
Checking and Verifying Security Requirements With the
Security Engineering System Model Core

Hendrik Decke
Volkswagen AG Group Research

Email: hendrik.decke@volkswagen.de

Jean-Pierre Seifert
Technical University of Berlin

Email: jpseifert@sec.t-labs.tu-berlin.de

Abstract—As the need for security engineering methodologies for
embedded and/or distributed systems rises several different ap-
proaches have been proposed. Especially the automotive sector is
pursuing the development of new ways to better consider security
in the design process. Nevertheless, most of these approaches are
custom-tailored for specific use-cases or application domains and
are not applicable for other domains. We propose a security
requirements engineering process with a generic system model
core, which can be customized with application domain specific
extensions. This allows the instantiation of application domain ad-
justed security requirements engineering methodologies without
much effort. Additionally, the generalisation of the system model
allows the exchange of checking or verification methods with
only a small need for adaptation to new application domains. We
present our system model core and demonstrate its extensibility
on the example of vehicular systems. We then show two methods
for formal inspection of the system model. First, we show how the
security engineer can be assisted by consistency checking of the
system model, then we show how to verify the sum of generated
security requirements to ascertain the correctness of the security
concept.

Keywords–Security engineering; requirements engineering; require-
ments verification; system model core.

I. INTRODUCTION

How to design secure distributed and/or embedded sys-
tems is a repeatedly discussed question and it is recognized
in most industries that requirements engineering is critical
to the success of any development project. How to extend
requirements engineering into the realm of security has been
proposed with a multitude of approaches. Being able to learn
from existing methods in security requirements engineering for
software systems, most of these approaches focus on particular
aspects of the security requirements engineering problem while
additionally focusing on a very specific use case or application
domain. Given these results, the question why these approaches
did not lead to a broader industry adoption was examined by
[1] and [2].

For example, the work in [2] presents three interesting
factors for missing adoption of methodologies.

1) The business case for employing security best prac-
tices is missing.

2) Developers lack security expertise, which is currently
required to employ security best practices.

3) The risk of committing to a particular security ap-
proach is too high.

Furthermore, [1] gives a broad range of properties and
criteria for methodologies to lead to broader industry adoption.

Without repeating all of them we saw the feasibility to improve
in three major fields.

Notation By describing the security engineering system
model core (SESMC) as a generic core, we hope to allow
the easy exchange and reuse of varying approaches to
different parts of security requirements engineering. This
reduces the risk of committing to one particular security
requirements engineering approach since additional and
conceivably needed features can be implemented and
added easily. By adding application domain specific ex-
tensions we can demonstrate how a security requirements
engineering methodology can be instantiated for the ve-
hicular domain.

Tool Support By designing SESMC and the corresponding
security requirements engineering process to be imple-
mentable as a software tool for the security engineer,
we improve the ability to master the complexity of a
large embedded and/or distributed system, which directly
increases the business case for employing a security
requirements engineering methodology. Furthermore, the
software tool may assist engineers with a lower security
expertise.

Formal Methods The use of formal methods and verification
leads to increased confidence in the result and can ideally
point out outstanding problems in the system model.

A. Contributions

We propose a generic system model core to be used for a
security requirements engineering process to create methodolo-
gies for different application domains. For this system model
core, we present methods to perform consistency checks and
to allow the verification of a broad range of properties of the
system model, including the new concept of non-traceability,
with the use of the ProVerif tool [3]. When appropriate, we will
relate our elucidations to possible uses in vehicular systems.

B. Structure

Section 2 presents the background and related work. In
Section 3, we present the generic system model core and the
security requirements engineering process. Section 4 describes
the consistency checking of our system model core. Section
5 presents the steps that lead to the verification of a set of
security requirements contained in our system model core.
Section 6 presents the conclusions.

II. RELATED WORK

As already mentioned, several examples of security require-
ments engineering methodologies have been evaluated to create

26Copyright (c) IARIA, 2015. ISBN: 978-1-61208-434-3

VEHICULAR 2015 : The Fourth International Conference on Advances in Vehicular Systems, Technologies and Applications

our generic system model core. Likewise, methodologies in the
field of access policy engineering and model-based software
design have been considered as to discover basic approaches
to recurring problems in engineering to lay the groundwork
for our approach.

The most influential paper for our work is [4]. They present
their Workbench for Model-based Security Engineering
(WorSE), which supports the modelling and verification of
access control policies. Their main contribution is a domain-
independent abstraction for security policy design and verifica-
tion, which they call the security (model) core. This core may
be extended for domain-specific analysis, just as subclasses
can be derived from super classes in object-oriented software
design. As the formal semantics of this security core are clearly
defined any extension can still rely on all properties of the
parent core, which yields an interesting way to allow domain-
specific analysis in a flexible workbench.

Again in [5], our concept of a generic but extensible
system model core is motivated. They argue that in the field of
(pattern-driven) security methodologies for distributed systems
over a dozen approaches have been presented, but with respect
to system applicability these approaches are either highly spe-
cific or generic. Likewise, they motivate to position a security
methodology in the early development phases (analysis and
design), because ”This is where all security countermeasures
are planned [6], as well as where, according to [7], approxi-
mately half of all major security flaws can be prevented. [8]”

In [9], [10], [11], a methodology for the security en-
gineering and partitioning of hardware/software systems is
presented, which is the most similar methodology to our own.
It is named AVATAR, extending on the Object Management
Group’s Systems Modeling Language (SysML) [12], and en-
riched with artefacts for security engineering and implemented
in the workbench TTool. The authors position the process in
parallel to the hardware software partitioning of the y-chart
approach [13] so that the asset, threat and security requirement
identification can be done in the early design steps of the
systems development life cycle (SDLC).

