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Abstract—In this paper, we describe an ontology-based system 

to inventory and model installed sensor and respective data 

processing resources on-board airborne surveillance aircrafts. 

The algorithms are packaged and described in form of discrete 

processing modules, each representing a low level image 

processing step. While the implementation of the algorithms is 

kept detached in a separate library, the description of modules 

and its parameters are stored in an ontology, representing a 

knowledge database using Web Ontology Language as a 

knowledge representation language. Based on the module 

description stored in the knowledge database, it is possible to 

identify and manage processing chains capable of solving 

complex image processing tasks. 

Keywords-Ontology; Web Ontology Language (OWL); Image 

Processing Management; Knowledge Management; sensor and 

data ressources.  

I.  INTRODUCTION  

Presently we witness an increasing demand for highly 
automated deployment of heterogeneous sensors on-board 
unmanned aircraft, either to yield better environmental 
awareness in the context of collision free flight or, as in the 
given case, to conduct typical Intelligence, Surveillance & 
Reconnaissance (ISR) missions in a more automated fashion, 
thereby relying mostly on imaging sensors operating in 
various spectral regions. However in aviation space, power 
and processing resources are limited. Therefore it is 
necessary to work economically with resources and manage 
them in an intelligent way. Furthermore, the sensor data 
processing and evaluation on-board a flying platform takes 
place under changing circumstances for example resulting 
from changing position and orientation of the Unmanned 
Aerial Vehicle (UAV), varying lighting conditions and 
different surface backgrounds (e.g., rural, urban, maritime). 
To cope with this situation it is meaningful to have a wide set 
of different sensors and associated data processing 
algorithms, since there is no algorithm that performs in an 
adequate way in every situation. For a complex image 
processing task (e.g., vehicle- and person detection) there are 
several equal processing steps, which have to be executed for 
each task, e.g., preprocessing steps or region-of-interest 
(ROI) selection. When executing multiple tasks one can save 
resources and computational time reusing the processing 
steps, which are required repeatedly instead of starting the 

same algorithm multiple times. Thus, there is a need for a 
system that manages sensor resources and image processing 
capabilities in a meaningful way. The Institute of Flight 
Systems published several papers ([1]–[5]) on the topic of 
airborne sensor- and perception management. In this paper 
we now focus on the ontology based knowledge extension of 
the so called Sensor and Perception Management System 
(S&PMS), first introduced in [4]. 

The S&PMS is best described as a three layer 
architecture to inventory relevant resources (e.g., sensors and 
image processing algorithms) and manage their usage as 
shown in Figure 1.  
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Figure 1.  Three layer architecture of the Sensor and Perception 

Management System. 

One of the S&PMS’s key aspects is the module based 
approach to package image processing algorithms into 
perception modules. Each module fulfils a special low level 
image processing requirement, e.g., noise reduction or ROI. 
Modules are designed to be standalone or to be combined 
with different modules to solve a higher level image 
processing task (perception task), like vehicle detection 
within a given street segment. The combination of at least 
two low level modules or a sensor-module combination 
creates a perception chain. Eventually a considerable variety 
of different perceptions chains (redundant chains) results, 
which potentially solve the same perception task, based on 
the (sensor) configuration of the UAV and the available 
perception modules. This entirety of resources (modules, 
sensors, etc.) and possible combinations is called perception 
graph. Such graph can be used to visualize all possible chain 
combinations for different perception tasks. 
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Figure 2.  Perception graph. Interaction between sources, perception 

modules and possible chaining. 

Figure 2. illustrates the relationship between sensors, the 
perception- modules, chains and graph. The graph is 
represented by the infrared (IR) / electro-optical (EO) sensor, 
all rectangles, each one providing a different low level 
capability, and their connections. Furthermore, there are two 
different perception chains in the figure to detect, e.g., a car 
from on-board the aircraft, sharing the first and last module 
(blue and orange rectangles). Both chains can use either an 
electro-optical sensor or an infrared sensor. 

