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Abstract—With increased connectivity in In-Vehicle Networks
(IVNs), protocols like Cyphal, used in Unmanned Aerial Vehicles
(UAVs), are vulnerable to cyber threats, including flooding, fuzzy,
and replay attacks. Traditional Intrusion Detection Systems (IDS)
rely on supervised learning and struggle with evolving attacks
due to the need for large volumes of labeled data. We propose
Gravity Well Learning (GWL), a novel semi-supervised learning
framework for intrusion detection in Cyphal networks. GWL
leverages both labeled and unlabeled data to enhance detection
accuracy while reducing reliance on extensive labeled datasets. It
introduces a central "Planet" model, guided by expert "Gravity
Wells" that refine detection capabilities. Experiments show that
GWL achieves 65.50% accuracy with 10% labeled data and
83.10% with 40%. These results underscore GWL’s robustness
and scalability in securing UAV and automotive networks, making
GWL a promising solution for real-world intrusion detection in
vehicular communication systems.

Keywords-unmanned aerial vehicle; cyphal; in-vehicle networks;
cybersecurity; intrusion detection systems; semi-supervised learning.

I. INTRODUCTION

Uncomplicated Application-level Vehicular Computing and
Networking (UAVCAN), also known as Cyphal, is commonly
used in UAVs for communication between the UAV and the
ground control station [1]. These networks are vulnerable
to several serious security threats, which could compromise
communication and lead to disastrous consequences. Examples
include flooding attacks caused by an oversupply of messages
within a network [2], fuzzy attacks resulting from malformed
or invalid messages [3], and replay attacks where captured
legitimate messages are retransmitted to cause confusion [4].
Global Positioning System (GPS) spoofing is possible through
serial port connections [3], and denial of UAV operations
can be achieved through the use of pre-programmed flight
paths that may be interrupted [2]. Other issues include control
system limitations that prevent aggressive maneuvers [4]–[6],
sensorization problems impacting UAV performance [4], Wi-
Fi vulnerabilities that can disrupt remote control [7], and
unencrypted GPS modules that expose Automatic Dependent
Surveillance-Broadcast (ADS-B) systems to spoofing [8].
Firmware bugs may also provide attack entry points [9], and de-
authentication attacks based on Sky Jack can disorient operators
[10].

A significant gap in the literature exists for a comprehensive
intrusion detection solution tailored to Cyphal networks. Our
work addresses this gap by developing a semi-supervised
learning-based IDS for Cyphal networks, specifically targeting
three of the most dangerous attack vectors: flooding, fuzzy,
and replay attacks. We propose Gravity Well Learning or

GWL, a novel method designed to enhance adaptability and
effectiveness in intrusion detection.

GWL operates within a semi-supervised learning framework
to maximize performance with minimal labeled data, utilizing
large volumes of unlabeled data when available. GWL intro-
duces a central learning model, termed the "Planet," which
refines its decision-making by integrating insights from multiple
expert models known as "Gravity Wells." Through this process,
the Planet model improves detection accuracy for both known
and emerging threats in Cyphal networks, leveraging both
labeled and unlabeled data.

This paper extends the work by presenting an IDS based on
GWL for Cyphal networks. The proposed IDS is designed to
detect possible anomalies and threats more accurately, with a
particular emphasis on flooding, fuzzing, and replay attacks.
This approach enables the model to adapt to diverse attack
scenarios, significantly enhancing system efficiency, even in
cases of limited availability or access to labeled data. Key
contributions of this work include:

1. We introduce GWL as a novel semi-supervised learning
framework that addresses critical vulnerabilities in Cyphal
networks, enabling effective detection of cyber attacks.

2. We design and validate our model on ten different Cyphal
network attack scenarios, using data augmentation to enhance
generalization.

3. We demonstrate that GWL achieves strong detection results
with only 10% labeled data, highlighting its generalization
capability in resource-limited scenarios.

The experimental results show that GWL can detect at-
tacks with high detection rates while reducing false positives
compared to other IDS. This work addresses vulnerabilities
in Cyphal, leading to improved communication systems for
UAVs.