AVATAR is requirement-driven. Given some security re-
quirements, which are designed in separate diagrams and
kept in parallel to the application model of the target of
evaluation (TOE), the threats and corresponding attack trees
can be subsequently defined. Possible risks are then manually
annotated to the security requirements, so that the decision
for chosen security mechanisms can be documented. After
the system model has been finished, the non-security relevant
properties can be model-checked using UPPAAL [14] and
the security-requirements (confidentiality and authenticity) can
be proven by the ProVerif toolkit [3]. ProVerif [3] is a
security protocol analyser. It is able to proof security properties
over given cryptographic protocols assuming the Dolev-Yao
attacker model [15] with very small resources.

Our own approach, which will be presented in Section III,
however is goal-oriented and focuses on keeping all informa-
tion inside one cohesive system model. With the addition of
protection groups and threat hierarchies we hope to enable
the design of a whole system inside one model without an
unproportional increase in size and complexity. It should be
noted that, although we do not present methods to check

Figure 1. Creating a methodology from the process and system model core.

non-security relevant properties like liveness or computational
intensity, we deem our approach to be applicable to these
properties and that model-checking, i.e., by using UPPAAL,
should be feasible. We increase the amount of usable protection
goals in comparison to AVATAR in our version of a ProVerif
export. The different possible queries will be presented later
in Section V.

III. A GENERIC ONTOLOGY FOR SECURITY
REQUIREMENTS ENGINEERING

For our approaches of consistency checking and verifying
security concepts to be adaptable to different security require-
ments engineering methodologies, we define a generic security
system model core (SESMC) with a corresponding ontology.
To implement our methods for consistency checking and
verification for an existing security engineering methodology
the required artefacts have to be identified and matched to
SESMC. With providing SESMC we hope to present a useful
mechanism to exchange property checking, property verifying
and other algorithms between different security engineering
methodologies of all kinds.

Additionally, SESMC can be used to instantiate new se-
curity requirements engineering methodologies from our pro-
posed process by providing application domain specific exten-
sions. We see our core as adaptable to different application
domains, since we only define the recurring artefacts needed
in all security engineering domains. By adding the application
domain specific characteristics, i.e., communication medium
restrictions, cryptography costs or specific attacker models, it
is possible to construct an applicable methodology from our
core. This is shown in Figure 1. An example of an instantiation
for the vehicular domain will be described at the end of this
section.

First, we will define the artefacts of our system model
core, then we will show how these artefacts are used in our
requirements engineering process.

A. System model core

Our system model core (see Figure 3) consists of model
artefacts, risk analysis artefacts and security requirements
artefacts.

At the centre of the security requirements engineering
process are the data instances. They are the assets that should
be protected and which are used in the dataflows and processes
of the TOE. We allow to define several types of data, while
we expect to at least differentiate between data instances rep-
resenting cryptographic keys (secret and public) and common
payload like sensor readings or calculation results. We propose
to add a special type for person-related data, like address data

27Copyright (c) IARIA, 2015. ISBN: 978-1-61208-434-3

VEHICULAR 2015 : The Fourth International Conference on Advances in Vehicular Systems, Technologies and Applications

and names, so that privacy goals and issues can be easier
identified.

1) Model artefacts: The model artefacts consist mainly
of executing units, which represent the different nodes, roles
or tasks of the system, and communication mediums, which
connect the executing units to allow dataflows. Both can be
provided with different application domain specific properties
(e.g., tamper protection or cryptography acceleration) to allow
for more precise analysis. The connections between executing
units and communication mediums are consequently named
connections and they are used by the dataflows to transfer
entities of data. Lifecycle phases represent different stages in
the lifetime of a system, which build on one another. They
allow to model and analyse a system before or after particular
points in its lifetime, e.g., production, operation mode 1,
operation mode 2 and decommissioning. Each executing unit
has one knowledge set for each lifecycle phase defining the
initial knowledge before every process and dataflow of this
lifecycle phase.

The dataflows and processes themselves are different for
each lifecycle phase to allow modelling varied behaviour. The
dataflows are executed concurrently by the executing units
but they consist of ordered dataflow steps to structure the
communication in time for each dataflow. Each dataflow step
describes a message consisting of data instances, which is
communicated over connections between two executing units.

To represent the tasks implemented by the executing units
we define one or many processes on the executing units, which
are likewise executed concurrently. The processes consist of
actions, which we will assume to adhere to certain assump-
tions. The actions describe the processing of data instances
inside the executing units. Typical examples for actions are
send, receive, create, save and load. We allow different no-
tations for the processes and actions (i.e., pi-calculus [16],
kripke structures [9] or UML activity diagrams [17]) as long
as they satisfy certain properties; e.g., the notation can be
translated into a directed acyclic graph and some recurring
patterns can be identified. We will discuss the assumptions
and properties in more detail in Section V. There is at least
one process on a executing unit for each dataflow it is part of
to implement the send and receive actions and to synchronize
dataflows and process. More processes per executing unit are
possible to allow asynchronous processing. To allow for a more
precise reflection of reality executing units and communication
mediums can be grouped to define hierarchies and boundaries
(organisational and/or physical) in the system.

For executing units and model groups we allow to define a
multiplicity value to model the replication of nodes, which
can be useful to model sets of identical nodes (executing
units) or reoccurring patterns of nodes (model groups). The
possible values for multiplicity are up to the designer of the
methodology to regard the needs of the application domain.

