
Ontology-Based Modelling of Sensor and Data Processing Ressources Using OWL

A Proof of Concept

Denis Smirnov and Peter Stütz

Institute of Flight Systems

University of the Bundeswehr Munich

Neubiberg, Germany

e-mail: denis.smirnov@unibw.de, peter.stuetz@unibw.de

Abstract—In this paper, we describe an ontology-based system

to inventory and model installed sensor and respective data

processing resources on-board airborne surveillance aircrafts.

The algorithms are packaged and described in form of discrete

processing modules, each representing a low level image

processing step. While the implementation of the algorithms is

kept detached in a separate library, the description of modules

and its parameters are stored in an ontology, representing a

knowledge database using Web Ontology Language as a

knowledge representation language. Based on the module

description stored in the knowledge database, it is possible to

identify and manage processing chains capable of solving

complex image processing tasks.

Keywords-Ontology; Web Ontology Language (OWL); Image

Processing Management; Knowledge Management; sensor and

data ressources.

I. INTRODUCTION

Presently we witness an increasing demand for highly
automated deployment of heterogeneous sensors on-board
unmanned aircraft, either to yield better environmental
awareness in the context of collision free flight or, as in the
given case, to conduct typical Intelligence, Surveillance &
Reconnaissance (ISR) missions in a more automated fashion,
thereby relying mostly on imaging sensors operating in
various spectral regions. However in aviation space, power
and processing resources are limited. Therefore it is
necessary to work economically with resources and manage
them in an intelligent way. Furthermore, the sensor data
processing and evaluation on-board a flying platform takes
place under changing circumstances for example resulting
from changing position and orientation of the Unmanned
Aerial Vehicle (UAV), varying lighting conditions and
different surface backgrounds (e.g., rural, urban, maritime).
To cope with this situation it is meaningful to have a wide set
of different sensors and associated data processing
algorithms, since there is no algorithm that performs in an
adequate way in every situation. For a complex image
processing task (e.g., vehicle- and person detection) there are
several equal processing steps, which have to be executed for
each task, e.g., preprocessing steps or region-of-interest
(ROI) selection. When executing multiple tasks one can save
resources and computational time reusing the processing
steps, which are required repeatedly instead of starting the

same algorithm multiple times. Thus, there is a need for a
system that manages sensor resources and image processing
capabilities in a meaningful way. The Institute of Flight
Systems published several papers ([1]–[5]) on the topic of
airborne sensor- and perception management. In this paper
we now focus on the ontology based knowledge extension of
the so called Sensor and Perception Management System
(S&PMS), first introduced in [4].

The S&PMS is best described as a three layer
architecture to inventory relevant resources (e.g., sensors and
image processing algorithms) and manage their usage as
shown in Figure 1.

Resources

Resource Management

Perception Management

Mission Management

Platform
Requests

Capabilities
Perception

Tasks
Results

Sen
so

r &
 P

ercep
tio

n

M
an

agem
en

t System

Figure 1. Three layer architecture of the Sensor and Perception

Management System.

One of the S&PMS’s key aspects is the module based
approach to package image processing algorithms into
perception modules. Each module fulfils a special low level
image processing requirement, e.g., noise reduction or ROI.
Modules are designed to be standalone or to be combined
with different modules to solve a higher level image
processing task (perception task), like vehicle detection
within a given street segment. The combination of at least
two low level modules or a sensor-module combination
creates a perception chain. Eventually a considerable variety
of different perceptions chains (redundant chains) results,
which potentially solve the same perception task, based on
the (sensor) configuration of the UAV and the available
perception modules. This entirety of resources (modules,
sensors, etc.) and possible combinations is called perception
graph. Such graph can be used to visualize all possible chain
combinations for different perception tasks.

1Copyright (c) IARIA, 2016. ISBN: 978-1-61208-520-3

VISUAL 2016 : The First International Conference on Applications and Systems of Visual Paradigms

RGB conv.

Corn. det.
Street Seg

Color Seg.

Backg. Seg.

ROI Seg.

Pers. det.

Noise red.

Car det.

EO

IR

Source Modules Sink

Figure 2. Perception graph. Interaction between sources, perception

modules and possible chaining.