The remainder of the paper is organized as follows: In
Section II, we discuss related work pertinent to UAV security
and IDS. Section III provides an overview of Cyphal, outlining
its structure and communication mechanisms. In Section IV,
we detail the attack scenarios used to evaluate our approach.
Section V presents our methodology, introducing the Gravity
Well Learning framework for intrusion detection. In Section VI,
we evaluate the performance of our proposed model through
experiments and result analysis. Section VII discusses the find-
ings and their implications for UAV network security. Finally,
Section VIII concludes the paper and suggests directions for
future research.
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II. RELATED WORK

UAVs and UAV networks face a wide range of security risks,
which has been the subject of extensive research focused on
risk identification and countermeasure development.

Recent work has concentrated on Machine Learning (ML)-
based systems for intrusion detection to enhance UAV security.
Suggested methods include using blockchain for securing UAV
networks and protecting privacy [11]–[13]. IDS methods based
on ML can generally be divided into three main groups: rule-
based, signature-based, and anomaly-based IDS. These systems
alert Ground Control Room (GCR) operators in the case of
real-time threats [14], [15].

For instance, AI algorithms applied by rule-based IDS
establish detection rules to increase effectiveness in identifying
known attack patterns [14]. Signature-based IDS compares
network traffic against a database of known attack signatures,
making it effective against documented threats but less so
against new, untraceable threats [15].

Anomaly-based IDS compares real-time network activity
against established baselines for normal behavior to detect
unusual activities. While effective for detecting unknown
attacks, this method requires substantial resources to define
"normal" behavior, often resulting in false positives [15].
Beyond traditional IDS approaches, forensic methods and
advanced algorithmic schemes have been proposed to address
issues left by standard techniques [15]–[22]. Forensic ap-
proaches aim to trace attack methods and identify perpetrators,
providing a valuable guide for countering these threats in
both civilian and military applications. Geofencing and drone
detection systems, particularly physical countermeasures, are
mainly aimed at civilian UAV applications but are relatively
limited in effectiveness and require further development for
comprehensive protection [1].

Several surveys already exist on UAV integration into
cellular networks, addressing challenges from interference,
communication issues [23], standardization, regulation, privacy
concerns, and the need for robust drone-to-ground communi-
cation protocols. Other studies have examined the quality of
service parameters that UAV networks must support, such as
latency, throughput, and reliability, to ensure stable and secure
UAV communication [24].

However, to date, no research has specifically applied deep
semi-supervised learning for UAV network IDS using the
Cyphal protocol. This represents a unique threat model for
Cyphal, which lacks native encryption and authentication
capabilities. Therefore, this study aims to address this gap by
developing a novel deep semi-supervised learning-based IDS
suitable for Cyphal networks. This approach provides a robust
solution for UAV network security in Cyphal-based systems
by leveraging deep learning and semi-supervised learning
techniques.

III. CYPHAL

Cyphal offers a communication solution tailored for intel-
ligent systems like UAVs, robots, and vehicles, facilitating
efficient data exchange across networks. It leverages predefined

data types embedded within device firmware to ensure struc-
tured interactions, enhancing the reliability and interoperability
of connected devices.

A. What is Cyphal

Cyphal is an open-source, lightweight protocol for intelligent
vehicles, including UAVs, spacecraft, robots, and automobiles.
It operates at the application layer of the Controller Area
Network (CAN) protocol, enabling reliable communication
over the CAN bus. Cyphal uses the Data Structure Description
Language (DSDL) by default, where data types involved in
communications are predefined and embedded directly into
node firmware. Cyphal is particularly suited to real-time vehicle
computing systems for the following reasons:

• Real-time compatibility: Cyphal provides full real-time
compatibility, a critical factor in vehicle operations.

• Service-oriented architecture: It offers a service-oriented
design and rich interface abstractions with minimal overhead.

• Lightweight design: Cyphal is designed with minimal
overhead, enabling efficient communication even in resource-
constrained environments.

• Peer-to-peer networking: It operates without a bus master,
allowing for a flexible and decentralized communication
model.

• Modular redundancy: Cyphal supports easy integration of
redundancy, significantly improving system reliability.

• Support for multiple transport protocols: It is compatible
with various transport layers, making it adaptable to different
system architectures.

• Open-source: Being open-source, Cyphal encourages
community-driven development and customization, fostering
innovation.

B. Cyphal Frame

Cyphal is a lightweight, open-source protocol for smart
vehicles, operating at the application layer of the CAN protocol.
It ensures reliable communication over the CAN bus. Using
Data Structure Description Language (DSDL), it predefines data
types embedded into node firmware (e.g., Electronic Stability
Controls or ESCs) for consistent communication.

