
Performance Comparision of Encoding Schemes for ETSI ITS C2X Communication
Systems

Sebastian Bittl and Arturo A. Gonzalez and Wolf A. Heidrich
Fraunhofer ESK

Munich, Germany
Email: {sebastian.bittl, arturo.gonzalez, wolf.heidrich}@esk.fraunhofer.de

Abstract—Wireless Car-to-X communication is about to enter the
mass market in upcoming years. Thereby, available bandwidth is
small with only a low number of usable channels and many com-
municating entities. Therefore, efficient data encoding schemes
are required to allow bandwidth saving use of the wireless channel
by embedded devices. No detailed analysis of different encoding
schemes for Car-to-X communication regarding important prop-
erties like runtime, memory consumption and encoded output
length has been published so far. We provide such analysis for
standardized ASN.1 and binary representations as well as Google
Protocol Buffers as an alternative approach to the data encoding
problem. Standardised data content for CAM, DENM and the
security envelope are used in the conducted performance study.
We show that ASN.1 encoding outperforms usage of Google
Protocol Buffers, but is outperformed by a binary encoding
scheme in most cases. This implies that standardization efforts
for the security envelope should reconsider the recent shift from
binary encoding towards usage of ASN.1.

Keywords-ETSI ITS, data encoding, performance metrics,
ASN.1, Google Protocol Buffers.

I. INTRODUCTION

Car-to-X (C2X) communication systems are gaining at-
tention in the awake of their upcoming deployment as ETSI
Intelligent Transport Systems (ITS) in Europe and Wireless
Access in Vehicular Environments (WAVE) in the United
States [1].

C2X communication happens digitally, meaning that mes-
sages between the involved nodes are represented as a series of
bits, i.e., as bit streams. As in any software implementation of a
communication system, the format of the messages exchanged
between two communication end points must be well known
by them. That means that nodes should be able to represent
messages as bit streams and to interpret them as the original
messages as well. The generation of a bit stream from a
message is defined as encoding. Hence, we refer to an encoded
message as the bit stream representation of such message.
Following the same logic, decoding is defined as the generation
of the original message out of its bit stream representation.

Several encoding schemes exist nowadays, and some of
them are used extensively in everyday data communications.
Depending on the application requirements, one scheme may
be suited better than another. The requirements for these en-
coding schemes range from human readability (e.g., XML[2],
JSON[3]), through the space the bit stream takes up in memory

(e.g., ASN.1 PER encoding, binary encoding), up to system
performance, i.e., encoding/decoding processing delay (e.g.,
binary encoding, ASN.1 OER encoding).

In the C2X realm, it is significantly relevant to use a
bandwidth efficient encoding scheme since C2X communica-
tions operate under quite strict bandwidth constraints. As an
example, in Europe only one 10 MHz channel is available
for safety critical applications [4]. Therefore, an encoding
that generates short bit streams out of messages is favoured.
Moreover, safety C2X applications have strict end-to-end delay
requirements. Therefore, encoding/decoding delays should be
minimal such that their contribution to the end-to-end delay
can be considered neglible.

In this work, we focus on the comparison of the perfor-
mance metrics of two coding schemes, namely Abstract Syn-
tax Notation 1 (ASN.1) encoding rules and Google Protocol
Buffers applied to the two most common C2X message types
in C2X communications: Cooperative Awareness Message
(CAM) and Decentralized Environmental Notification Basic
Service (DENM). Since both encoding schemes support the
Time Optimized and Space Optimized variants, performance
metrics are obtained for both cases on both schemes. Further-
more, three different encoding schemes for the ETSI ITS Se-
curity Envelope, which are binary encoding, ASN.1 encoding
rules and Google Protocol Buffers performance metrics, are
also compared.

The remaining part of this work is organized as follows; an
overview of related work is given in section II, the performance
requirements and measurements are described in detail in
section III and the target platforms description is summarized
in section IV. The obtained results are described in section V.
Finally, section VI provides a conclusion about the achieved
results.

II. BACKGROUND

The background of this work regarding platform inde-
pendent data encoding, especially in the area of ETSI ITS,
is provided in this section. Additionally, a comparision to
the limited number of other published performance studies is
given.