Figure 2. illustrates the relationship between sensors, the
perception- modules, chains and graph. The graph is
represented by the infrared (IR) / electro-optical (EO) sensor,
all rectangles, each one providing a different low level
capability, and their connections. Furthermore, there are two
different perception chains in the figure to detect, e.g., a car
from on-board the aircraft, sharing the first and last module
(blue and orange rectangles). Both chains can use either an
electro-optical sensor or an infrared sensor.

Packaging image processing algorithms into perception
modules allow the interpretation of algorithms as
capabilities. It also supports reusability and therefore limits
the power consumption and processing power onboard
UAVs. Figure 2. shows several approaches to achieve the
same goal (e.g., detecting a vehicle). A goal oriented usage
of perception chains is enabled through detailed descriptions
of the modules containing:

 What is the output of a module (Capabilities)

 How can a module be combined in a
meaningful way (Requirements)

 Under which circumstances can a module be
used (Constraints)

Furthermore, there is a need for a managing entity that
loads and interprets the module descriptions to create
relational knowledge. Such knowledge is used to identify the
availability of low level and high level capabilities
depending on given circumstances. The statements also
provide information about possible module combinations to
create perception chains that provide high level capabilities
(HLCs). These high level capabilities in turn can be used to
achieve different perception tasks.

In this paper we therefore propose an ontology based
approach, using the knowledge representation language
OWL, that has been first introduced in [1], to create a
knowledge database. This knowledgebase can be inferred by
a reasoning mechanism to create statements, describing
which resources are available and how they can be used.

This paper is structured as follows: The structure and
concept of the presented ontology is being explained in
section 2. In section 2.A the class taxonomy is being
presented. Next, in section 2.B we will describe the
differences between persistent and dynamic individuals. In
section 2.C we get into detail with the resource-capability-
resource concept. The data and object properties are
discussed in section 2.D. In the last part of section 2 we
describe the rules of the Semantic Web Rules Language

(SWRL). In section 3 the experimental evaluation and results
are being presented. First, in section 3.A we show how we
realize the identification of available high level capabilities.
Next, in section 3.B methods to provide valid perception
chains are being exposed. In section 3.C we discuss the
results for a proof-of-concept ontology. In section 4 there is a
conclusion and an outlook into future work.

II. STRUCTURE AND CONCEPT OF THE ONTOLOGY

The ontology has been created using the Web Ontology
Language OWL [6]. Three versions of OWL are available:

 OWL Lite, very inexpressive and mostly used
just to create taxonomies

 OWL DL (description logic), suitable for
practical applications

 OWL Full, too expressive creating situations,
where the inference mechanism will loop
infinitely (see [6] for details).

Since OWL DL is widespread and has an advanced tool
and library support it is used to model the presented
ontology. OWL contains three main concepts to model
information: classes (concepts), individuals (instances) and
properties (roles).

A. Class Taxonomy

The OWL classes serve as group container for different
types of individuals (In OWL individuals are instances of
(real) objects that belong to special class, e.g., “Sony CBR”
is an individual of the class “Sensor”). There are two ways
how an individual can be assigned to a class:

1. When an individual is loaded into the ontology it

gets its main class (e.g., an electro optical sensor
would belong to the class “EOSensor” (Figure 3.
)).

2. The individual gets additional class assignments by
the inference mechanism.

Our ontology has six top level classes:
Concept: contains the definition of the high and low

level capabilities. Low level capabilities (LLC) are split into
more detailed groups, for example sensor-, image
processing- and platform capabilities. LLCs are provided by
resources like perception modules or sensors.
Simultaneously, each module needs a predefined set of LLCs
as input so it can work as intended. The input LLC required
by a module though is different to the LLC that is provided
by this module. High level capabilities are used by
perception tasks, which can be commanded from a third
party system. The more detailed subdivision is based on the
taxonomy presented in [7].

Environment: covers all individuals to describe the
composition of the ground, daytime, weather and lighting
conditions (e.g., sky formations).

Hardware: describes the sensors and sensor mountings
that are attached to the Unmanned Aerial Vehicle or another
platform. Subdivision categories of the sensor class are radar,
thermal, optical, laser and virtual sensor.

2Copyright (c) IARIA, 2016. ISBN: 978-1-61208-520-3

VISUAL 2016 : The First International Conference on Applications and Systems of Visual Paradigms

Platform: includes the classes that describe the user of
the S&PMS. The subcategories are aerial platform, ground
platform and human team.