Packaging image processing algorithms into perception 
modules allow the interpretation of algorithms as 
capabilities. It also supports reusability and therefore limits 
the power consumption and processing power onboard 
UAVs. Figure 2. shows several approaches to achieve the 
same goal (e.g., detecting a vehicle). A goal oriented usage 
of perception chains is enabled through detailed descriptions 
of the modules containing:  

 

 What is the output of a module (Capabilities) 

 How can a module be combined in a 
meaningful way (Requirements) 

 Under which circumstances can a module be 
used (Constraints) 
 

Furthermore, there is a need for a managing entity that 
loads and interprets the module descriptions to create 
relational knowledge. Such knowledge is used to identify the 
availability of low level and high level capabilities 
depending on given circumstances. The statements also 
provide information about possible module combinations to 
create perception chains that provide high level capabilities 
(HLCs). These high level capabilities in turn can be used to 
achieve different perception tasks. 

In this paper we therefore propose an ontology based 
approach, using the knowledge representation language 
OWL, that has been first introduced in [1], to create a 
knowledge database. This knowledgebase can be inferred by 
a reasoning mechanism to create statements, describing 
which resources are available and how they can be used. 

This paper is structured as follows: The structure and 
concept of the presented ontology is being explained in 
section 2. In section 2.A the class taxonomy is being 
presented. Next, in section 2.B we will describe the 
differences between persistent and dynamic individuals. In 
section 2.C we get into detail with the resource-capability-
resource concept. The data and object properties are 
discussed in section 2.D. In the last part of section 2 we 
describe the rules of the Semantic Web Rules Language 

(SWRL). In section 3 the experimental evaluation and results 
are being presented. First, in section 3.A we show how we 
realize the identification of available high level capabilities. 
Next, in section 3.B methods to provide valid perception 
chains are being exposed. In section 3.C we discuss the 
results for a proof-of-concept ontology. In section 4 there is a 
conclusion and an outlook into future work. 

II. STRUCTURE AND CONCEPT OF THE ONTOLOGY 

The ontology has been created using the Web Ontology 
Language OWL [6]. Three versions of OWL are available:  

 

 OWL Lite, very inexpressive and mostly used 
just to create taxonomies  

 OWL DL (description logic), suitable for 
practical applications    

 OWL Full, too expressive creating situations, 
where the inference mechanism will loop 
infinitely (see [6] for details). 

Since OWL DL is widespread and has an advanced tool 
and library support it is used to model the presented 
ontology. OWL contains three main concepts to model 
information: classes (concepts), individuals (instances) and 
properties (roles).   

A. Class Taxonomy 

The OWL classes serve as group container for different 
types of individuals (In OWL individuals are instances of 
(real) objects that belong to special class, e.g., “Sony CBR” 
is an individual of the class “Sensor”). There are two ways 
how an individual can be assigned to a class:  

 
1. When an individual is loaded into the ontology it 

gets its main class (e.g., an electro optical sensor 
would belong to the class “EOSensor” (Figure 3. 
)).  

2. The individual gets additional class assignments by 
the inference mechanism.  
 

Our ontology has six top level classes: 
Concept: contains the definition of the high and low 

level capabilities. Low level capabilities (LLC) are split into 
more detailed groups, for example sensor-, image 
processing- and platform capabilities. LLCs are provided by 
resources like perception modules or sensors. 
Simultaneously, each module needs a predefined set of LLCs 
as input so it can work as intended. The input LLC required 
by a module though is different to the LLC that is provided 
by this module. High level capabilities are used by 
perception tasks, which can be commanded from a third 
party system. The more detailed subdivision is based on the 
taxonomy presented in [7]. 

Environment: covers all individuals to describe the 
composition of the ground, daytime, weather and lighting 
conditions (e.g., sky formations). 

Hardware: describes the sensors and sensor mountings 
that are attached to the Unmanned Aerial Vehicle or another 
platform. Subdivision categories of the sensor class are radar, 
thermal, optical, laser and virtual sensor. 
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Platform: includes the classes that describe the user of 
the S&PMS. The subcategories are aerial platform, ground 
platform and human team. 

Software: implies the image processing algorithms 
represented as perception modules and other services (e.g., a 
geo information service (GIS Service)). 

Status: This class is empty when the S&PMS is started. 
It states if any individual is available and can be used or not. 
The inference mechanism assigns each individual to its status 
class. E.g., if a module can provide a certain low level 
capability the module is assigned to the “operative module” 
class and the capability that is provided by this module to the 
“available low level capability” class. 

 

 

Figure 3.  Taxonomy of the ontology.  

Figure 3. illustrates the taxonomy of the ontology. In total 
there are 123 classes. 

