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Abstract—Automated driving systems have made significant
strides in real-time perception and response to complex driving
scenarios. However, these systems struggle when road users
are beyond sensor range or obstructed by obstacles, limiting
their ability to make informed decisions. Cooperative Intelligent
Transport Systems (C-ITS) offer a promising solution by en-
abling vehicles to share real-time data with nearby vehicles and
infrastructure. While this enhances collaborative perception, a
major challenge is managing the high volume of sensor data
exchanged, which are not always useful for the receiver. This
can lead to data congestion, latency, and misinterpretation. Our
solution addresses these issues by using an ontology to represent
a vehicle’s observable scene and assess information relevance.
Additionally, the ontology serves as a knowledge base, facilitating
semantic communication that allows more effective interpretation
of received messages. This approach aims to improve both the
safety and efficiency of cooperative systems in automated driving
environments.

Keywords-Collective Perception; V2X; Ontology; Context-aware;
Semantic-Communication.

I. INTRODUCTION

As the global number of vehicles on the road continues
to rise, ensuring road safety remains a critical concern. Ac-
cording to the World Health Organization [1], approximately
1.2 million people died in 2023 due to road traffic crashes,
with countless more suffering non-fatal injuries. In response
to these alarming statistics, the automotive industry faces
mounting pressure to improve vehicle safety systems aimed
at preventing accidents and reducing fatalities. Automated
driving technologies play a key role in this effort by en-
abling real-time perception, analysis, and response to complex
driving environments. Despite these advancements, automated
vehicles still face limitations when making decisions based
on their own perception of the environment, particularly in
scenarios where obstacles obstruct a vehicle’s line of sight or
where objects are out of sensor range [2][3]. To address these
limitations, C-ITS have emerged as a promising solution [4].
By facilitating real-time information exchange among vehicles,
infrastructure, and other road users, C-ITS enhances situa-
tional awareness beyond the capabilities of onboard sensors
alone. Leveraging Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) communication, C-ITS enables vehicles
to access a broader array of information from nearby vehicles
or RoadSide Units (RSUs), allowing them to make more
informed decisions in critical situations. By sharing data on
traffic conditions, potential hazards, and road infrastructure,

C-ITS offers a proactive approach to accident prevention that
goes beyond the limitations of non connected autonomous
systems.

Integrating Collective Perception Services (CPS) within the
C-ITS framework represents a crucial step toward achiev-
ing safer and more efficient roadways [5][6]. CPS allows
vehicles to collaboratively perceive and interpret road users,
significantly improving their global perception. The Collective
Perception Message (CPM) is the standardized message format
used to transmit aggregated data which contain information
relative to the locally-detected elements. Particularly valuable
is the ability to share data about occluded or out of sensor
range objects in real time, which enhances a vehicle’s ca-
pacity to anticipate and respond to hidden dangers. However,
as the number of connected nodes—such as vehicles and
infrastructure—continues to grow, so does the volume of
data transmitted over communication channels. Given that
each CPM usually includes data on the perceived elements,
this exponential increase in data can lead to communication
congestion, resulting in latency, energy over-consumption, and
challenges in merging data across heterogeneous sources.

In the context of vehicular networks, effective communica-
tion hinges on the principle of transmitting relevant informa-
tion efficiently, as conceptualized by Shannon’s Information
Theory. According to Shannon, information is defined as the
reduction of uncertainty (entropy) [7][8]; thus, relevant data
in vehicular systems is the one that significantly contributes
to reducing uncertainty about the environment for the re-
ceiving vehicle. In this case, data relevance is not merely
about the volume of information but about the usefulness
of the transmitted data regarding the needs of the receiver.
In CPM, the relevance of information is closely tied to the
type of system consuming it and its specific context. For
instance, an Automatic Emergency Braking (AEB) system
requires highly precise data regarding very close predicted
object trajectories to make immediate safety interventions; An
Autonomous Driving (AD) system needs a broader under-
standing of the environment to plan longer-term maneuvers,
such as anticipating the pedestrian’s intention to cross the road.
The solution utilizes an ontology to represent the vehicle’s
observable scene, enabling it to assess the relevance of the
situation. This allows the system to adjust the frequency and
priority of message transmissions according to its criticity. By
enhancing semantic precision and contextual relevance, this
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approach aims to reduce data congestion, improve decision-
making efficiency, and ultimately advance the safety and
efficacy of C-ITS.