2) Risk analysis artefacts: The model artefacts are anno-
tated with the risk analysis artefacts. The protection goals
define which protection goal categories (properties) should be
ascertained for which data instance. To be exact we recom-
mend to define distinct protection goals for one data instance
in different parts of the system model. We call these parts
Protection Groups and they cluster data flow steps and actions

and allow to propagate the protection goals to all influenced
model artefacts (e.g., the sender or executor of a dataflow step
or an action). This remedies the need to define confidentiality
for each single dataflow step and all executing units of a
large dataflow, as all the individual parts of the dataflow can
be encapsulated inside one protection group for which one
protection goal is set. For each type of protection goal category
we define the possibility to define options to further elaborate
the meaning of the goal. We see our categorization and options
as an example of how protection goals could be formulated,
so that we can show the translation to verification queries (see
Section V). It is up to the designer of the methodology to
define the fitting application domain specific goals.

integrity is the property of protection against modification. It
defines which node may create or send a specific data
instance. As we outline in Section III-C, we recommend
to add an access control matrix to the system model to
assign write permissions to nodes per data instance. This
can be used for access control checking and to further
refine authentication permission. For example, a node
may only be allowed to obtain asymmetric keys to create
digital signatures, if it is allowed to write the specific data
instance.

confidentiality is the property of secrecy. It defines which
node may gain knowledge of a data instance. Again, we
recommend to add an additional knowledge permission
matrix to the system model to allow for easy modelling
of knowledge permissions.

availability of a data instance may be important for systems
to fulfil their function. Therefore, it should be modelled
as a protection goal. This property is difficult to ensure
and verify formally but should nevertheless be regarded
because denial-of-service attacks are a serious threat.

authenticity is a property with many facets. It may be needed
for authorization purposes or to ascertain the origin or
integrity of a data instance. We recommend to define
separately for the data instance, the sender, the receiver
and/or executor if authentication is needed. Additionally,
we allow to model the need for non-repudiation and the
property of freshness as options, which is needed in many
situations.

privacy is the property of confidentiality and self-
determination of person-related data. This property
implies confidentiality but may also add the requirement
to be non-traceable. It is stronger because not only the
knowledge of a data instance shall be prevented, but also
the plain existence of one particular dataflow or process
with one specific data instance shall be indistinguishable
from a dataflow or process with another data instance.
It is meant to prevent the tracking of users or entities
by identifying them by the ciphertexts of their personal
data. We differentiate between non-interference like it is
described by [18], which decides if the attacker is able
to notice if a data instance changes in between sessions
and non-traceable, which defines that the attacker is not
able to recognize if the same data instance is used in
different sessions.

The protection goals each possess one damage potential
assessment and they are endangered by different threats. The
damage potential assessment quantifies the estimated expected

28Copyright (c) IARIA, 2015. ISBN: 978-1-61208-434-3

VEHICULAR 2015 : The Fourth International Conference on Advances in Vehicular Systems, Technologies and Applications

Figure 2. Structure of dataflows and processes

damage when the protection goal is violated by a threat. For
each of the threats a risk assessment has to be carried out. We
do not dictate any form in which the threats shall be modelled
or on how to perform the risk assessment, since the field
of threat modelling already offers very elaborate solutions.
Merely it must be possible to differentiate between the threats
that do not constitute a risk for the protection goals and the
threats that do, which will then realise the damage potential.

3) Security requirements artefacts: The security require-
ments artefacts are then mitigating the threats with relevant
risks. We differentiate between security mechanisms and se-
curity requirements, which are grouped by a security concept.
The security engineer can define multiple security concepts
for one system model to allow for easy comparison between
competing security solutions. Although most literature sub-
sumes security measures and security requirements under the
term security requirements, we need to distinguish because of
verification precision.

Security mechanisms are direct measures refining dataflows
and processes to represent implementations of cryptographic,
physical or organisational means to increase security, whereas
security requirements are textual requirements that dictate the
mitigation of a risk or threat. Only cryptographic security
mechanisms can be verified with ProVerif, because organisa-
tional or physical mechanisms and textual requirements do not
provide the necessary details for the analysis. These types of
requirements are checked informally in the consistency check.
Textual requirements can be seen as a fallback or placeholder
in situations when the designer of the system does not want
to provide all the details for a security mechanism, so he can
temporarily mitigate a threat to analyse the remainder of the
system. Textual requirements can then be replaced by more
detailed mechanisms later.

Security mechanisms must describe which changes they
apply to the messages of dataflows steps and the actions of
processes. For example, a deterministic symmetric encryption
must describe how it is applied to a message (the message x
becomes symmEnc(x, key)) and this encryption action has
to be inserted before the send action of the corresponding
dataflow step (the action send(x) is extended to x2 =
symmEnc(x, key); send(x2)).

In addition, security mechanisms can instantiate specific
attribute or node requirements for the system model. For
example, a cryptographic measure may require a secure key
storage in an executing unit, or the existence of a PKI may
be needed when using asymmetric cryptography, which has
to be modelled by an application domain specific extension.
These attribute or node requirements have to be regarded as
they lead to (more) complete systems. These requirements can
be checked and not fulfilled requirements can be presented to
the security engineer in the consistency check.

How these system model artefacts are generated is up to
the methodology. In Section IV and V, we assume that the

methodology has been carried out and the complete system
model can be used for checking and verifying.

B. Security requirements engineering process

Our proposal for a security requirements engineering pro-
cess consists of the following steps.

1. Initial architecture Here, the TOE is designed. First, the
executing units, communication mediums and groups are
placed and connected to form the topology design of the
system. Then, dataflows and processes are added, with
their corresponding dataflow steps and actions, to define
the communication and process inside the system. Life-
cycle phases may be used to define multiple succeeding
behaviours.

2. Protection goal definition Now the protection groups can
be defined for which the security engineer can then define
the desired protection goals.