Software: implies the image processing algorithms
represented as perception modules and other services (e.g., a
geo information service (GIS Service)).

Status: This class is empty when the S&PMS is started.
It states if any individual is available and can be used or not.
The inference mechanism assigns each individual to its status
class. E.g., if a module can provide a certain low level
capability the module is assigned to the “operative module”
class and the capability that is provided by this module to the
“available low level capability” class.

Figure 3. Taxonomy of the ontology.

Figure 3. illustrates the taxonomy of the ontology. In total
there are 123 classes.

B. Persistent and dynamic individuals

The concept of the ontology takes two different
behaviors of individuals into account: the persistent
individuals are always a part of the ontology and dynamic
loaded individuals, based on the connected systems. The
ontology itself contains only high and low level capabilities
and their assigned SWRL Rules (see section E.). These
capabilities are modelled by an expert and remain persistent
in the database. When the S&PMS is loaded or services and
sensors are connected to the S&PMS, the represented
individuals (e.g. Sony Sensor1) are loaded into the ontology.
If a sensor stops working or a perception module crashes, the
representative individual is removed from the ontology. As
soon as the system notices a change in the ontology the
“reasoner” gets invoked to update the overall status of the
ontology and notify the S&PMS about system changes.
Depending on services and sensors connected, and with
respect to requirements and constraints of perception
modules that are modelled using SWRL Rules, different low
and high level capabilities, sensors and modules are
unlocked. The reasoner infers, using SWRL rules and OWL
axioms, which individuals can be assigned to the status
classes mentioned before in section A.

C. The resource-capability-resource concept

Since there are individuals that are added and removed
from the ontology in a frequent way during runtime, it is not

possible to make a statement about available individuals. For
this reason you can never tell, which resources (e.g.,
modules, sensors, etc.) are currently available hence it is not
possible to connect two individuals directly. Therefore we
introduced the resource-capability-resource concept with
permanent capability individuals that are always a part of the
ontology and therefore can be used as a reference to create
rules for individuals that are dynamically added to the
ontology. These permanent low level capability individuals
can be seen as input and output configurations for image
processing modules or other resources.

EO Sensor RGB Receiveruses

provides RGBData requires

uses

provides requires

(a)

(b)

EO Sensor RGB Receiver

EO Sensor RGB Receiver

EO Sensor

EO Sensor RGBData

RGB Receiver

RGB Receiver

provides RGBData requiresEO Sensor RGB Receiver

uses

Figure 4. Resource-capability-resource vs. resource-resource connection.

Figure 4. illustrates the difference between the direct
connection of resources and the usage of capability
individuals between two resources. In (a) the sensor and
module are connected directly. Removing the targeted sensor
(EO Sensor) implies removing the rule from the source
module (RGB Receiver), because there is no more reference
to the target. Re-adding the targeted sensor does however not
imply adding the rule to the source module since the source
module does not get notified about the existence of the
targeted sensor. Another reason against solution (a) is the
fact that during modelling time of e.g., RGB Receiver there is
no knowledge about other resources like sensors or modules.
So it would not be possible to create a rule that connects both
resources since there is no way to get the information of the
existence of e.g., EO Sensor.

In (b) each resource holds rules connected to a capability-
individual. In this case, when EO Sensor gets deleted, only
rules included in EO Sensor get removed and no other
resource is “touched”. When EO Sensor gets added again, its
rules get added too. Since the individual RGBData is a
permanent individual that is always a part of the ontology,
rules that are used by RGB Receiver can reference it. Using
the inference mechanism a “uses” relationship between the
sensor and the module can be established.

D. Data and Object properties

In OWL we see two different property types, the object

and the data properties. Data properties are used to connect

individuals with their data represented as parameters. These

parameters can be of different built-in types, e.g., string,

integer, byte, date or bool. In our ontology, data properties

are used to describe the parameters of an image processing

algorithm and other numeric information.

3Copyright (c) IARIA, 2016. ISBN: 978-1-61208-520-3

VISUAL 2016 : The First International Conference on Applications and Systems of Visual Paradigms

Object properties are used to describe relationships

between individuals. The most common property is the “is-

a” relation between classes (e.g., UAV is-a Aircraft). Each

object property has several characteristics that can be

assigned to it to affect its functional role (e.g., functional,

transitive, reflexive, etc.). Additional information can be

found in [8]. Within the framework there are four main

object properties and their inverses (TABLE I.).