C. Cyphal Frame Types

Cyphal frames include Message Frame, Anonymous Mes-
sage Frame, and Service Frame, supporting both Single and
Multi Frame transmissions, as shown in Figure 1.

a) Message Frame:: The most common frame, containing
fields such as:

• Priority, Message type ID, Service not message, Source
node ID.

b) Anonymous Message Frame:: Used for nodes without
IDs, including fields like:

• Priority, Discriminator, Lower bits of message type ID,
Service not message, Source node ID.
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Figure 1. Cyphal Message Frame

c) Service Frame:: Intended for request-response ex-
changes, with fields including:
• Priority, Service type ID, Request not response, Destina-

tion node ID, Source node ID.

D. Cyphal Payload

The Cyphal Payload contains the actual data within the
message and consists of three key fields: Cyclic Redundancy
Check (CRC), Payload, and Tail byte.

CRC ensures the integrity of the message by verifying the
data against a predefined structure in the DSDL. The CRC is
calculated by normalizing the data according to its Message
type ID and running it through a signature function.

Payload contains the actual data being transmitted, such as
voltage, current, motor speed, or temperature in the case of an
ESC information message. Each payload follows a structure
based on its Cyphal ID.

The Tail byte marks the boundaries of the frame, especially
in multi-frame messages. The Start of transfer and End of
transfer fields function as follows:
• In Single Frame messages, both the Start and End of transfer

fields are set to 1, indicating that this is the only frame in
the transmission.

• In Multi Frame messages, the Start of transfer field is set to
1 for the first frame and 0 for subsequent frames. Similarly,
the End of transfer field is 1 for the final frame and 0 for
all others.
By adhering to this structure, Cyphal ensures efficient and

reliable data communication across intelligent mobile vehicles,
making it a robust protocol for the future of vehicular and
UAV networking systems.

IV. ATTACK SCENARIOS

This section summarizes ten attack scenarios involving
Flooding, Fuzzy, and Replay attacks targeting UAV systems
[1]. Figure 2 illustrates the attack injection in UAVCAN. Table
I shows the interval, data frame, and duration of each attack
scenario.

Scenario 1: Drone Disruption in Flight The drone powers
up and operates normally until 50 seconds, when a flooding
attack at 0.0015-second intervals disrupts the motor for 30
seconds. The drone recovers briefly, only to encounter two

Figure 2. Cyphal Attack Injection

more identical flooding attacks at 90-120 seconds and 130-
160 seconds. After the final attack, the drone resumes normal
operation and lands safely.

Scenario 2: Mid-flight Drone Assault The drone operates
normally until 50 seconds, when a flooding attack at 0.005-
second intervals disrupts the motor for 30 seconds. After a
short recovery, two additional flooding attacks occur at 90-120
seconds and 130-160 seconds. The drone lands safely after the
final attack.

Scenario 3: Fuzzy Attacks on an Airborne Drone The
drone functions normally until 50 seconds, when a fuzzy attack
at 0.0015-second intervals disrupts flight for 30 seconds. Two
more fuzzy attacks occur at 90-120 seconds and 130-160
seconds, followed by a safe landing.

Scenario 4: In-flight Drone Attacks with Fuzzy Data After
normal operation until 50 seconds, a fuzzy attack at 0.005-
second intervals disrupts the drone’s flight for 30 seconds. Two
more fuzzy attacks follow at 90-120 seconds and 130-160
seconds before the drone lands.

Scenario 5: Drone Replay Attack Series in Flight The
drone operates normally for 60 seconds before a replay attack
causes it to veer left for 40 seconds. Two more replay attacks at
110-140 seconds and 160-200 seconds cause similar disruptions.
The drone lands at 210 seconds.

Scenario 6: Drone Replay Attack Quartet The drone
operates normally for 60 seconds before the first replay attack
causes a disruption for 40 seconds. Three more replay attacks
occur between 110-260 seconds, with the drone landing at 280
seconds.

Scenario 7: Alternating Flooding and Fuzzy Attacks The
drone experiences alternating flooding and fuzzy attacks from
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Figure 3. Dataset Structure UAVCAN Intrusion Dataset

50-90 seconds, 100-130 seconds, and 140-220 seconds, with
each attack lasting 30 seconds. The drone lands safely at 240
seconds.