3. Threat definition Given the protection goals it is possible
to define the threats against these goals. For each goal
a damage assessment defines the amount of estimated
potential damage if the protection goal is violated.

4. Risk assessment For each threat tree (since they may be
hierarchically ordered) the security engineer may choose
not to assess the risk of all the leafs of the tree(with
the most detailed threats). He may choose to assess
on a higher abstraction level to increase efficiency. The
assessment is then executed with an application domain
specific risk system.

5. Security concept design Given the risks of the system the
security engineer decides which security mechanisms to
add. After adding all chosen mechanisms the requirements
for the operation of the system can be defined. Node or
attribute requirements may be needed to implement secu-
rity mechanisms. As outlined earlier textual requirements
may be used to mitigate threats, if the definition of actual
mechanisms is out of scope for the current investigation.
However textual requirements decrease the confidence in
verification results, as they lack important implementation
details.

6. Verification When the system model is finished the defined
protection goals can be verified. It may be necessary to
add further implementation details to decrease inaccu-
racies, so that the verification model can be built. This
includes defining the exact format of messages (payload,
order of cryptographic primitives, etc.), the knowledge of
the nodes before the communication and process of the
current lifecycle phase and the replication details of the
processes (how often a node executes a process), if these
details have been ignored or not modelled in the preceding
steps. It is important to add as many details as possible, as
we use the security protocol analyser ProVerif. ProVerif
uses the closed-world assumption, which dictates that
only facts that have explicitly been modelled as true are
true. Everything else is false and non-existent and can not
be used to attack the system.

29Copyright (c) IARIA, 2015. ISBN: 978-1-61208-434-3

VEHICULAR 2015 : The Fourth International Conference on Advances in Vehicular Systems, Technologies and Applications

Figure 3. Main artefacts of the system model core.

Additional steps Between the different steps of the process
consistency checks may be performed to find contradic-
tions and misconceptions. We describe our approach to
consistency checking in Section IV. After the creation
of the security concept further analysis and optimization
steps may be performed.

Refinement Since several assumptions about the initial archi-
tecture of the TOE may be changed throughout the secu-
rity engineering process the methodology must consider
to change parts of the TOE without nullifying all results.
Only the artefacts associated with the changes should be
marked as invalid and should be analysed again.

C. Matching existing methodologies to the system model core

We formalize our system model core and its extensions
with sets, relations and functions, which are representing the
artefacts mentioned above. To match an methodology to our
system model core these elements have to be identified so that
a system model conforming to our definitions can be extracted
to use our proposed consistency-checking and verification
methods. The following examples illustrates how the system
model core is structured and provides an understanding for the
following sections.

E is the set of Executing Units.
M is the set of Communication Mediums.
T ⊆ M × (M ∨ E) is the relation connecting the executing

units and communication mediums, creating the topology
graph and representing the connections.

P is the set of processes.
A is the set of actions.
P ⊆ P× A is the relation connecting processes and actions.
GA = (A,A) is the directed acyclic graph defining the order

of actions (successor relation) with the set of actions A
as nodes and the relation A as edges.

It can be seen that all artefacts (see Figure 3) are con-
tained in sets. Relationships between these sets are modelled
with relations and functions depending on the shape of the
relationship. The only exception from the rule is the directed
acyclic graph GA, which defines the order of the actions. We

omit the remaining sets, relations and functions as they can
directly be inferred from the description of the ontology above.

As we outlined in the description of the protection goal cat-
egories we additionally recommend to add two access control
matrices to the system model to allow for more fine-grained
control over write and knowledge permissions. Without the
access control matrices the write and knowledge permissions
can only be inferred from the dataflows and processes, so that
every node that receives or sends a data instance may write or
know this data instance. This could be imprecise as some nodes
may only need to forward or relay an encrypted message,
which could lead to contradictions. Further in the verification
steps we can use this matrix to generate more precise secrecy
queries.

D. Using the system model core for the vehicular domain

The matching of real world entities in the vehicular domain
to the system model artefacts is not as straightforward as one
might expect. Especially the application domain specific exten-
sions allow to model an arbitrary amount of detail if desired
by the security engineer designing the security engineering
methodology. Even the level of detail the security engineer
tries to represent in one system model is very dependent on
the TOE. Therefore, the extensions have to be chosen very
carefully to allow modelling of all possible TOEs and to match
the desired level of accuracy in the early design phases. We
identified two main kinds of TOEs in the vehicular domain.
Either a new control-unit is developed and it is modelled with
all its external interfaces or a function is being developed
and all involved control-units with the connected external IT
systems have to be modelled.

In the first case the different components of the control-
unit will be represented by the executing units and all external
and internal communication uses appropriate communication
mediums. The control-unit itself is represented by a group,
which defines the physical border - the plastic shell. In
the majority of cases the counterparts at the other ends
of the external interfaces (communication mediums) can be
represented by a single executing unit. Possible extensions
are confined to properties relevant for dimensioning of the

30Copyright (c) IARIA, 2015. ISBN: 978-1-61208-434-3

VEHICULAR 2015 : The Fourth International Conference on Advances in Vehicular Systems, Technologies and Applications

hardware capabilities. Examples are the bandwidth or com-
putational capabilities of the communication mediums and
executing units and the arising confronting costs by security
mechanisms. If standardised communication mediums are used
(e.g., IEEE 802.11) several default security mechanisms (read
WPA2) should automatically be considered in the security
concept as these mechanisms should come at low additional
cost. Any special security features of executing units (i.e.,
tamper protection or hardware acceleration of cryptographic
primitives) should also be modelled to enhance the accuracy
of the risk assessment.