A. Data Encoding Rules

CAM and DENM are two standardized ITS messages de-
fined in [5] and [6] respectively. According to these standards,

58Copyright (c) IARIA, 2014. ISBN: 978-1-61208-348-3

VEHICULAR 2014 : The Third International Conference on Advances in Vehicular Systems, Technologies and Applications

the encoding of CAM and DENM is done using ASN.1 UPER
encoding rules. There are several encoding rules which ASN.1
specifies: Basic Encoding Rules (BER), Packed Encoding
Rules (PER), Canonical Encoding Rules (CER), Distinguished
Encoding Rules (DER), Octet Encoding Rules (OER) among
many other flavours, each providing advantages and disavan-
tages from the point of view of a specific application.

Since PER provides a more compact encoded message than
the older BER and its subsets DER and CER, it is often used
in systems where bandwidth conservation is important [7].
This might be the reason why the CAM and DENM standards
specify that the encoding rules to be used should be Unaligned
PER (UPER). In aligned PER fields are aligned to 8-bit octet
boundaries by inserting padding bits whereas in UPER padding
bits are never inserted between fields, hence allowing a higher
bit stream size reduction.

A widely used alternative to ASN.1 encoding rules are
the so called Google Protocol Buffers [8], [9], which are
used by Google extensively in their production environment.
Therefore, they can be regarded as a stable and reliable library.
Google Protocol Buffers offer a more simplistic approach to
the platform independent data encoding, making them easier
to manipulate and implement [8]. Additionally, they can be
configured to do encoding optimized for either fast processing
or small memory footprint. The latter is also a common feature
provided by standard ASN.1 implementations. For example,
the software provided by OSS Nokalva [7] provides this
feature. Therefore, Google Protocol Buffers can be seen as
a comparable alternative for message implementation. Hence,
the performance study provided in section V makes use of
these two technologies.

Furthermore, for the ETSI ITS security envelope two
different sets of encoding rules have been proposed so far. At
first, binary encoding with explicit definition of all data fields
was proposed in [10]. Additionally, encoding using ASN.1
rules was proposed recently in [11]. As a further reference,
Google Protocol Buffers will also be used in the following for
the security envelope.

Further publicly available data serialization tools for con-
verting arbitrary data into a platform independent binary rep-
resentation include systems like Apache Avro, Apache Thrift
or Message Pack [12][13][14]. These systems are either less
mature or deployed to a much smaller extent in professional
environments compared to ASN.1 and Google Protocol Buffers
(see e.g., [15] for protobuf vs. Thrift). Therefore, they are
not studied in detail. Additionally, serialization technologies
like XML or JSON which aim to achieve a human readable
and easy to parse data representation at the price of increased
encoding length are out of the scope of this work. They are
simply not appropriate to be used in bandwidth constrained
communication systems.

B. State of the Art and Contribution of this work

There are several publications comparing other encoding
schemes, such as XML with ASN.1. For example, the authors
in [16] compare the performance between binary encoded
XML and ASN.1 by running the tests on PC machines. In
[17] the authors compare the performance of XML against
ASN.1 BER on digitally signed data. They conclude that for

applications where high performance is required, ASN.1 BER
may be a better choice.

In [18] authors compare the performance of XML, JSON
and Google Protocol Buffers in terms of data size and coding
speed. The authors conclude that Google Protocol Buffers re-
quires less bytes for the message representation in comparison
with XML or JSON. The authors also explore the possibility
of compressing XML and JSON messages using gzip [19].
In the latter case, both compressed text formats perform better
than Google Protocol Buffers in terms of data size. In terms of
speed, the authors show that Google Protocol Buffers perform
better than both text schemes. In [20], authors perform a
similar study showed in [18] and expand it for performance in
energy consumption, relevant for the smartphones case. They
also show that gzip-compressed Google Protocol Buffers, vari-
ant not explored in [18], performs better in terms of encoded
data size in comparison with compressed XML, but worst that
compressed JSON. When the authors measure performance in
respect to encoding time, they concluded that for the data
set they used Google Protocol Buffers performed better. On
the parsing process on the receiver side, i.e., decoding, JSON
perform slightly better than the other two.