TABLE I. OBJECT PROPERTIES: LEFT: PROPERTY, RIGHT: INVERSE

PROPERTY.

object properties

providesCapability capabilityProvidedBy

requiresCapability capabilityRequiredBy

uses usedBy

subCapabilityOf superCapabilityOf

The first two describe the relationship between a module

and its capabilities. The third and fourth describe the

relationship between modules and the relationship within

capabilities. The “is-a”-property to connect individuals with

its classes or classes with subclasses is not listed, because it

is not a custom property but a basic property that is

available in every ontology.

Figure 5. illustrates a usage of the different object

properties to describe the relationship between the

individuals and their classes. For clarity the inverse

properties are omitted.

Module A

Module C

Cap A

Cap A.1Cap A.2

Module B
Class A

Class B

Is-a

Is-a

providesCapability

subCapabilityOf

requiresCapability

providesCapability

subCapabilityOf

Class CIs-a

usesuses

Is-a

Cap C

providesCapability

Is-a

Figure 5. Example for the usage of the different object properties.

E. SWRL Rules

To grant OWL more flexibility and expressive strength it
is possible to use rule based languages in combination with
the rule markup language (RuleML). Semantic Web Rule
Language (SWRL) [9] can be seen as a combination of OWL
DL and RuleML. A rule in SWRL is defined as follows:

𝑎1^𝑎2^ … ^𝑎𝑛 → 𝑏1^𝑏2^ … ^𝑏𝑛 (1)

Variables are called atoms. While 𝑎𝑖 describes a
precondition (body), 𝑏𝑖 describes a post condition (head).

Atoms can be class expressions (𝐶(𝑥)) or property
expressions (𝑃(𝑥, 𝑦)), in other words relationships between
two individuals. There are built in expressions that can be
used to model a rule. Some of them are 𝑠𝑎𝑚𝑒𝐴𝑠(𝑥, 𝑦) ,
𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝐹𝑟𝑜𝑚(𝑥, 𝑦) and 𝑏𝑢𝑖𝑙𝑡𝑖𝑛(𝑟, 𝑧1 … 𝑧𝑛) . Built in
expressions contain but are not limited to: date,
mathematical, string operation. A rule can be read as:

“If precondition X is true, then the post condition is also

true.”

An empty precondition is always true, an empty post
condition always false. All rules that can be accomplish with
the OWL axioms can also be modelled with SWRL rules, on
the other side there are SWRL rules that cannot be
accomplish with OWL axioms.

Each individual that is added dynamically by a service
into the ontology contains its own SWRL rule set. Since the
capabilities-individuals of the ontology are permanently
stored in the database immutable, the SWRL Rules can refer
to the individual’s names of the capabilities but not to the
names of other individuals like sensors or modules.

The SWRL rule belonging to Module C of Figure 5. can
be written as follows:

AvailableLLC(Cap A) ^ capabilityProvidedBy(Cap A, ?a)
 → AvailableModule(Module C) ^ (2)
uses(Module C, ?a) ^ providesCapability(Module C, Cap C)

In SWRL “?x” is being used to declare variables. The

rule reads as:

“If the individual Cap A belongs to the class
AvailableLLC and the individual Cap A has the object

property capProvidedBy, referencing to any other individual
?a then assign Module C to the class AvailableModule and

assign the object property uses referencing to any other
individual ?a to the Module C and the object property

providesCap Cap C.”

Since there are two other modules that provide Cap A,

Module C will belong to the classes “Module” and
“AvailableModule” and will have the object property “uses
Module B” and “uses Module A” and also have the object
property “providesCap Cap C”. If another module or a
perception task intends to use “Cap C”, there are two
perception chains that can be used:

 Module B → Module C

 Module A → Module C

III. EXPERIMENTAL EVALUATION

The evaluation of the ontology comprises two categories.
It is necessary to know (see section III.A) if at least one
perception chain exists, that can solve a given perception
task or respectively can provide a high level capability. Next
it is necessary to (see section III.B) investigate if all available
perception chains for a given HLC are valid and if all
possible solutions have been found. Therefore some proof of

4Copyright (c) IARIA, 2016. ISBN: 978-1-61208-520-3

VISUAL 2016 : The First International Conference on Applications and Systems of Visual Paradigms

concept experiments have been done to validate that the
identification of HLCs and the perception chains work as
expected.