In the case of a distributed system to implement a new
function the abstraction level has to be chosen higher to reduce
the system model complexity. It is not feasible to model
each control-unit with its internal components. Therefore,
in the majority of cases each control-unit is represented by
one executing unit. To allow modelling sensors or human-
machine interfaces (HMIs) we propose an extension that adds
sensors and HMIs as a decorator to executing units. They
only need a name and a visual representation in the system
model to be regarded in the analysis steps. For example, the
modification of a sensor can then be modelled as a threat.
These sensors and HMIs can then be referenced in actions
and be used to create new instances of data. Hence it is
possible to model the information flow of data from the source
to the sink. Furthermore, we define a special car group that
can only be instantiated once in each system model. It clearly
defines the executing units belonging to the car and therefore
allows fine-tuning the risk assessment in the later steps of the
process as well as defining useful default values for properties
like bandwidth capabilities of not yet detailed communication
mediums. The executing units outside of this car group may
represent IT systems, backends, diagnostic tools, users, other
cars (abstracted as a single executing unit) or one of many
other possibilities.

In each case we propose a special action to model the
impact on external assets. If this action is executed it has an
impact on one or many external assets like the quality of the
driver assistance systems, the locks or the driving status of
the car. It is meant to represent the physical interaction of
the system model with its environment. As the system model
core focusses only on digital IT systems this extension allows
to better represent actuators or mechanics. Consequently the
damage and risk assessment can be influenced by the existence
of such external asset actions.

IV. CONSISTENCY CHECKING A SYSTEM MODEL

As outlined earlier not only the completed system has to be
verified but also individual steps, along the way to completion,
should be checked so that contradictions, discrepancies and
inconsistencies can be corrected immediately and not later on
in the design phase. We will call them consistency issues.
These consistency issues are mostly not harmful to the security
of the system directly, but they do not allow a precise analysis
and verification because the resulting model of the system will
not be implementable or at least the needed changes will be
more expensive later.

There are several categories of possible consistency issues
for which we define rules to find them in the system model.

There are topology issues, dataflow and process issues, goal
and risk issues, security concept issues and general warnings.
Conditions for the instantiation of a consistency issue should
be defined, which can be presented to the security engineer.
These conditions could be checked regularly after each change
to the system model or only when the security engineer wishes
to check the design. This is up to the methodology, especially
because the possible size of the system model can be very
application domain specific and the duration to check the rules
can not be estimated beforehand. We recommend to allow the
security engineer to ignore or delete consistency issue, as they
may be false positives. For example, an unused connection
may be unused because the missing dataflow will be modelled
later.

1) Topology and process issues: Consistency issues in the
topology or the placement of processes are usually remnants
of old versions of the model, which were not aligned with
changes. They lead to an unconnected system model where
single connections and processes are existing without being
used or being relevant. Furthermore, the consistency between
the dataflows and processes should be checked as for each
dataflow step there should be corresponding send and receive
actions in the correct order. These dependencies should be
automatically resolved when the methodology is implemented
as a software tool.

2) Dataflow step and action issues: Here, we aim for
inaccuracies and blunders, which may origin from different
causes. Perhaps a group of security engineers worked on the
same system model and a misconception happened or changes
in the system model due to external feedback led to flawed
alterations. Examples include the violation of the knowledge
and usage access control matrices, if these were implemented,
or a data instance originates from multiple sources.

3) Goal and risk issues: These issues try to hint at miscon-
ceptions regarding the protection goals and risk assessments of
the system model. They draw the attention to different parts
of the system model where the comprehension of the goals
or risks may potentially be contradictory or even conflicting.
This allows to find misconceptions but in addition it allows
to check the consistency of different analysis results, that
may be produced by different people. In case of a very
large system model it may be needed to divide the workload
of modelling the security analysis artefacts between several
security engineers. After each one has contributed his goals and
derived risks these may be checked for consistency to create
a consolidated solution. Depending on the application domain
different conflicts for protection goals or damage potentials
are possible. For example, if confidentiality is required for one
dataflow step over a communication medium representing the
internet, it should be required for all transmissions over this
communication medium. Likewise the damage potential for all
these transmissions should be similar.

4) Security concept issues: After the security concept has
been built it is helpful to check for the most common blunders.
Aside from unfulfilled attribute or node requirements the list
of possible issues has to be compiled for each application
domain and may include one or many of the following: sign-
then-encrypt vs. encrypt-then-sign, using sensor data as a
cryptographic key, missing seed for hash, et cetera.

31Copyright (c) IARIA, 2015. ISBN: 978-1-61208-434-3

VEHICULAR 2015 : The Fourth International Conference on Advances in Vehicular Systems, Technologies and Applications

5) General warnings: General warnings describe situa-
tions, which clearly show potential to be harmful. This includes
warnings when a step of the security requirements engineering
process has not been conducted yet or unfulfilled node or
attribute requirements.

A. Implementing the consistency check

The consistency check can be implemented in many ways
depending on the type of the implementation of the method-
ology. If the process is handled by handwork and manual
annotations on paper then a questionnaire could be helpful.
If the methodology has been implemented as a software envi-
ronment/tool the variety of possible implementations becomes
apparent. As the structures of the rules are very disparate they
do not tend to reveal an obvious object oriented pattern to allow
for easy decomposition. We therefore recommend (and chose
for our own implementation) to use anonymous functions like
lambda functions in C++11 or Java8, which return a string with
the result of the rule check or even a more complex object
describing possible fixes for the issue, which could be executed
automatically.

V. VERIFYING A SECURITY CONCEPT

After the security engineer has finished the security concept
for the system at hand he may want to verify if his concept
is able to formally ensure the chosen protection goals. We
propose a method to transform our system model core to one
or many ProVerif [3] models so that the given protection goals
can be queried. In Section III, we presented our generic system
model core. We proposed that the actions which constitute the
processes have to adhere to certain assumptions to allow the
extraction of ProVerif models.