To the understanding of the authors at the time of writing
this work, there are no previous studies focusing on a quan-
titatively comparison of performance measurements between
ASN.1 and Google Protocol Buffers, in specific on the field of
C2X commmunications. Although the ETSI standard defines
the encoding mechanisms as ASN.1, this work should provide
some insight for the viability of an alternative based on an open
source development as well as to provide some information
on the performance comparison of these encoding schemes on
different computer platforms such as embedded systems.

III. PERFORMANCE REQUIREMENTS AND
MEASUREMENTS

In this work, we consider three main aspects in the per-
formance evaluation of the different encoding schemes. These
are:

1) computation time,
2) memory footprint on computation and
3) encoded data length

Aspects 1 and 2 clearly focus on the required computing
power for the encoding and decoding process. As ETSI ITS
technology shall be implemented in embedded systems e.g., in
vehicles, these criteria are quite important due to the limited
resources typically available in such systems.

The length of the encoded data is a criteria which mostly
influences the required communication bandwidth on the wire-
less channel. It directly determines how long it takes to
communicate a data packet over the air. Given that a com-
munication channel has a limited capacity, the lenght of the
encoded messages directly influences the number of possible
transmissions over the air in a specific time span. Additionally,
ETSI ITS uses only a single control channel to distribute
important CAMs and DENMs. Therefore, an increased size of
the encoded data packet directly leads to a decrease in system
performance and scalability.

59Copyright (c) IARIA, 2014. ISBN: 978-1-61208-348-3

VEHICULAR 2014 : The Third International Conference on Advances in Vehicular Systems, Technologies and Applications

IV. TARGET PLATFORMS

A. Hardware

To execute our performance measurements of the encoding
schemes in question we have used three different platforms.
The reason is to show the influence of different used hardware
technologies as well as to exclude effects on the overall per-
formance study caused by a single processor technology. Table
I summarizes the main characteristics of the three platforms
used in our experiments.

TABLE I. USED CPU HARDWARE AND ACHIEVABLE MEASUREMENT
ACCURACY VIA LINUX CLOCK COUNTERS.

type AMD Geode LX Intel Atom Z520PT Intel Core i7-2640M
clock speed 500 MHz 1.33 GHz 2.8 GHz
clock res. 2 ns 1 ns 1 ns

More details about the used processor technologies can be
found in references [21], [22], [23].

The clock resolution given in table I was obtained by using
the clock getres() [24] function on the individual platforms in
the software environment described in the next section.

B. Software

On all platforms, a standard Debian Linux [25] system with
kernel version 3.2.23 was used as the underlying operating
system during the performance study. Furthermore, ASN.1
related functionality was provided by the OSS Nokalva library
[7]. Google protocol buffers were used in version 2.4.1 as
provided by the Debian distribution. For binary encoding of
the security envelope the implementation from the ezCar2X
framework [26] was used. All used software was compiled on
the target with the GCC compiler version 4.7.2 [27]. Thereby,
strong optimization was enabled with the -O3 compiler flag.

For timing measurements the Linux kernel high per-
formance counters have been used, which can be used
from userspace by calling the clock gettime() function [24].
Thereby, CLOCK PROCESS CPUTIME ID was used as the
clock ID in order to determine only the time spent in the
process which contains the algorithm to be measured. An
accuracy of up to 1 ns can be achieved, if the underlying
hardware permits such accurate measurements [28]. In order to
make the measurements more accurate, the suggestions from
[29] for avoiding effects of out-of-order execution have been
applied. Therefore, the CPUID instruction was executed before
and after calling the clock gettime() function.

The described methodology for time measurements is
preferred over directly reading the CPUs time stamp counter
(TSC), which is e.g., used in [29]. The reason is that while
[29] uses operations only available inside the Linux kernel,
the measurements in our performance study are done in the
user space. Therefore, certain prerequisites of the approach
from [29] like disabling of interrupts or scheduling cannot be
fullfilled. Hence, we rely on the implementation of the clock
counter in the Linux kernel.