This paper is organized as follows: Section II provides an
overview of congestion mitigation in Collaborative Perception
and Semantic Communication. Section III presents a specific
use case to introduce the issues of contextual and informational
relevance. In Section IV, an ontology model is explored to
describe the vehicle’s knowledge base. Section V then dis-
cusses methods for using the ontology to assess the contextual
relevance of situations. Finally, Section VI demonstrates how
this knowledge can be shared among connected vehicles and
integrated into the vehicle’s C-ITS architecture.

II. RELATED WORK

Mitigating channel congestion has been the main concern
in a large number of research activities. For example, in [9],
vehicles reduce the CPM generation frequency in high-density
areas. Decentralized Congestion Control (DCC) techniques
have been proposed to allow individual nodes to autonomously
adjust their transmission rates based on channel congestion
level observed locally [10]–[13]. While these congestion con-
trol systems effectively alleviate network congestion, they of-
ten lack explicit consideration of context. In critical scenarios,
this can lead to potentially harmful information gaps. To ad-
dress this, some solutions incorporate context-awareness. For
example, [14] proposes limiting collaborative communication
to the most relevant nodes by creating a matching score be-
tween nodes. However, in C-ITS, where actors change rapidly,
this approach is incompatible with the handshake mechanism
explained in Who2Com [14]. Consequently, other studies
propose limiting communication within geographical zones to
ensure a level of relevance. In Direct-CP [15], collaborative
communication is monitored by infrastructure based on each
vehicle’s maneuver intent. In contrast, Where2Com [16] does
not rely on infrastructure to manage communication; instead,
it uses a spatial confidence map at each agent to facilitate prag-
matic compression, guiding agents on what to communicate,
with whom, and whose information to aggregate. Additionally,
[17] introduces a protocol that takes context into account
for CPM generation frequency by aggregating information
about the communication channel and environmental context
(e.g., other vehicles and road layout). However, these solutions
do not ensure that transmitted messages remain semantically
relevant to the receiver; in other words, they do not consider
what information will be efficiently consumed. Consequently,
the receiver must infer semantic information about the sender’s
context, which may lead to interpretation issues.

To tackle these challenges, recent studies advocate for
semantic communication between vehicles, which aims to
convey meaningful content with inherent contextual value.
For instance in [18], the authors implemented collaborative
perception by extracting semantic features that are gathered
and computed by an edge server. This concept of commu-
nicating high semantic-value information is also explored in
[19]–[22] where a semantic encoder/decoder achieves higher

transmission efficiency. This approach is demonstrated in [23]
for image segmentation: rather than sending a full image (6
MB), it can be advantageous to transmit only the semantic
interpretation of the image (30.5 KB). However, in seman-
tic communication, the data is not merely compressed; it
is reduced to the essential meaning. Thus, both the sender
and receiver must have some form of shared knowledge to
encode and decode the information effectively. This notion of
a knowledge base can be linked to situational context, as the
context forms part of the vehicle’s knowledge. Finally, [24]
provides initial steps for implementing semantic communica-
tion in V2X, introducing a new layer between the application
layer and the transport/network layer. The authors illustrate the
benefits of semantic communication through use cases such as
adaptive traffic light management and collaborative driving. In
this work, we aim to advance these efforts by (i) enhancing
context-awareness in collaborative perception to generate situ-
ationally relevant messages, and (ii) adding semantic precision
to collaborative messages, thereby minimizing interpretation
issues and improving decision-making capabilities.

III. ASSESSING RELEVANCE

Let us imagine a scenario as shown in Figure 1. A vehicle
(V1) is positioned on the left side of a straight road, while
a pedestrian (P1) crosses the road, and a vehicle (V2) on
the right is masked by a bus (O1). This "hidden pedestrian"
situation is critical for accident prevention [25], emphasizing
the need for collaborative perception between vehicles. In
traditional CPS, V1 continually generates CPMs without fully
accounting for the specific environmental context. While such
messages are situationally relevant, they usually include pre-
processed sensor data on all detected objects, such as their
positions, speeds, and types. Consequently, the message would

Figure 1. Use Case : Hidden Pedestrian Intending To Cross.

relay information about the pedestrian (P1), the bus (O1),
the vehicle (V2), data that may not be entirely relevant to
the vehicle (V2). This lack of context-awareness can lead to
the transmission of unnecessary data, potentially impacting
decision-making and response times. A more efficient solution
involves integrating formalized knowledge into both vehicles.
This way, the vehicle (V1) can communicate only the most
valuable and situationally relevant information, while the other
vehicle (V2), armed with a similar knowledge base, can
interpret the context and make quicker decisions.