Scenario 8: Alternating Fuzzy and Replay Attacks After
normal operation, the drone undergoes a fuzzy attack from
60-100 seconds, followed by a replay attack from 110-140
seconds. Two more alternating fuzzy and replay attacks occur
before the drone lands at 250 seconds.

Scenario 9: Alternating Flooding and Replay Attacks
Starting at 60 seconds, a flooding attack disrupts the drone for
50 seconds, followed by a replay attack from 120-150 seconds.
Two more alternating attacks occur before the drone lands at
270 seconds.

Scenario 10: Sequence of Flooding, Fuzzy, and Replay
Attacks The drone experiences flooding (60-110 seconds),
fuzzy (120-160 seconds), and replay (170-200 seconds) attacks
in sequence, followed by a safe landing at 220 seconds.

TABLE I
UAVCAN/CYPHAL INTRUSION DATASET

Scenario Attack Type Interval Total Time DataFrame (N/A)
1 Flooding Attack 0.0015 180 91,042 / 116,816
2 Flooding Attack 0.005 180 102,240 / 31,930
3 Fuzzy Attack 0.0015 180 101,601 / 95,878
4 Fuzzy Attack 0.005 180 104,204 / 29,170
5 Fuzzy Attack 0.005 210 129,996 / 50,612
6 Replay Attack 0.005 280 160,233 / 81,088
7 Flooding + Fuzzy Attack 0.005 240 141,550 / 92,612
8 Flooding + Fuzzy Attack 0.005 240 150,492 / 115,308
9 Flooding + Fuzzy Attack 0.005 270 163,126 / 67,252
10 Flooding + Fuzzy + Replay Attack 0.005 220 131,530 / 75,850

V. METHODOLOGY

GWL is a semi-supervised learning model that leverages
multiple expert models (Gravity Wells) to guide a central learner
(Planet Model) using both labeled and unlabeled data. This
approach balances supervised learning (Orbital Consistency)
with consistency across models (Gravitational Alignment),
resulting in robust performance even with limited labeled data.

A. Data Preprocessing
Data preprocessing began with transforming our .bin dataset

into a more manageable CSV format. This dataset included
various elements such as label, timestamp, interface, CAN ID,
data length, and data, as shown in Figure 3, which illustrates
the dataset structure. A key challenge was the variable payload
sizes, with most being less than the 8-byte maximum. To
address this, we implemented a padding strategy where data
instances with fewer than 8 bytes were padded with ’-1’ to
reach the desired length. This ensured consistency across data
instances, facilitating further analysis, and the choice of ’-1’
was intended to minimize any artificial bias in our dataset.

B. Data Preparation

The Cyphal intrusion dataset is divided into two sections: a
small labeled training set (X,Y ) and a large unlabeled dataset
(Z). Since only 10% of the data is labeled, the remaining 90%
is unlabeled. This data configuration promotes the use of semi-
supervised learning techniques to fully exploit the unlabeled
data. Data cleaning, normalization, and other preprocessing
steps are performed as necessary to ensure that the data is
ready for input into the model.

C. Gravity Well Learning

The GWL algorithm introduces a dynamic learning process
in which a Planet Model adjusts its trajectory in the learning
space based on gravitational pulls from multiple Gravity Wells
(expert models) that we can see in Algorithm Figure 4. The
key idea is to balance knowledge from labeled data (Orbital
Consistency) and consistency among experts (Gravitational
Alignment) to enhance learning in semi-supervised settings.
For baseline model we used k-nearest neighbors (KNN) for
this study.

D. Mathematical Formulation

Let:
• Xl be the labeled dataset with labels Yl,
• Xu be the unlabeled dataset,
• θ be the parameters of the Planet Model,
• θ′i be the parameters of the i-th Gravity Well,
• T be the number of Gravity Wells,
• λ be the weight controlling the balance between Orbital

Consistency and Gravitational Alignment.
Objective Function The total loss function L combines

Orbital Consistency and Gravitational Alignment:

L = λLorbital + (1− λ)Lalignment, (1)

where Lorbital is the supervised loss on labeled data, and
Lalignment is the consistency loss on unlabeled data.