An algorithm’s main memory footprint (heap as well as
stack usage) was measured by the help of the so called
malloc count framework [30]. This framework allows arbitary
parts of a program to be traced by inserting dedicated function

calls into it. These calls where only used during memory
measurements and were removed during timing measurements
as they would introduce overhead. Other memory tracing
tools like massiv from the valgrind framework [31] do not
allow adjustment of the measurement procedure with such fine
granularity. Therefore, malloc count was used to obtain the
results presented in section V-C.

V. PERFORMANCE STUDY

A. Content for Encoding and Decoding

We have used CAM [5] and DENM [6] messages contain-
ing only values in the mandatory fields. For this messages,
we have used real data within the message content as far as
possible e.g., the included time stamps.

The studied security envelopes consist of the message
fields as specified in [10] and [11]. Thereby, all three defined
security profiles are taken into regard. Additionally, for security
profile number 1 two cases have to be distinguished. The
corresponding envelope can hold a signed certificate or just
an eight byte hash value of the certificate. Both cases have
been included in the performance study.

In order to separate the security component tests from
others, no real payload was used on these tests. For the case
of binary encoding, the envelope only includes the mandatory
one byte dummy payload as specified in the standard [10].

B. Encoding Rules for Google Protocol Buffers

The definition files for the Google Protocol Buffers (Pro-
tobuf) were derived from the ASN.1 definitions given in stan-
dards [5], [6], [11]. Thereby, transformation is straight forward
due to the low number of available data types in protobuf.
During the transformation process always the smallest Protobuf
data type which is able to hold the corresponding ASN.1 data
type was selected to avoid unneccessary overhead.

C. Results of Performance Study

The results of the conducted performance study regarding
memory consumption and encoded output length are sum-
marized below in tables II (CAM), III (DENM) and IV
(security envelope). In the following, individual results for
these message contents are studied in detail.

Memory requirements, as well as encoding length, are
independent of the used CPU architecture. Therefore, just
a single result is given for these criterias in the following.
Runtime performance, which is clearly processor specific is
looked at afterwards.

In the following, we use TOED as a short for time
optimized encoder and SOED for space optimized encoder.
All encoding length and memory consumption measurement
results are given in bytes.

At first, encoding performance for CAMs is studied in
detail. The achived results are summarized in table II. From
table II it is clear that Protobuf generates almost four times
more output bytes than ASN.1 for an encoded CAM. The
space optimized code is roughly on par with the ASN.1
code, as Protobuf uses less heap but more stack space and

60Copyright (c) IARIA, 2014. ISBN: 978-1-61208-348-3

VEHICULAR 2014 : The Third International Conference on Advances in Vehicular Systems, Technologies and Applications

TABLE II. PERFORMANCE RESULTS FOR CAMS.

enc. type heap / stack TOED heap / stack SOED encoded length
protobuf 469 / 1564 2450 / 6580 165
ASN.1 1066 / 1300 4120 / 4600 42

ASN.1 uses roughly the same amount of heap and stack space.
Additionally, the time optimized Protobuf code uses less space
as the space optimized code and even less than the ASN.1 time
optimized code.

In the following, we study the encoding performance of
DENMs. The corresponding results are given in table III. As

TABLE III. PERFORMANCE RESULTS FOR DENMS.

enc. type heap / stack TOED heap / stack SOED encoded length
protobuf 306 / 1532 2181 / 6580 114
ASN.1 1067 / 1252 4163 / 4184 43

one can clearly see, the memory consumption is similar to
the encoding of CAMs but somewhat lower. This is in line
with the smaller size of encoded data. As less data has to
be encoded, a lower memory consumption can be expected.
Additionally, the time optimized Protobuf encoding shows
again the smallest memory footprint of all of the shown four
encoding schemes. Furthermore, Protobuf performs worst in
encoded length, however it only needs roughly three times
as much space as ASN.1 compared to almost four times for
CAMs.