IV. FORMALIZING KNOWLEDGE

Ontologies—structured models in knowledge representa-
tion—enable this level of contextual relevance by defining sets

2Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-233-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VEHICULAR 2025 : The Fourteenth International Conference on Advances in Vehicular Systems, Technologies and Applications



of concepts, their attributes, and relationships within a specific
domain [26]–[29]. Leveraging ontologies enables machines
to process and share information with enhanced semantic
precision. In autonomous vehicle systems, ontologies provide a
standardized framework for consistently interpreting and inte-
grating data across diverse systems—an essential capability for
effective inter-vehicular communication and decision-making.
Given the variety of data sources in autonomous driving,
from real-time sensors to camera feeds, ontological mapping
transforms raw data into semantically enriched formats. For
example, to resolve the relevance assessment in the masked
pedestrian scenario, an ontology must efficiently describe
the situation. Here, the Road-Segment comprises two Lanes
(Lane-Left and Lane-Right) and a Crossing-Path. Vehicle-1,
classified as a Car, isDriving on Lane-Right and hasDetected
Vehicle-2, Pedestrian-1, and Bus-1. Meanwhile, Pedestrian-1
intendToCross via the Crossing-Path. Vehicle-2, also a Car,
isDriving on Lane-Left and hasDetected Vehicle-1 and Bus-1
and also intendToCross via the Crossing-Path. This ontological
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Figure 2. Example Ontology for Masked Pedestrian Use Case.

(Figure 2) representation of the scene allows the system to
capture structural properties (green arrows) and functional
properties (red arrows), supporting collaborative perception
and enhancing safety-critical decisions.

V. CONTEXTUAL RELEVANCE ESTIMATION

Relevance identification is performed by establishing a
set of rules in the Semantic Web Rule Language (SWRL)
format, which facilitates advanced reasoning over ontologies
to infer new knowledge from existing information. SWRL
rules consist of conditions and conclusions expressed in terms
of ontological classes and properties, allowing for the formal
representation of complex relationships and logical inferences.
These rules can adhere to theoretical principles, defining
relevance based on parameters, such as distance, state, or
type, thereby creating a structured approach to understanding
interactions within a given context. Alternatively, they can
be scenario-specific, tailored to reflect particular conditions

and requirements relevant to specific situations. Scenario-
based relevance can be derived from accidentology studies
that identify scenarios where the safety benefits of C-ITS
have been demonstrated [25]. The SECUR results distilled 15
high-risk scenarios, with safety benefits estimated for each.
Thus, relevance estimation can be achieved through scene
recognition by determining if the vehicle’s observable scene
falls within a high-risk scenario. Scenario-based relevance,
relies on predefined cases that may not generalize well to novel
or evolving traffic situations. This approach risks overlooking
edge cases or unexpected factor combinations that do not
neatly fit within established categories but still pose safety
concerns. Despite this, a scenario-specific definition ensures
that information is relevant within the identified use cases
but does not inherently imply irrelevance in other scenarios.
In practice, a message deemed crucial in one context may
still hold value in different, yet unaccounted-for, situations.
Thus, rather than strictly matching predefined cases, it may be
necessary to assess the degree to which the vehicle’s current
situation resembles known scenarios.

Another solution could be to find patterns from accidentol-
ogy databases itself by employing machine learning techniques
[27][26], to derive complex SWRL rules that are highly
specific and adaptive to real-world conditions (see Figure 3).
In this context, machine learning models not only facilitate the

Figure 3. Rules Extraction Based On Accidentology Database.

extraction of patterns and trends from historical accident data
but also enhance the precision of the SWRL rules generated.
This integration allows for a continuous improvement loop,
where the relevance criteria can evolve based on updated data
inputs. After a training phase, the vehicle becomes capable of
assessing the relevance of a situation in real time by using the
ontology, which is updated through vehicle’s perception layer,
and by applying the SWRL rules. For each road users instan-
tiated inside the knowledge base, the relevance is assessed in
relation to the other road users.

For the pedestrian use case, we can define a simple SWRL
rule to infer the relevance of the situation.

RoadUser(?pedestrian) ∧ Car(?car)
∧ intendToCross(?pedestrian, ?crossing)
∧ intendToCross(?car, ?crossing)
∧ hasNotDetected(?car, ?pedestrian)
∧ speed(?car, ?carSpeed)
∧ swrlb:greaterThan(?carSpeed, SpeedThreshold)

→ isRelevantTo(?pedestrian, ?car)
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This set of rules defines when a road user is considered
relevant to a vehicle. Specifically, it evaluates whether both a
pedestrian and a vehicle intend to cross paths and ensures that
the vehicle has not yet detected the pedestrian. It also checks
the vehicle’s speed against a predefined threshold, indicating
that if the vehicle is already stationary, the information is
not relevant. If these conditions are satisfied, the pedestrian
data becomes relevant to the vehicle, prompting any vehicle
that has locally-detected both elements to include the relevant
information in a CPM.