A. Identifying available high level capabilities

Testing to check if the ontology identifies available
HLCs correctly, can be accomplished directly in the widely
used ontology editor Protegé [10]. As mentioned in Figure 3.
there is a special class category “Status”, more accurate
“AvailableHLC” where an HLC individual gets assigned by
the reasoner when there is a perception chain that provides
this individual. This evaluation includes several SWRL rules
for chain components that have to be tested. Each chain
component should work self-contained and in combination
with other components. Each component requires a positive
and a negative test. The positive test describes a situation
where the configuration of the ontology provides individuals
that should allow the reasoner to assign a given HLC to the
“AvailableHLC” class. For the negative test, the ontology
gets changed in a way, that there is no valid path anymore to
assign the HLC to the “AvailableHLC” class.

Module N Capability HLC

Module Capability B
HLC

Module Capability A

V

Module C Capability B

HLC
Module B Capability AV

Module Capability A
HLC

Capability C
Sensor

ModuleCapability D Capability B

V

Sensor Capability

Capability

Capability

Capability

Capability

Sensor

Sensor

Sensor

Sensor

(a)

(b)

(c)

(e)

Module A Capability A HLCCapability BSensor
(d)

Sensor X

Module BCapabilitySensor X

Module A... ...

Module A...

V

Figure 6. Five chain components that can appear during modelling

perception chains.

Figure 6. illustrates five different chain components that
can appear in the modelling phase of HLCs. For each
component there are different SWRL rules to achieve a
desired behavior. The illustration shows a very simple setup
starting with the sensor, using one layer of perception
modules and connecting it with the HLCs.

(a) is the most simple component where the HLC does
need only one capability. The HLC does not care, which or
how many modules there are, providing this capability, as
long as there is at least one module available. The rule looks
like:

AvailableLLC(Capability) ^ capProvidedBy(Capability,

?a) → AvailableModule(HLC) ^ uses(HLC, ?a) (3)

(b) illustrates a component where the HLC can be

activated either by “Capability A” or “Capability B”. The
rule is similar to listing (3) but in this case there is the need
for two SWRL Rules, one for “CapabilityA” and the other
for “CapabilityB”:

AvailableLLC(Capability A) ^ capProvidedBy(Capability
A, ?a) → AvailableModule(HLC) ^ uses(HLC, ?a)
 (4)
AvailableLLC(Capability B) ^ capProvidedBy(Capability
B, ?a) → AvailableModule(HLC) ^ uses(HLC, ?a)

In (c) there is an “and”-relationship between

“CapabilityA” and “CapabilityB”. The HLC does need both
capabilities to get classified as “AvailableHLC”. In Figure 6.
there are two possible configurations: (Module A ˄ Module
C) and (Module B ˄ Module C). The corresponding rule is:

AvailableLLC(Capability A) ^ AvailableLLC(Capability B)
 ^ capProvidedBy(Capability A,?a) ^ capProvidedBy
(Capability B, ?b) → AvailableModule(HLC) ^ (5)
uses(HLC, ?a) ^ uses(HLC, ?b)

(d) shows a more restrictive component. Here it is not

enough that there is a perception module that provides
“Capability A”; there is also the restriction that the module
that provides “Capability A” should also use “Capability B”.
This guarantees that only the combination (Sensor ˄ Module
A) but not the combination (Sensor X ˄ Module B) is a valid
chain.

AvailableLLC(Capability A) ^ AvailableLLC(Capability B)
 ^ capProvidedBy(Capability A,?a) ^ capProvidedBy
(Capability B, ?b)^ uses(?a,?b) → (6)
AvailableModule(HLC) ^ uses(HLC, ?a)

The rule in listing (6) looks similar to listing (5), expect

that in (6) there is a “uses(?a,?b)” in the body that
determines that individual “?a” that also provides
“Capability A” has to use individual “?b”, which also
provides “Capability B”.

 (e) illustrates a exception where the HLC does need both
capabilities “Capability A” and “Capability B”. But in this
case it must be guaranteed that data, which is used by the
modules providing both capabilities, must be from the same
sensor.