Table IV gives the performance results for main memory
consumption as well as encoding length for the ETSI ITS
security envelope. In table IV the profile column gives the

TABLE IV. PERFORMANCE RESULTS FOR THE SECURITY ENVELOPE.

enc. type profile heap/stack TOED heap/stack SOED enc. length
binary 1 no cert. 220 / 5348 same as TOED 96

1 cert. 412 / 6420 same as TOED 178
2 412 / 6420 same as TOED 189
3 412 / 6420 same as TOED 186

protobuf 1 no cert. 1282 / 6452 1286 / 6452 127
1 cert. 2065 / 9892 2065 / 9892 231

2 2244 / 9892 2244 / 9892 243
3 2094 / 9892 2094 / 9892 237

ASN.1 1 no cert. 1927 / 6500 5123 / 6504 87
1 cert. 2309 / 6676 5505 / 8296 197

2 2309 / 6676 5515 / 8296 207
3 2309 / 6676 5515 / 8296 207

number of the applied security profile as defined in [10].
As described above in section V-A, the two cases of an
envelope with and without certificate have to be distinguished
for security profile number 1.

The encoding lengths for security profiles 2 and 3 are
only different for the case of binary encoding and not for
ASN.1 encoding, as the data field called message type is
optional according to [10] but required according to the ASN.1
definition given in [11]. As the only difference between these
two security profiles is the presence of the message type data
field, this difference vanishes in the case of ASN.1 encoding.
Therefore, no separate data for computation time and memory
consumption is given for security profile number 3 and ASN.1
encoding, as it would be identical to the case of security profile
number two. In order for a difference between the two security
profiles to exist, our Protobuf definition declares the message
type field as being optional.

One can see from the most right column that in all cases
binary encoding clearly outperforms Protobuf in respect to
achieved encoding length. Additionally, it outperforms ASN.1
encoding in three out of four cases, the only exception being
the case of security profile number 1 without certificate. In
this case ASN.1 encoding is only 9 bytes less than binary
encoding. However, for the case with certificate and security
profile one, ASN.1 requires 19 more bytes than binary encod-
ing. Furthermore, binary encoding requires 18 bytes less for
security profile number two against ASN.1 and 21 bytes less
for security profile number 3, respectively.

To obtain results for the computation time we ran the
measurement procedure described in section IV-B 10,000
times and computed the average of the measured outcome.
Corresponding results for all processor types from table I are
shown in Figures 1, 2 and 3. Please note that the vertical axis
of the graph is on a logarithmic scale. Additionally, for binary
encoding only four runtime measurement results are provided
per processor as this scheme is not defined for encoding of
CAMs and DENMs. Therefore, only the four different kinds
of security envelope encoding have been measured.

An overview about the achieved runtime performance mea-
surements on a Intel Core i7 processor is provided in Figure 1
(see also Table I). The obtained results clearly show that, for

 1000

 10000

 100000

 1e+06

binary
ASN.1-SOED

ASN.1-TOED

protobuf-SOED

protobuf-TOED

ru
n
ti

m
e

in
 n

s

CAM
DENM

Sec.1w/o
Sec.1w

Sec.2
Sec.3

Figure 1. Runtime performance of ETSI ITS CAM, DENM and security
envelope encoding on an Intel i7 processor.

the security envelope, binary encoding is significantly faster
than the two other encoding schemes. Additionally, ASN.1
encoding outperforms Protobuf for both cases of TOED w.r.t.
SOED optimization.

An interesting result is that the difference regarding the
runtime of TOED and SOED versions is significantly different
for ASN.1 and Protobuf. Thereby, the results for ASN.1
encoding differ far less than the corresponding results for
Protobuf do. Furthermore, the difference in runtime between
TOED and SOED versions for Protobuf is much bigger for
encoding of the security envelope then it is for CAM and
DENM encoding. The documentation of Protobuf mentions
that space optimized encoding relys on reflection instead of
using dedicated data access methods [8]. From the achieved
results one can expect that the optimization strategy of the used

61Copyright (c) IARIA, 2014. ISBN: 978-1-61208-348-3

VEHICULAR 2014 : The Third International Conference on Advances in Vehicular Systems, Technologies and Applications

ASN.1 library works differently, unfortunately, no in detail
description regarding this point is available (see also [32]).