VI. KNOWLEDGE SHARING

Knowledge sharing between vehicles can complement sen-
sor data by providing additional context, which is critical for
autonomous vehicles. Studies show that ontology and for-
malized knowledge representation improve decision-making
[28]–[30]. Semantic-aware messages can be used to share
knowledge between vehicles, adding valuable semantic details
about the environment [18]–[20][23][24]. For example, in this
use case, sender can generate a message about the pedestrian
not just with its position, speed, and timestamp but also
enriched with semantic details like "pedestrian on sidewalk,"
"pedestrian intending to cross," or "pedestrian hidden by bus."
This enriched information allows the receiver vehicle to fuse
data from multiple sources, such as RSUs and other vehicles,
recognizing that they have detected the same pedestrian, even
if the detection timing and precision differ.

Figure 4. Integration of Semantic Layer For CPM.

In this use case, the vehicle (V1) observes a pedestrian (P1)
crossing a straight road while a bus (O1) occludes another
vehicle (V2) on the opposite side. The process begins with
V1’s sensors detecting and classifying entities within its envi-
ronment. These entities—such as "Pedestrian", "Bus", “Cross-
ing path”, and "Vehicle"—are instantiated within the ontology
(Ontology Mapping, Figure 4), each associated with specific
properties like location, movement direction and link between
instances (Section IV). Once these instances and properties are
mapped in the ontology, an inference engine applies predefined
rules to evaluate the scenario, SWRL rules (Section V) specify
conditions under which an information relative to an element

is relevant to another element (Relevance Estimation, Fig-
ure 4). Following this, the Collective Perception Application
constructs a CPM containing only the relevant information,
specifically prioritizing details about the pedestrian due to
its potential impact on V2. Furthermore, the Collective Per-
ception Application (CPA) dynamically adjusts the message
transmission frequency based on the overall relevance of the
situation. Based on the ontology instances and the sensors
data, CPM message is enhanced with semantic properties like
"intending to cross" (Semantic Enhancement, Figure 4). Upon
receiving the enriched CPM, V2 utilizes its own ontological
model to interpret the semantic information embedded within
the message. This process allows the vehicle (V2) to integrate
the contextual details about the pedestrian with its existing
sensor data, effectively enhancing its understanding of the
environment. For instance, recognizing that a pedestrian is
"intending to cross" prompts the vehicle (V2) to prioritize its
own response strategy, potentially preparing to yield or adjust
speed. This capability to process semantic enrichment ensures
that the receiver vehicle can act promptly and appropriately,
even in complex driving conditions where visual information
is compromised. This approach improves situational awareness
and supports more accurate interpretation of the environment,
thereby enhancing the value of information.

VII. CONCLUSION

C-ITS and the integration of CPS mark a significant ad-
vancement in enhancing road safety. By fostering real-time
communication among vehicles and infrastructure, the pro-
posed solution addresses critical limitations associated with
traditional automated driving systems, particularly in terms
of situational awareness and decision-making. The utilization
of ontologies and semantic communication enables vehicles
to share contextually relevant and semantically enriched in-
formation, thereby reducing data congestion and improving
the accuracy of interpretations in dynamic environments. This
research underscores the importance of situational pertinence
and the value of information in collaborative perception,
paving the way for safer and more efficient transportation
systems.

In future work, relevance estimation will be implemented
within a simulation environment, leveraging ontologies to
support various consumers, such as Perception, Advanced
Driver Assistance Systems (ADAS), and Automated Driving.
This effort will involve the development of an ontology-based
framework and a comparative analysis of two distinct ap-
proaches to defining relevance. The first approach will utilize
machine learning algorithms for pattern extraction, employing
data-driven techniques to derive relevance rules. The second
approach will adopt a scenario-specific exploration, where
relevance is defined based on predefined scenarios and expert-
driven criteria tailored to specific use cases. By comparing
these methods, this study aims to uncover their respective
strengths, limitations, and areas of applicability, paving the
way for more adaptive and effective relevance estimation
strategies across diverse applications. Additionally, compar-
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isons will be made with methodologies presented in recent
literature [14][15][16] to benchmark and validate the proposed
approaches. It is also crucial to address the challenges posed
by ontology computation in real-time scenarios, ensuring its
feasibility and robustness in practical implementations.
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