique to identify 

duplicated code fragments. It overcomes limitations of 

existing clone detection tools, which typically target only full 

functions and specialize in either source or binary code 

analysis. Experimental evaluation on real-world software 

projects demonstrates the high precision and effectiveness of 

the proposed clone detection approach for source and binary 

code. As conclusion we can clearly see that PDG captures 

enough information for source and binary code to enable 

accurate clone detection for both cases. Moreover, a unified 

algorithm can be used for maximal similar subgraphs 

detection in both cases. 
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libcares 2.3.0 

(c-ares 1.15.0) 

86 

KiB 
x86-64 98.9 95.6 4.6 0m 41s 

libcares 2.3.0 

(c-ares 1.15.0) 

96 

KiB 
x86 97.9 93.4 5.5 0m 43s 

libcares 2.3.0 

(c-ares 1.15.0) 

146

KiB 
ARM 98.9 95.6 4.6 0m 49s 

jasper 1.900.1 
1.5 

MiB 
x86-64 96 92.1 5.4 3m 5s 

jasper 1.900.1 
368

KiB 
x86 95 90 6.5 2m 1s 

jasper 1.900.1 
478

KiB 
ARM 94.1 89.8 6.1 2m 8s  

openssl 1.0.2t 
536

KiB 
x86-64 99.9 98.1 3.8 1m 10s 

openssl 1.0.2t 
507

KiB 
x86 98.8 95.8 3.9 0m 57s 

openssl 1.0.2t 
634 

KiB 
ARM 97.9 95.6 4.4 1m 25s 

rsync 1.3.2 
1.7 

MiB 
x86-64 96 91 6.6 3m 34s 

rsync 1.3.2 
1.6 

MiB 
x86 94.9 88.9 6.7 3m 21s 

rsync 1.3.2 
1.8 

MiB 
ARM 94.1 88.8 7.4 3m 58 
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