A significant difference between the definitions of CAMs
(or DENMs) and the security envelope is the higher number
of small and deeply nested data fields used for defining
the security envelope ([10][11][5][6]). The achieved results
depicted in Figure 1 indicate that binary as well as ASN.1
SOED encoding can handle this kind of structure better than
Protobuf SOED can do. Thereby, the reflection based access
scheme is likely the source of excess in runtime increase when
comparing Protobuf SOED with the TOED variant.

To avoid overloading the figures, the computed standard
deviation of the measured runtimes are not shown. In general
the standard deviation was quite low, e.g., a value of 152 ns
was found for binary encoding of the security envelope with
security profile one and no included certificate. The differences
between the obtained results of different encoding schemes
for same encoded data content are always bigger than three
times the standard deviation of the corresponding runtimes.
Therefore, the achieved measurement results can be regarded
as reliable.

The results obtained from the runtime measurements on a
Intel Atom processor are depicted in Figure 2 (see also Table
I). Comparing Figure 2 to preceeding Figure 1 one can see

 1000

 10000

 100000

 1e+06

 1e+07

binary
ASN.1-SOED

ASN.1-TOED

protobuf-SOED

protobuf-TOED

ru
n
ti

m
e

in
 n

s

CAM
DENM

Sec.1w/o
Sec.1w

Sec.2
Sec.3

Figure 2. Runtime performance of ETSI ITS CAM, DENM and security
envelope encoding on an Intel Atom processor.

that except of a general increase in runtime (note the different
scaling of the vertical axis of both figures), the overall results
are the same for the Atom and the i7 processor technology. Due
to the lower processor speed (see also Table I) such an increase
in runtime can be expected. However, the increase is somewhat
bigger than what can be calculated by just determining the
factor one obtains from dividing the respective processor clock
speeds. It is reasonable to observe an advantage in the runtime
performance of the i7, which is due to the improved processor
technology such as precaching algorithms, as it was introduced
to the market significantly later than the Atom processor.

Finally, Figure 3 provides the results of runtime measure-
ments conducted using an AMD Geode processor (see also
Table I). From the comparison of results shown in Figure 3
to the results given in Figures 1 and 2, one can see that the

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

binary
ASN.1-SOED

ASN.1-TOED

protobuf-SOED

protobuf-TOED

ru
n
ti

m
e

in
 n

s

CAM
DENM

Sec.1w/o
Sec.1w

Sec.2
Sec.3

Figure 3. Runtime performance of ETSI ITS CAM, DENM and security
envelope encoding on an AMD Geode processor.

overall outcome of the performance study does not change by
switching from a modern high speed processor (like the i7) to
a quite old and low speed processor, like the AMD Geode.

Given the latter statement, we conclude that the achieved
results can also be used to interpret the behaviour of the studied
encoding algorithms within embedded systems using medium
speed processors, nevertheless low end, low power processors
may possibly behave differently.

In summary, it has been shown that regarding runtime and
memory consumption, binary encoding outperforms all other
studied encoding schemes running on all platforms. Only in
the case of security profile number 1 without certificate, ASN.1
achieves a shorter encoding length than binary encoding. Is
worth to note that, the timing interval for including a certificate
in the security envelope of a CAM is equal to the default
sending interval of CAMs (see [10][5]). The latter means that
normally CAMs are sent with a certificate included in the
envelope. Therefore, the results show that the newer standard
[11] defining the security envelope using ASN.1 significantly
deteriorates the performance of its encoding compared to the
preceeding standard [10] using a binary encoding scheme. Fur-
thermore, as ASN.1 does not provide a forward compatability
functionality, like e.g., Protobuf would do, there is almost no
reason why one should prefer ASN.1 over binary encoding.
The conducted performance study also shows that Protobuf
cannot be seen as a real alternative to ASN.1 for ETSI ITS
data encoding. Protobuf is outperformed by ASN.1 on almost
all of the selected important performance criteria on any of
the platforms used and for all kinds of data types considered.
Protobuf was found to be somewhat smaller compared to the
respective ASN.1 counterpart only on the memory footprint
parameter for some kinds of data types. Nevertheless, also in
those particular cases, Protobuf is not able to outperform the
binary encoding scheme.