1) All actions are nodes of a directed acyclic graph
(GA), which as a whole represents all processes.
This graph must necessarily be disconnected if there
is more than one process. The connection between
a sending action and the corresponding receiving
action is given by one specific dataflow step, which
is recorded outside of GA. The usage of a directed
acyclic graph excludes the concept of looping (i.e.,
while-loops) from our syntax. However this does not
exclude to define a single action to represent a while-
loop.

2) The creation of a new value for a data instance can
be associated with a distinct action.

3) The assignment of a new value to a data instance can
be associated with a distinct action.

4) There are distinct send and receive actions or the
sending and receiving of data can be associated with
other distinct actions.

5) All possible successors of conditional actions (if-else-
then, etc.) must be determinable.

6) All actions associated with sending and receiving
reference the used communication mediums and data
instances or these can be inferred from other sources.

7) For each dataflow step the exact structure of the send
message can be inferred. This includes the usage of
cryptographic primitives on parts of the message. The
easiest solution would be to always use the security

mechanisms on whole messages, but more precision
is possible.

8) The data instances that are assumed to be known to an
executing unit, before a process is executed, have to
be modelled. These includes the usage of additional
lifecycle phases to distribute the data beforehand or
to define the executing unit as the origin of the data
instance.

Given these assumptions we can verify the protection goal
properties by using the security protocol analyser ProVerif. We
divide the verification into four steps show in Figure 4.

1) System model partitioning
2) Process extraction
3) Attacker initialisation and execution
4) Attack trace parsing

For the analysis we allow to model executing units as
malign. This means that the attacker may have already gained
control over this node and is able to control its behaviour. This
can be an important function for many application domains and
has consequences for the verification steps. Communication
mediums are assumed to be under the control of the attacker
according to [15].

A. System model partitioning

In the first step we partition the system model into indepen-
dent parts. These parts define isolated dataflows and processes,
which do not affect any dataflow or process in another part,
which can be interpreted as the information flow graph of
one specific data instance. This isolation step is important
to reduce the size of the verification models. The result of
the partitioning step are directed acyclic graphs of actions.
The root nodes of one directed acyclic graph are the creation
actions for the data instance, or the root actions of processes
if the executing unit already knows the data instance and the
data instance is used in this particular process.

Our approach takes the directed acyclic graph of one pro-
cess, which is taken from the relation A (successor relation),
starts with the creation or root action(s) for one arbitrary data
instance and then adds additional action nodes, including all
the paths that lead to the additional node, when one of the
following conditions is met by the path. The next node to check
is chosen by arbitrarily selecting one not already checked
edge out of the directed acyclic graph of the process under
evaluation. The following binding conditions have been de-
fined. Additional processes are checked when the last binding
condition is met.

• The action node is a conditional and the condition
contains the data instance.

• The action node alters the data instance in any way.

• The action node uses the data instance to create a new
data instance.

• The action node uses the data instance for sending or
receiving.

In the case of a sending or receiving action an additional
edge is added between the two nodes of the directed acyclic

32Copyright (c) IARIA, 2015. ISBN: 978-1-61208-434-3

VEHICULAR 2015 : The Fourth International Conference on Advances in Vehicular Systems, Technologies and Applications

Figure 4. ProVerif Verification

graphs (GA) of the two affected processes. This represents the
dataflow step crossing the two processes. The search is then
eventually continued in the newly added part of the graph to
connect the two processes further. It is important not to discard
the information which action belongs to which process (i.e.,
with using the relation C) as this is needed for the process
extraction.

B. Process extraction

After the directed acyclic graph (system model partition)
has been built, it must be transformed to processes for the
ProVerif tool. ProVerif supports several input formats from
which we chose the typed pi-calculus as it fits our partitions
from the last step. A ProVerif model in the typed pi-calculus
consists of a declaration part for channels, functions, reduc-
tions, equations, events and queries and the process definitions
and instantiations.

The channels can be instantiated directly from the commu-
nication mediums with free channelName: channel.. ProVerif
allows to model a channel as private (by adding [private] to
the declaration), so that a possible outside attacker can not
read any messages of the channel. This property could be
controlled by an application domain specific extension that
allows communication mediums to be marked as hidden from
outsiders. It allows to limit the capabilities of the attacker, as
he may not be able to control and manipulate all communi-
cation mediums simultaneously. If an executing unit marked
as malign is connected to a hidden communication medium
this option has to be removed. The malign node effectively
bridges non-hidden and hidden communication mediums, as
the attacker may not read from or write to the private medium,
but can instruct the malign node to do. Without limiting the
generality of our approach we will assume that all channels
have been defined as non private, but we will indicate where
this option could be relevant.

Next the ProVerif processes for the different processes of
the system model partition can be built. Because all processes
execute concurrently we will create one ProVerif process for
each process. Actions from our system model have to be trans-
lated to ProVerif constructs. As we do not dictate a specific
notation, we have given assumptions at the beginning of this
section, which we take for given for the translation. These
leads to a straightforward mapping of ProVerif constructs to
the actions.

When these constructs (and possibly others) have been
assigned to actions in the chosen notation, the translation to
ProVerif subprocesses can begin. First, the actions in the di-
rected acyclic graph can be annotated with the proper ProVerif

constructs. Then, the ProVerif constructs are written into the
subprocesses regarding the action’s membership to processes
and regarding the branches defined by conditional actions. At
the end the main process is written and all subproccesses are
instantiated. The replication of subprocesses (processes) could
be an attribute of the system model, which has to be regarded,
but without limiting the generality we will always use the
replication. How and when events are created will be presented
in the explanation of the authenticity protection goal query.