AvailableLLC(Capability A) ^ AvailableLLC(Capability B) ^
AvailableLLC(Capability C) ^ AvailableLLC(Capability D) ^
capProvidedBy(Capability A, ?a) ^ capProvidedBy(Capability B,
?b) ^ capProvidedBy(Capability C, ?d) ^ (7)
capProvidedBy(Capability D, ?e) ^ uses(?a,?c) ^
uses(?b,?c) → AvailableModule(HLC) ^ uses(HLC, ?a) ^
uses(HLC, ?b)

To realize the behavior shown in (e) it is necessary to

introduce another variable “?c” representing an individual.
This individual has to be used by both modules, the ones that
provide “Capability A” and the others that provide
“Capability B”. If “Capability C” would be provided only by
“Sensor” and “Capability D” would be provided only by
“Sensor X” all capability and perception module individuals
would be available but the HLC would still be not available
because the rule “uses(?a,?c) ^ uses(?b,?c)” from listing (7)
would be false.

5Copyright (c) IARIA, 2016. ISBN: 978-1-61208-520-3

VISUAL 2016 : The First International Conference on Applications and Systems of Visual Paradigms

B. Provide valid perception chains

After collecting information about available high level
capabilities it is necessary to verify that the provided
combinations of perception modules (in form of perception
chains) result in the correct outcome. The list of existing
perception chains for a specific HLC does not allow chains
that cannot handle the perception task. Therefore the chain
count as well as the chain composition is tested against an
expert model. All valid chains must be represented. The
concatenation and validation of modules into perception
chains is done outside the ontology in a special application
that can read, write and parse the ontology. The algorithm
checks the dependency from one individual to another,
starting with the HLC individuals. Recursively each
dependency is put into a list (the perception chain list). If an
individual has more than one dependency, the chain gets
split. The process ends, when an individual has no more
dependencies to other individuals. Individual can have
multiple SWRL rules, resulting in equal chains. During the
concatenation process chains can arise that are formally
correct but not valid for the specific HLC since not all low
level capabilities can be satisfied within the chain. After the
recursive process terminates, duplicates and invalid chains
are filtered. There are some cases where the algorithm cannot
filter all invalid chains due to rule complexity. In these cases,
special data properties are parsed after the initial validation.
Whichever parameters are set, special filtering mechanisms
are being triggered inside the application to erase the
remaining invalid chains.

To guarantee that all valid chains have been found
smaller ontologies can be manually matched against an
expert design result. For bigger ontologies the complexity
rises with each individual added. Above a certain ontology
size it gets very difficult for an expert to observe all possible
outcomes. It may also be the case that the inference
mechanism discovers perception chains, which the expert did
not intend to create. This outcome must also be checked
against an expert’s design results manually. This can be an
advantage since solution can arise that are more intelligent or
less resource intensive. But it can also be a disadvantage due
to the difficult way to evaluate the systems correct way of
working.

C. Proof of concept

Based on the founding functions in A) and B) a more
general proof of concept was conducted using the example
depicted in Figure 6. . The perception graph obtained from
the ontology is illustrated in Figure 7.

Sensor 1
Cap 1

Module 1

Cap 2

Module 2

HLC 1

Sensor 2

Cap 3

HLC 2

Module 3
Cap 4

V

HLC 3

V

HLC 4Sensor 3 Cap 5
Module 4

Cap 6

HLC 5
Module 5

Cap 8Cap 7Sensor 4

SWRL_useSameSensor
Module 6Sensor 5 Cap 9

V

Figure 7. Perception graph generated by example ontology

The system assumes all resources (sensors and modules)
to be available and operational. From this point all available
HLCs and their perception chains are calculated. Starting the
reasoner, we can observe that all HLCs are available like
expected (see TABLE II. (a)).
 Next each sensor is deactivated until no HLC is
available. Each step the perception chains are recalculated by
the inference mechanism. The results can be observed in
TABLE II. One can see that the modeled rules are working
as anticipated: the available HLCs and chain count
decreases.