VI. CONCLUSION AND FUTURE WORK

Efficient data encoding schemes are required for future
bandwidth-limited C2X communication. In this work, we have
addressed three main performance metrics in C2X communi-
cations: encoded data length, runtime and memory footprint.

62Copyright (c) IARIA, 2014. ISBN: 978-1-61208-348-3

VEHICULAR 2014 : The Third International Conference on Advances in Vehicular Systems, Technologies and Applications

A study on these metrics for the ASN.1 and Google Protocol
Buffers encoding schemes, for the time and space optimized
variants, has been performed on the ETSI CAM and DENM
messages as well as their Security Envelope. On the latter, we
have further evaluated these metrics also for the case of binary
encoding. To make the study as independent on the hardware
as possible, the evaluation was done using three different
processor technologies. Our work also presents the followed
methodology for obtaining the mentioned performance metrics.

The results presented here show that the outlined measure-
ment methodology is able to provide the required performance
characteristics in a reliable way. Additionally, it was found
that the performance of the different encoding technologies
is independent of the used processor technology. From the
presented results, it is clear that the performance of Google
Protocol Buffers (Protobuf) is always outperformed by ASN.1
encoding w.r.t. the required encoding delay or runtime. Only
in a minor amount of the studied cases, Protobuf outperformed
ASN.1 encoding with regard to its memory footprint.

An important result of the conducted performance study is
that binary encoding greatly outperforms ASN.1 encoding in
the clear majority of cases for the security envelope. ASN.1
actually outperformed its binary counterpart with respect to
encoded data length only in one of the studied cases. Regarding
runtime and memory footprint: binary encoding performs sig-
nificantly better in all studied cases. The latter implies that the
recent shift from binary towards ASN.1 encoding (from [10]
to [11]) is not justified at least by the mentioned performance
metrics. Therefore, the authors propose to conduct either ex-
tensive simulations or field tests using both technologies before
finalizing the corresponding standard in order to determine
which encoding scheme should be used for mass rollout of
the future ETSI ITS system.

Directions on future work may include an extension of
the provided performance study regarding new upcoming plat-
form independent encoding schemes like Apache Avro [12].
Such systems may provide more flexiblity regarding how to
organize the encoded data. However, future research has to
show whether these improvements have to be paid for by a
performance degradation limiting practical usablity.

REFERENCES

[1] “Memorandum of Understanding for OEMs within the CAR 2 CAR
Communication Consortium on Deployment Strategy for cooperative
ITS in Europe,” June 2011, v 4.0102.

[2] Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C Std.,
Rev. 5th, Nov. 2008.

[3] D. Crockford, “The application/json Media Type for JavaScript Object
Notation (JSON),” Network Working Group, IETF, RFC 4627, July
2006.

[4] Intelligent Transport Systems (ITS); European profile standard for the
physical and medium access control layer of Intelligent Transport
Systems operating in the 5 GHz frequency band, ETSI European
Standard 202 663, Rev. V1.1.0.

[5] Intelligent Transport Systems (ITS); Vehicular Communications; Basic
Set of Applications; Part 2: Specification of Cooperative Awareness
Basic Service, ETSI European Standard 302 637-2, Rev. V1.3.0, Aug.
2013.

[6] Intelligent Transport Systems (ITS); Vehicular Communications; Basic
Set of Applications; Part 3: Specifications of Decentralized Environ-
mental Notification Basic Service, ETSI European Standard 302 637-3,
Rev. V1.2.0, Aug. 2013.

[7] OSS Nokalva, Inc, “ASN.1 Tools for C Overview,” online:
http://www.oss.com/asn1/products/asn1-c/asn1-c.html, Jan. 2014, re-
trieved: 05.2014.

[8] Google, “Protocol Buffers - Google Developers,” online
https://developers.google.com/protocol-buffers/, Apr. 2012, retrieved:
05.2014.

[9] ——, “Protocol Buffers. Googles Data Interchange Format.” online
http://code.google.com/p/protobuf/, Jan. 2014, retrieved: 05.2014.

[10] Intelligent Transport Systems (ITS); Security; Security header and
certificate formats, ETSI Technical Specification 103 097, Rev. V1.1.1.