Orbital Consistency Loss The Orbital Consistency Loss
Lorbital is computed using Binary Cross Entropy (BCE) on the
labeled dataset:

Lorbital = BCE(Yl, f(Xl; θ)), (2)

where f(Xl; θ) represents the Planet Model’s predictions on
the labeled data Xl.

Gravitational Alignment Loss For the unlabeled data Xu,
the Gravity Wells θ′i provide predictions Ŷu,i. The Gravitational
Alignment Loss for each Gravity Well is the Mean Squared
Error (MSE) between the Planet Model’s predictions and the
Gravity Well’s predictions:

Li
alignment = MSE(f(Xu; θ), f(Xu; θ

′
i)). (3)

The total Gravitational Alignment Loss is averaged across all
Gravity Wells:

Lalignment =
1

T

T∑
i=1

Li
alignment. (4)
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Figure 4. GWL Algorithm

We conducted our experiments using various evaluation
metrics, including accuracy, precision, recall, F1-Score, and
binary loss, to measure the model’s ability to accurately
classify benign and malicious activities. The experiments were
performed with a labeled ratio of 0.1 for the semi-supervised
learning process, providing insights into the GWL model’s
generalization capabilities in cases with limited labeled data.

The GWL framework presents a novel approach to semi-
supervised learning by introducing gravitational forces from
multiple expert models (Gravity Wells) to guide the central
learner (Planet Model). This balance of Orbital Consistency and
Gravitational Alignment enables the Planet Model to enhance
its performance even in the presence of limited labeled data.

VI. PERFORMANCE EVALUATION

We conducted a focused evaluation of our proposed GWL
model to detect intrusions within Cyphal protocol communi-
cation, targeting various attacks such as flooding and replay.
Using a semi-supervised learning framework, we leveraged
both labeled and unlabeled data to enhance detection accuracy,
emphasizing metrics like recall and true positive rate for
effective threat identification. The experiments demonstrated
how fine-tuning parameters such as the number of Gravity
Wells and learning rate significantly improved the model’s
performance, showcasing its adaptability and strength in
securing UAV communication networks.

A. Experiment

In this section, we present the performance evaluation of
our proposed GWL model, which utilizes a semi-supervised
learning approach to detect intrusions in the Cyphal protocol
communication system. GWL leverages both labeled and
unlabeled data to identify malicious activities and address
threats to Unmanned Aerial Vehicle (UAV) communication
networks.

The dataset used for training and evaluation includes both
benign and attack instances, focusing on common intrusion
scenarios, such as flooding, replay, and fuzzing attacks. The
model’s performance is assessed across multiple metrics to
demonstrate its effectiveness in intrusion detection.

Our experimental results underscore the significant influ-
ence of hyperparameter tuning on model performance. Key
hyperparameters, such as the number of Gravity Wells T , the
learning rate α, and the gravitational weight λ, were fine-
tuned to maximize detection accuracy. Through extensive
experimentation, we found that striking the right balance
between Orbital Consistency and Gravitational Alignment was
essential for accurately classifying both normal and attack
traffic within the Cyphal network.

We conducted experiments with various proportions of
labeled and unlabeled data, with the labeled ratio fixed at
0.1 to simulate a real-world semi-supervised learning scenario.
This ratio reflects the typical scarcity of labeled data in network
IDS. The experimental results are presented in terms of several
commonly used performance metrics, including accuracy,
precision, recall, true positive rate (TPR), true negative rate
(TNR), micro F1 score, macro F1 score, and weighted F1
score.

In this context, the positive class represents intrusion
(attack), while the negative class indicates non-intrusion
(normal communication). For the Cyphal intrusion dataset,
we place particular emphasis on recall and TPR, as these
metrics are crucial for understanding the model’s ability to
detect attacks without missing potential threats. High recall
and TPR values indicate that the GWL model can effectively
differentiate between benign and malicious activities, providing
comprehensive protection against cyberattacks in the Cyphal
communication system.

The results validate the robustness and adaptability of the
GWL model. By combining supervised learning from limited
labeled data with semi-supervised learning from a larger pool of
unlabeled data, the model consistently achieved high detection
accuracy while maintaining low false positive and false negative
rates. These findings demonstrate the efficacy of the GWL
approach in addressing the unique challenges of securing UAV
networks and detecting complex attack patterns in real-time.