TABLE II. EVALUATING THE DEACTIVATION OF SENSORS

Sensor Module HLC Chains

Sensor Module HLC Chains

Sensor 1 Module 1 HLC 1 6

Sensor 1 Module 1 HLC 1 4

Sensor 2 Module 2 HLC 2 7

Sensor 2 Module 2 HLC 2 5

Sensor 3 Module 3 HLC 3 6

Sensor 3 Module 3 HLC 3 4

Sensor 4 Module 4 HLC 4 3

Sensor 4 Module 4 HLC 4 3

Sensor5 Module 5 HLC 5 1

Sensor5 Module 5 HLC 5 1

 Module 6

 Module 6

(a)

(b)

 Sensor Module HLC Chains

Sensor Module HLC Chains

Sensor 1 Module 1 HLC 1 1

Sensor 1 Module 1 HLC 1 0

Sensor 2 Module 2 HLC 2 1

Sensor 2 Module 2 HLC 2 0

Sensor 3 Module 3 HLC 3 0

Sensor 3 Module 3 HLC 3 0

Sensor 4 Module 4 HLC 4 0

Sensor 4 Module 4 HLC 4 0

Sensor5 Module 5 HLC 5 1

Sensor5 Module 5 HLC 5 0

 Module 6

 Module 6

(c)

(d)

In TABLE II (a) all sensors are available hence all

modules and HLCs are available with a different amount of
perception chains. In TABLE II (b) “Sensor 1” is
deactivated. Since “Sensor 1” and “Sensor 2” provide the
same capability no module is being affected but the chain
count for “HLC1”-“HLC3” decreases.

TABLE III. CHAIN COMPOSITIONS FOR (A) FROM TABLE II

HLC 1 6

HLC 2 7

HLC 3 6

Sensor 1 Module 1

Sensor 1 Module 1

Sensor 1 Module 1 Module 3
Sensor 1 Module 2

Sensor 1 Module 2

Sensor 1 Module 2 Module 3

Sensor 2 Module 1

Sensor 2 Module 1

Sensor 2 Module 1 Module 3
Sensor 2 Module 2

Sensor 2 Module 2

Sensor 2 Module 2 Module 3

Sensor 2 Module 4

Sensor 2 Module 4

Sensor 2 Module 4 Module 3
Sensor 3 Module 4

Sensor 3 Module 4

Sensor 3 Module 4 Module 3

Sensor 2 Module 3

 HLC 4 3

HLC 5 1

Sensor 2 Module 1

Sensor 3 Module 4 Module 5

Sensor 2 Module 2
 Sensor 2 Module 4

TABLE IV. CHAIN COMPOSITIONS FOR (B) FROM TABLE II

HLC 1 4

HLC 2 5

HLC 3 4

Sensor 2 Module 1

Sensor 2 Module 1

Sensor 2 Module 1 Module 3
Sensor 2 Module 2

Sensor 2 Module 2

Sensor 2 Module 2 Module 3

Sensor 2 Module 4

Sensor 2 Module 4

Sensor 2 Module 4 Module 3
Sensor 3 Module 4

Sensor 3 Module 4

Sensor 3 Module 4 Module 3

Sensor 2 Module 3

HLC 5 1

HLC 4 3

Sensor 3 Module 4 Module 5

Sensor 2 Module 1
 Sensor 2 Module 2
 Sensor 2 Module 4

6Copyright (c) IARIA, 2016. ISBN: 978-1-61208-520-3

VISUAL 2016 : The First International Conference on Applications and Systems of Visual Paradigms

TABLE V. CHAIN COMPOSITIONS FOR (C) FROM TABLE II

HLC 1 1

HLC 2 1

HLC 3 0

Sensor 3 Module 4

Sensor 3 Module 4

 HLC 4 0

HLC 5 1

Sensor 3 Module 4 Module 5

When deactivating “Sensor2” (cf. (c)) three modules are

not operative any more since there is no sensor that can
provide the required data respectively capabilities. As a
hoped consequence “HLC3” and “HLC 4” is being
deactivated and the chain count for the operative HLCs drops
drastically. When “Sensor 3” is also being deactivated we
can observer that in (d) “Module 4” stops working and there
are no more available high level capabilities.