[11] Intelligent Transport Systems (ITS); Security; Security header and
certificate formats, ETSI Technical Specification 103 097, Rev. V2.1.1.

[12] J. Russell and R. Cohn, Apache Avro. Book on Demand, 2012.
[13] L. M. Surhone, M. T. Tennoe, and S. F. Henssonow, Apache Thrift.

VDM Publishing, 2010.
[14] S. Furuhashi, “MessagePack: It’s like JSON, but fast and small,” online:

http://msgpack.org/, Jan. 2014, retrieved: 05.2014.
[15] D. Gupta, “Thrift vs. Protocol Buffers,” online:

http://old.floatingsun.net/articles/thrift-vs-protocol-buffers/, May
2011, retrieved: 05.2014.

[16] OSS Nokalva, Inc, “Alternative Binary Representations of the XML
Information Set based on ASN.1,” online: www.w3.org/2003/08/binary-
interchange-workshop/32-OSS-Nokalva-Position-Paper-updated.pdf,
Aug. 2013, retrieved: 05.2014.

[17] M. C. Smith, “Comparing the Performance of Abstract Syntax Notation
One (ASN.1) vs eXtensible Markup Language (XML),” in In Proceed-
ings of the Terena Networking Conference, 2003.

[18] “Using Internet data in Android Applications,” online:
http://www.ibm.com/developerworks/xml/library/x-dataAndroid/x-
dataAndroid-pdf.pdf, June 2010, accessed: February 27th, 2014.

[19] “The gzip homepage,” online: http://www.gzip.org, July 2003, accessed:
February 27th, 2014.

[20] B. Gil and P. Trezentos, “Impacts of data interchange formats on energy
consumption and performance in smartphones,” in Proceedings of the
2011 Workshop on Open Source and Design of Communication, 2011,
pp. 1–6.

[21] 2nd Generation Intel Core Processor Family, Datasheet, Vol.1, 8th ed.,
Intel, June 2013, doc. No. 324641-008.

[22] Intel Atom Processor Z5XX Series, Datasheet, 3rd ed., Intel, June 2010,
doc. No. 319535-003US.

[23] AMD Geode LX Processor Family, AMD, Feb. 2014, doc. No. 33358E.
[24] ISO, “ISO/IEC 9945:2008 Information technology – Portable Operating

System Interface (POSIX R©),” May 2009, international Organization for
Standardization, Geneva, Switzerland.

[25] “Debian – The Universal Operating System,” online:
http://www.debian.org/, Dez. 2013, retrieved: 05.2014.

[26] Fraunhofer ESK, “ezCar2X: Streamlining applica-
tion development for networked vehicles,” online:
http://www.esk.fraunhofer.de/en/projects/ezCar2X.html, Feb. 2014,
retrieved: 05.2014.

[27] R. M. Stallman and the GCC Developer Community, Using the GNU
Compiler Collection, For GCC version 4.7.2, Free Software Foundation,
Sept. 2012.

[28] M. T. Jones, “Kernel APIs, Part 3: Timers and lists in the 2.6 kernel,”
online: http://www.ibm.com/developerworks/library/l-timers-list/, Mar.
2010.

[29] G. Paoloni, “How to Benchmark Code Execution Times on Intel IA-32
and IA-64 Instruction Set Architectures,” Intel, White Paper 324264-
001, Sept. 2010.

[30] T. Bingmann, “malloc count - Tools for Runtime Memory Usage Anal-
ysis and Profiling,” online: http://panthema.net/2013/malloc count/,
Mar. 2013, retrieved: 05.2014.

[31] J. Seward, N. Nethercote, J. Weidendorfer, and V. D. Team, Valgrind
3.3, 1st ed. Network Theory Ltd., May 2008.

[32] OSS Nokalva, Inc, “What do I gain by using the time-
optimized encoder/decoder (TOED)? What do I lose?” online:
http://www.oss.com/asn1/knowledge-center/asn1-c/91.html, Feb. 2014.

63Copyright (c) IARIA, 2014. ISBN: 978-1-61208-348-3

VEHICULAR 2014 : The Third International Conference on Advances in Vehicular Systems, Technologies and Applications