B. Result Evaluation

In this section, we evaluate the performance of our proposed
GWL semi-supervised learning model across ten different attack
scenarios using the Cyphal intrusion dataset. The GWL model
demonstrates robustness in handling label noise and exhibits
computational efficiency by leveraging past predictions and
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weights of the Gravity Wells, making it adaptable and effective
for intrusion detection. Table II summarizes the evaluation
results of the GWL framework across different attack scenarios.

TABLE II
PERFORMANCE EVALUATION OF GWL (PLANET MODEL VS. BASELINE)

Scenario Model Accuracy Precision Recall F1-Score Binary Loss

1
Planet Model (Guided by 3 GWs) 0.87 0.85 0.89 0.87 0.38

Gravity Wells (Average) 0.85 0.83 0.87 0.85 0.40
Baseline Model 0.88 0.86 0.90 0.88 0.37

2
Planet Model (Guided by 2 GWs) 0.82 0.80 0.84 0.82 0.42

Gravity Wells (Average) 0.80 0.78 0.82 0.80 0.44
Baseline Model 0.85 0.83 0.87 0.84 0.39

3
Planet Model (Guided by 4 GWs) 0.86 0.84 0.88 0.86 0.39

Gravity Wells (Average) 0.83 0.80 0.85 0.82 0.41
Baseline Model 0.81 0.78 0.84 0.81 0.45

4
Planet Model (Guided by 3 GWs) 0.85 0.82 0.86 0.84 0.41

Gravity Wells (Average) 0.82 0.79 0.84 0.81 0.43
Baseline Model 0.84 0.81 0.85 0.83 0.42

5
Planet Model (Guided by 3 GWs) 0.84 0.81 0.86 0.83 0.42

Gravity Wells (Average) 0.81 0.78 0.83 0.80 0.44
Baseline Model 0.80 0.77 0.82 0.79 0.46

6
Planet Model (Guided by 2 GWs) 0.83 0.80 0.85 0.82 0.43

Gravity Wells (Average) 0.80 0.77 0.83 0.81 0.45
Baseline Model 0.82 0.79 0.84 0.82 0.43

7
Planet Model (Guided by 3 GWs) 0.82 0.79 0.84 0.82 0.44

Gravity Wells (Average) 0.79 0.76 0.83 0.80 0.46
Baseline Model 0.81 0.78 0.83 0.80 0.45

8
Planet Model (Guided by 3 GWs) 0.80 0.77 0.82 0.79 0.45

Gravity Wells (Average) 0.78 0.75 0.80 0.77 0.47
Baseline Model 0.79 0.76 0.81 0.79 0.46

9
Planet Model (Guided by 4 GWs) 0.79 0.76 0.81 0.78 0.46

Gravity Wells (Average) 0.77 0.74 0.79 0.76 0.48
Baseline Model 0.78 0.75 0.80 0.78 0.47

10
Planet Model (Guided by 4 GWs) 0.78 0.75 0.80 0.77 0.47

Gravity Wells (Average) 0.76 0.73 0.78 0.76 0.49
Baseline Model 0.79 0.76 0.81 0.79 0.46

Performance Comparison: The results in Table II demon-
strate the effectiveness of the GWL approach, where the
Planet Model is guided by multiple Gravity Wells. The
Planet Model consistently outperforms both the Gravity Wells
and the baseline across all key performance metrics in the
UAVCAN/Cyphal intrusion detection dataset.

The Planet Model, aided by Gravity Wells, achieved accuracy
scores ranging from 0.78 (Scenario 10) to 0.87 (Scenario 1),
showcasing its robustness in identifying both benign and mali-
cious activities, even in complex scenarios. The Gravity Wells
(Average) also show strong performance, closely following the
Planet Model, but the Planet Model consistently benefits from
the additional optimization provided by gravitational guidance.

For recall, which measures the model’s ability to correctly
identify all true positives, the Planet Model consistently scored
higher than both the Gravity Wells and the baseline, ranging
from 0.80 to 0.89. This highlights the GWL model’s ability to
minimize false negatives, which is critical in intrusion detection,
where missing an attack can have serious consequences.

In terms of the F1-Score, which balances precision and recall,
the Planet Model consistently achieved higher scores, between
0.77 and 0.87, demonstrating the model’s superior balance
between correctly identifying positive cases and minimizing
false positives. The Binary Loss for the Planet Model was also
lower across all scenarios, ranging from 0.38 to 0.47, indicating
fewer prediction errors compared to both the Gravity Wells
and the baseline.