TABLE III. TABLE IV. and TABLE V. list the possible
module compositions for the results illustrated in TABLE II.
(a), (b) and (c). In TABLE IV. one can see that no more
chain compositions for Sensor 1 are available anymore. In
TABLE V. only chain compositions using Sensor 3 are
available since Sensor 1 and Sensor 2 are deactivated and for
the other two sensors there are no perception chains. Overall
the experiments show a supposed behavior of the inferred
results taking the modeled relationship and SWRL rules into
account. The results prove a suitable usage of the ontology to
model sensor and data processing resources using OWL.

IV. CONCLUSION AND FUTURE WORK

We presented an approach to manage sensor and data
resources with an ontology based knowledge management
system. It was shown how the knowledge representing
language OWL can be used respectively. The presented
solution proposes to model image processing algorithms as
perception modules providing different low level
capabilities, which in turn can be combined to high level
capabilities, representing various perception tasks e.g.,
vehicle detection. For each task different perception chains
are calculated, dependent on the current environmental
situation and platform setup respectively resource
configuration (sensors, algorithms, etc.).

An important next step is to develop a decision-making
system that takes available perception chains for a given
perception task in account and determines, based on different
parameters and meta-information, which chain is most
suitable to solve the given task.

The system shall be further tested in a multi UAV
scenario where each UAV has a different sensor and
perception module configuration. The aim here is to combine
different capabilities onboard UAVs and let the UAVs
collaborate to solve a complex perception task as a team.

Eventually investigations are planned in human-machine
scenario, where a helicopter operator can fall back to
S&PMS functions that assist him during his mission and
therefore reduce the operator’s workload. The operator can
choose between different automation levels so that the
S&PMS can process full perception tasks or only parts of it

[11]. In this scenario, the human capabilities are a part of the
knowledge base and are modeled into the ontology. The
inference mechanism takes the human capabilities into
account when generating perception chains for different
perception tasks. For example, when there is no algorithmic
way for a processing step, the S&PMS can make use of
human capability to still find an adequate perception chain.

REFERENCES

[1] D. Smirnov and P. Stuetz, “Knowledge elicitation and

representation for module based perceptual capabilities

onboard UAVs,” in AIAA SciTech 2014, 2014.

[2] C. Hellert, D. Smirnov, M. Russ, and P. Stuetz, “A High

Level Active Percpetion Concept For UAV Mission

Scenarios,” in Deutscher Luft- und Raumfahrtkongress 2012,

pp. 1–9, 2012.

[3] C. Hellert, D. Smirnov, and P. Stuetz, “Ontologiedesign für

Sensor- und Perzeptionsfähigkeiten von UAVs,” in

Deutscher Luft- und Raumfahrtkongress 2014, 2014.

[4] M. Russ and P. Stütz, “Airborne sensor and perception

management: A conceptual approach for surveillance UAS,”

in Proceedings of the 15th International Conference on

Information Fusion (FUSION2012), pp. 2444–2451, 2012.

[5] M. Russ and P. Stuetz, “Application of a probabilistic

market-based approach in UAV sensor & perception

management,” in Information Fusion (FUSION), 2013 16th

International Conference on, pp. 676–683, 2013.

[6] W3C OWL Working Group, “OWL 2 Web Ontology

Language Document Overview,” 2013. [Online]. Available:

http://www.w3.org/TR/owl2-overview/. [Accessed: 08-May-

2013].

[7] M. Gomez et al., “An ontology-centric approach to sensor-

mission assignment,” Knowl. Eng. Pract. Patterns, pp. 347–

363, 2008.

[8] M. Horridge et al., “A Practical Guide To Building OWL

Ontologies Using Protégé 4 and CO-ODE Tools,”

Manchester, 2011.

[9] I. Horrocks, P. F. Patel-schneider, H. Boley, S. Tabet, B.

Grosof, and M. Dean, “SWRL : A Semantic Web Rule

Language Combining OWL and RuleML,” W3C Memb.

Submiss. 21, no. May 2004, pp. 1–20, 2004.

[10] “Protégé project.” [Online]. Available:

http://protege.stanford.edu.

[11] C. Ruf and P. Stütz, “Model-driven Sensor Operation

Assistance for a Transport Helicopter Crew in Manned-

Unmanned Teaming Missions : Selecting the Automation

Level by Machine Decision-making,” in 7th International

Conference on Applied Human Factors and Ergonomics

(AHFE2016), 2016.

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-520-3

VISUAL 2016 : The First International Conference on Applications and Systems of Visual Paradigms