The semantics of cryptography have to be encoded into
each ProVerif model, either by adding a library to the com-
mand line or by adding all definition to the ProVerif model
in the declaration part. Adding them individually to each
model allows to only add the cryptographic primitives needed
and to allow fine-grained control over the capabilities of the
attacker, although in most cases the attacker will be able to
execute all primitives in accordance to Kerckhoffs’s principle
[19] and Shannon’s maxim [20]. We recommend to add the
definitions individually to decrease the complexity for the
solver. The needed primitives can be directly inferred from
the used security measures in the system and adhere to the
recommendations from the ProVerif manual [18], although we
add the session id as an additional parameter to the primitives
to model the passing of time and to allow to distinguish
between ciphertexts from different sessions. This addition is
presented in Figure 5 and further described with the privacy
query.

The events mark important steps in the execution of a pro-
cess and are needed to argue about authentication properties.
They are part of the queries, which are needed to verify the
protection goals of the system model. For the five presented
protection goals four are representable by ProVerif queries
including the options we described earlier. Availability can
not be proven by ProVerif as it can not be guaranteed by
cryptography (alone).

1) Integrity: can not be checked by ProVerif directly, with
the meaning defined earlier. The consistency check would
already warn if a node sends data, which it has no permission
for. All other relevant cases are falling within the authenticity
goal.

2) Authenticity: is a very diverse goal. Additionally, to the
integrity, which is at the core of this property, it may demand to
ascertain the identity of the sender and receiver of a message,
to ascertain non-repudiation of sending and receiving, and/or
to ascertain freshness of messages. Non-repudiation can be
divided into two distinct requirements. It must be ensured that
the sender and/or receiver of a message is authenticated and
this fact has to be retrievable; i.e., by logging all messages. As

33Copyright (c) IARIA, 2015. ISBN: 978-1-61208-434-3

VEHICULAR 2015 : The Fourth International Conference on Advances in Vehicular Systems, Technologies and Applications

such organizational measures can not be proven by ProVerif,
we only prove the authentication requirement, but the logging
requirement can be modelled by adding an attribute or node
requirement to the security concept.

The authenticity property is modelled by events in ProVerif.
Depending on the chosen combination of authenticated parties
we directly create the events and correspondence assertions as
described in [18]. Freshness is modelled by using the injective
correspondence. They usually take the form of

query x: key; inj-event(serverTerminates(x)) ==> inj-
event(clientAccepts(x)).

This can be interpreted as if the server terminates while
using key x, then client accepts key x has happened exactly
one time before.

3) Confidentiality: can directly be translated to a knowl-
edge query: query attacker(secret). If knowledge permissions
have been defined they can be checked for all nodes without
permissions. This can be done by checking if the data instance
is send in plaintext over all communication mediums the
executing unit under evaluation is connected to. This can be
extended to include ciphertexts using keys the executing unit
knows.

4) Privacy: is interpreted as non-interference (in accor-
dance with [18]) of the processes regarding the data instance
expressed by noninterf dataInstance.. As outlined earlier we
additionally allow to define non-traceability, which is trans-
lated to a knowledge query. If the attacker is not able to
find a pair of duplicate ciphertexts (created with deterministic
encryption) with the same payload and key from different
sessions of the processes, then non-traceability is given.

This can be accomplished with the lines in Figure 5. The
types of the data instance and the functions have been chosen
for clarity and are not needed to implement the functionality.
Type declarations have therefore been left out. We define one
function to represent the traceability event and one reduction
to allow the creation of the traceability event. When two
ciphertexts, which were created with the same payload and
key, but at two times, are combined, they create a traceability
event. We then let ProVerif prove that if the attacker is able
to generate a traceability event, then the two times must be
equal. If they are not equal, a violation of the traceability goal
was found.

C. Attacker initialisation and execution

After the events and queries have been defined, all that is
needed for verification is to initialise the attacker. This consists
of building the attacker’s knowledge set and capabilities. The
knowledge set of the attacker consists of all public names
and all the data instances known by the malign nodes. These
data instances are sent once over a public channel, before
all other processes execute, to allow the attacker to learn
them. The capabilities are represented by the functions and
reductions known to the attacker. In most cases the attacker
will have knowledge of all functions and reductions used in
the system. It is conceivable that additional capabilities can be
given to the attacker under certain circumstances, i.e., when a
cryptographic primitive becomes broken, but this should be a
rare case. The ProVerif model can then be analysed and the
results from the queries can be retrieved.

01 fun symmEnc(identityType , keyType,
02 timeType): identityCiphertextType.
03
04 reduc forall i: identityType,
05 k: keyType, t: timeType,
06 t2: timeType;
07 symmDec(symmEnc(i,k,t),k,t2) = i.
08
08 fun traceabilityEvent(
10 identityType, timeType, timeType):
11 traceabilityEventType.
12
13 reduc forall i: identityType,
14 k: keyType, t: timeType,
15 t2: timeType;
16 noticeDuplicateCiphertext(
17 symmEnc(i,k,t), symmEnc(i,k,t2)) =
18 traceabilityEvent(i, t, t2).
19
20 free identityA:
21 identityType [private].
22
23 query i:sid, i2:sid; attacker(
24 traceabilityEvent(
25 identityA, new t[!1 = i],
26 new t[!1=i2])) ==> i=i2.
27
28 process (
29 !(new t : timeType; (
30 (* instantiate other processes *)

Figure 5. Recognizing a tracability violation.