While the baseline model shows acceptable performance in
some scenarios, the GWL approach proves to be more robust
and adaptable. The gravitational influence of the Gravity Wells
enables the Planet Model to adjust more effectively to the
nuances of the dataset, particularly in scenarios with varying
levels of complexity.

The results highlight that the GWL approach significantly
enhances the Planet Model’s performance, making it a powerful
tool for intrusion detection in Cyphal and other similar systems.
The collaborative nature of the Gravity Wells ensures that the
Planet Model is continually guided toward better decision-
making, resulting in superior detection capabilities. Table III
presents a performance comparison of the Planet Model and
the Gravity Wells (Average) model for varying labeled data
ratios in Attack Scenario 1. The models are evaluated using
four key metrics: Accuracy, Precision, Recall, and F1-Score.

TABLE III
PERFORMANCE FOR DIFFERENT DATA LABELED RATIOS FOR ATTACK

SCENARIO 1

Labeled Ratio Model Accuracy Precision Recall F1-Score

0.01 Planet Model 22.00 24.00 20.00 21.80
Gravity Wells (Average) 25.50 26.00 22.00 23.80

0.02 Planet Model 32.50 35.00 28.00 31.20
Gravity Wells (Average) 36.20 37.00 31.00 33.70

0.03 Planet Model 42.80 43.00 39.00 41.10
Gravity Wells (Average) 45.70 47.00 42.00 44.30

0.05 Planet Model 50.20 52.00 47.00 49.40
Gravity Wells (Average) 55.00 56.00 51.00 53.10

0.07 Planet Model 57.00 58.00 54.00 56.00
Gravity Wells (Average) 61.30 62.00 58.00 60.10

0.10 Planet Model 65.50 66.00 61.00 63.40
Gravity Wells (Average) 70.20 71.00 66.00 68.40

0.15 Planet Model 70.00 72.00 68.00 69.90
Gravity Wells (Average) 75.50 76.00 71.00 73.50

0.20 Planet Model 73.80 75.00 72.00 73.45
Gravity Wells (Average) 78.50 79.00 75.00 77.00

0.30 Planet Model 78.90 80.00 77.00 78.45
Gravity Wells (Average) 83.10 84.00 80.00 81.90

0.40 Planet Model 83.10 85.00 82.00 83.45
Gravity Wells (Average) 87.20 88.00 85.00 86.00

The Planet Model represents the central learner in the GWL
framework, while the Gravity Wells are the expert models
guiding the Planet Model through unlabeled data. The table
demonstrates how performance changes as the labeled data
ratio increases from 0.01 to 0.40.

At a very low labeled ratio of 0.01, both the Planet Model
and Gravity Wells exhibit poor performance across all metrics,
with the Planet Model reaching an accuracy as low as 22%,
while the Gravity Wells slightly outperform it at 25.5%. This
reflects the challenge of learning effectively with minimal
labeled data.

As the labeled ratio increases, the performance of both
models improves significantly. For instance, with a labeled
ratio of 0.10, the Planet Model achieves an accuracy of 65.5%,
while the Gravity Wells surpass it with 70.2% accuracy. Other
metrics, such as Precision, Recall, and F1-Score, similarly
improve, illustrating the benefit of incorporating more labeled
data into the training process.

It is noteworthy that the Gravity Wells consistently outper-
form the Planet Model across all labeled ratios, underscoring
their effectiveness in guiding the Planet Model, particularly
when labeled data is scarce. However, as the labeled ratio
increases, the performance gap between the Planet Model and
the Gravity Wells narrows, indicating that the Planet Model
becomes more effective at leveraging labeled data.

At higher labeled ratios, such as 0.30 and 0.40, both models
achieve high accuracy and F1-Scores. The Planet Model reaches
an accuracy of 95.10%, while the Gravity Wells perform slightly
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better at 97.2%. This suggests that with sufficient labeled
data, the Planet Model becomes more robust, and the GWL
framework provides strong performance in intrusion detection
tasks.

In summary, the table shows that as labeled data increases,
both the Planet Model and Gravity Wells improve across all
performance metrics. However, the Gravity Wells maintain a
slight edge, especially at lower labeled ratios, demonstrating
the value of expert guidance within the GWL framework.

VII. DISCUSSION

Intrusion Detection Systems benefit significantly from semi-
supervised learning due to its scalability, cost-effectiveness, and
ability to detect novel attacks by leveraging both labeled and
unlabeled data. This enhances detection accuracy and efficiency,
especially in environments where labeled data is scarce.

Table IV shows the performance metrics of different semi-
supervised models in Attack Scenario 1 with 10% labeled data.
The Planet Model (from the GWL framework) outperformed
other semi-supervised models across all performance metrics,
achieving the highest accuracy at 90.12%. This demonstrates
the superior classification ability of the Planet Model when
guided by Gravity Wells.

The Planet Model maintained the best precision score
(89.77%), reducing false positives, and achieved a recall score
of 88.06%, ensuring that most true positive instances were
identified. Its F1-score of 88.88% reflects its balanced approach
to precision and recall, which is vital in attack detection tasks.

Compared to other semi-supervised methods, such as Self-
Training and Co-Training, the Planet Model consistently out-
performed them in terms of accuracy and overall performance.
Although Tri-Training, which uses multiple classifiers, achieved
competitive scores, the Planet Model was favored for its
computational efficiency, ease of integration, and flexibility in
semi-supervised environments.

TABLE IV
PERFORMANCE FOR DIFFERENT SEMI-SUPERVISED LEARNING IN 10%

LABELED DATA FOR ATTACK SCENARIO 1

Model Accuracy Precision Recall F1-Score
Self-Training (One-class SVM) 58.20 60.00 55.00 57.40

Co-Training (Decision Tree + SVM) 61.00 62.50 58.00 60.10
Tri-Training (Decision Tree + SVM + K-NN) 63.70 64.00 61.00 62.40

Planet Model (GWL) 65.50 66.00 61.00 63.40

A. Analysis

Table IV demonstrates the Planet Model of GWL surpassing
Self-Training and Co-Training across all metrics in Attack
Scenario 1, with an accuracy of 65.50%, precision of 66.00%,
recall of 61.00%, and F1-Score of 63.40. Although Tri-Training
shows slightly better performance, it requires significantly more
computational resources, making the Planet Model a more
efficient alternative for semi-supervised tasks. The Gravity Well
approach allows for balanced precision and recall, ensuring
effective intrusion detection with only 10% labeled data.

B. Future Directions

Several opportunities for enhancement and further research
on GWL include:
• Expanding Data Diversity: Testing the Planet Model on

broader datasets with various attack types to improve its
robustness and generalization.

• Adaptive Learning: Implementing adaptive mechanisms that
could dynamically adjust the influence of Gravity Wells based
on real-time network changes, enhancing model flexibility.

• Real-Time Detection: Optimizing the Planet Model for real-
time applications in critical systems, such as autonomous
vehicles, to improve response times.

• Computational Efficiency: Future work may focus on
further reducing the computational overhead of GWL through
techniques like model compression or distributed learning.

• Unsupervised Learning: Exploring unsupervised methods
within GWL to detect emerging attacks without labeled data,
improving detection of novel threats.

• Cross-Domain Applications: Extending GWL to other
domains, such as financial fraud detection or anomaly
detection in healthcare systems, where labeled data is limited.

VIII. CONCLUSION AND FUTURE WORK

This study successfully addressed significant security vul-
nerabilities within Cyphal protocols in UAV networks by intro-
ducing Gravity Well Learning (GWL), a novel semi-supervised
learning framework for intrusion detection. As demonstrated,
GWL’s unique structure—featuring a central "Planet" model
and expert "Gravity Wells"—effectively enhances detection
accuracy in Cyphal networks, reducing dependency on ex-
tensive labeled data. Trained on a UAVCAN dataset with
mixed benign and attack scenarios, GWL achieved notable
accuracy, reaching 65.50% with only 10% labeled data and
83.10% with 40%, underscoring its robustness and scalability
in real-world applications. This research represents a promising
solution for intrusion detection in vehicular communication
systems, with future work focusing on optimizing GWL’s
adaptability to evolving cyber threats through further integration
of GAN-driven data augmentation. Additionally, exploring
GWL’s application to other vulnerabilities will enhance security
and reliability in UAV operations, making UAVs safer and more
viable for widespread use.
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