D. Attack trace parsing

Given that the security engineer won’t be interested in re-
sults without issues, we focus on the found attack traces if they
exist. For each property the amount of possible attack traces is
rather large, so the parsing has to be flexible. We recommend
to condense several attack trace steps to increase legibility
and to transport the relevant information. The different lines
where the attacker learns all the different parts to start the
attack are the first information that can be preprocessed. How
to present further parts of an attack is up to the implementer
of the methodology.

VI. CONCLUSION AND FUTURE WORK

We presented our generic system model core SESMC
including the corresponding ontology. We believe that SESMC
allows to create useful security requirement engineering
methodologies. Furthermore, it allows to share algorithms and
methods on the system model core, which can be extended to
use the additional application domain specific extensions. We
presented two different applicable methods. The consistency
checking of the system model allows the security engineer
to check whether the current state has none of the modelled
contradictions and misconceptions, which should increase pro-
ductivity and confidence in the system model. The verification
with the security protocol analyser ProVerif allows to formally
check the defined protection goals. Although ProVerif is lim-
ited by the modelled implementation details it allows to verify
the system model at different stages in the design phase up to
the first stages of implementation.

We will extend on our work to respect more of the criteria

34Copyright (c) IARIA, 2015. ISBN: 978-1-61208-434-3

VEHICULAR 2015 : The Fourth International Conference on Advances in Vehicular Systems, Technologies and Applications

outlined by [1] in the future. To create a complete secu-
rity requirements engineering process with an accompanying
methodology we have to describe the steps of the process
and the essential results of each step. In addition, we see
possibilities in encapsulation of security knowledge and usage
of catalogues to allow for better reuse of engineering results
and additional tool-support should be provided for all steps of
the security requirements engineering process.

ACKNOWLEDGEMENTS

The authors would like to thank Bruno Blanchet for an-
swering the questions regarding ProVerif and Jörn Eichler for
his useful insights in the state of the art of security engineering.

REFERENCES

[1] A. V. Uzunov, E. B. Fernandez, and K. Falkner, “Engineering security
into distributed systems: A survey of methodologies.” J. UCS, vol. 18,
no. 20, 2012, pp. 2920–3006.

[2] B. Whyte and J. Harrison, State of Practice in Secure Software: Experts’
Views on Best Ways Ahead. IGI Global, 2011, pp. 1–14.

[3] B. Blanchet, V. Cheval, X. Allamigeon, and B. Smyth, “Proverif:
Cryptographic protocol verifier in the formal model,” 2010, accessed
August 30 2015. [Online]. Available: http://prosecco.gforge.inria.fr/
personal/bblanche/proverif/

[4] P. Amthor, W. E. Kühnhauser, and A. Pölck, “Worse: A workbench
for model-based security engineering,” Computers & Security, vol. 42,
2014, pp. 40–55.

[5] A. V. Uzunov, E. B. Fernandez, and K. Falkner, “A comprehensive
pattern-driven security methodology for distributed systems,” in Soft-
ware Engineering Conference (ASWEC), 2014 23rd Australian. IEEE,
2014, pp. 142–151.

[6] C. Bidan and V. Issarny, Security benefits from software architecture.
Springer, 1997.

[7] A. Jaquith, “The security of applications: Not all are created equal,” At
Stake Research., 2002, accessed March 24 2011. [Online]. Available:
http://www.atstake.com/research

[8] G. Hoglund and G. McGraw, Exploiting software: how to break code.
Pearson Education India, 2004.

[9] G. Pedroza, L. Apvrille, and D. Knorreck, “Avatar: A SysML envi-
ronment for the formal verification of safety and security properties,”
in New Technologies of Distributed Systems (NOTERE), 2011 11th
Annual International Conference on. IEEE, 2011, pp. 1–10.

[10] L. Apvrille and Y. Roudier, “SysML-Sec: A model-driven environment
for developing secure embedded systems,” Proc. of SARSSI 2013,
Mont-de-Marsan, France, 2013.

[11] ——, “Towards the model-driven engineering of secure yet safe em-
bedded systems,” arXiv preprint arXiv:1404.1985, 2014.

[12] O. M. Group, “OMG systems modeling language,” 2006, accessed
August 30 2015. [Online]. Available: http://www.omgsysml.org/

[13] B. Kienhuis, E. F. Deprettere, P. Van Der Wolf, and K. Vissers, “A
methodology to design programmable embedded systems,” in Embed-
ded processor design challenges. Springer, 2002, pp. 18–37.

[14] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” Inter-
national Journal on Software Tools for Technology Transfer (STTT),
vol. 1, no. 1, 1997, pp. 134–152.

[15] D. Dolev and A. C. Yao, “On the security of public key protocols,”
Information Theory, IEEE Transactions on, vol. 29, no. 2, 1983, pp.
198–208.

[16] D. Sangiorgi and D. Walker, The pi-calculus: a Theory of Mobile
Processes. Cambridge university press, 2003.

[17] S. J. Mellor, M. Balcer, and I. Foreword By-Jacoboson, Executable
UML: A foundation for model-driven architectures. Addison-Wesley
Longman Publishing Co., Inc., 2002.

[18] B. Blanchet and B. Smyth, “Proverif 1.89: Automatic cryptographic
protocol verifier, user manual and tutorial,” 2014, accessed August
30 2015. [Online]. Available: http://prosecco.gforge.inria.fr/personal/
bblanche/proverif/

[19] A. Kerckhoffs, La cryptographie militaire. University Microfilms,
1978.

[20] C. E. Shannon, “Communication theory of secrecy systems,” Bell
system technical journal, vol. 28, no. 4, 1949, pp. 656–715.

35Copyright (c) IARIA, 2015. ISBN: 978-1-61208-434-3

VEHICULAR 2015 : The Fourth International Conference on Advances in Vehicular Systems, Technologies and Applications