B. Persistent and dynamic individuals 

The concept of the ontology takes two different 
behaviors of individuals into account: the persistent 
individuals are always a part of the ontology and dynamic 
loaded individuals, based on the connected systems. The 
ontology itself contains only high and low level capabilities 
and their assigned SWRL Rules (see section E.). These 
capabilities are modelled by an expert and remain persistent 
in the database. When the S&PMS is loaded or services and 
sensors are connected to the S&PMS, the represented 
individuals (e.g. Sony Sensor1) are loaded into the ontology. 
If a sensor stops working or a perception module crashes, the 
representative individual is removed from the ontology. As 
soon as the system notices a change in the ontology the 
“reasoner” gets invoked to update the overall status of the 
ontology and notify the S&PMS about system changes. 
Depending on services and sensors connected, and with 
respect to requirements and constraints of perception 
modules that are modelled using SWRL Rules, different low 
and high level capabilities, sensors and modules are 
unlocked. The reasoner infers, using SWRL rules and OWL 
axioms, which individuals can be assigned to the status 
classes mentioned before in section A. 

C. The resource-capability-resource concept 

Since there are individuals that are added and removed 
from the ontology in a frequent way during runtime, it is not 

possible to make a statement about available individuals. For 
this reason you can never tell, which resources (e.g., 
modules, sensors, etc.) are currently available hence it is not 
possible to connect two individuals directly. Therefore we 
introduced the resource-capability-resource concept with 
permanent capability individuals that are always a part of the 
ontology and therefore can be used as a reference to create 
rules for individuals that are dynamically added to the 
ontology. These permanent low level capability individuals 
can be seen as input and output configurations for image 
processing modules or other resources. 
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Figure 4.  Resource-capability-resource vs. resource-resource connection.  

Figure 4. illustrates the difference between the direct 
connection of resources and the usage of capability 
individuals between two resources. In (a) the sensor and 
module are connected directly. Removing the targeted sensor 
(EO Sensor) implies removing the rule from the source 
module (RGB Receiver), because there is no more reference 
to the target. Re-adding the targeted sensor does however not 
imply adding the rule to the source module since the source 
module does not get notified about the existence of the 
targeted sensor. Another reason against solution (a) is the 
fact that during modelling time of e.g., RGB Receiver there is 
no knowledge about other resources like sensors or modules. 
So it would not be possible to create a rule that connects both 
resources since there is no way to get the information of the 
existence of e.g., EO Sensor.  

In (b) each resource holds rules connected to a capability-
individual. In this case, when EO Sensor gets deleted, only 
rules included in EO Sensor get removed and no other 
resource is “touched”. When EO Sensor gets added again, its 
rules get added too. Since the individual RGBData is a 
permanent individual that is always a part of the ontology, 
rules that are used by RGB Receiver can reference it. Using 
the inference mechanism a “uses” relationship between the 
sensor and the module can be established.   

D. Data and Object properties 

In OWL we see two different property types, the object 

and the data properties. Data properties are used to connect 

individuals with their data represented as parameters. These 

parameters can be of different built-in types, e.g., string, 

integer, byte, date or bool. In our ontology, data properties 

are used to describe the parameters of an image processing 

algorithm and other numeric information. 
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Object properties are used to describe relationships 

between individuals. The most common property is the “is-

a” relation between classes (e.g., UAV is-a Aircraft). Each 

object property has several characteristics that can be 

assigned to it to affect its functional role (e.g., functional, 

transitive, reflexive, etc.). Additional information can be 

found in [8]. Within the framework there are four main 

object properties and their inverses (TABLE I. ). 

TABLE I.  OBJECT PROPERTIES: LEFT: PROPERTY, RIGHT: INVERSE 

PROPERTY. 

object properties 

providesCapability capabilityProvidedBy 

requiresCapability capabilityRequiredBy 

uses usedBy 

subCapabilityOf superCapabilityOf 

 

The first two describe the relationship between a module 

and its capabilities. The third and fourth describe the 

relationship between modules and the relationship within 

capabilities. The “is-a”-property to connect individuals with 

its classes or classes with subclasses is not listed, because it 

is not a custom property but a basic property that is 

available in every ontology. 

Figure 5. illustrates a usage of the different object 

properties to describe the relationship between the 

individuals and their classes. For clarity the inverse 

properties are omitted. 
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Module B
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Cap C
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Figure 5.  Example for the usage of the different object properties.  

E. SWRL Rules 

To grant OWL more flexibility and expressive strength it 
is possible to use rule based languages in combination with 
the rule markup language (RuleML). Semantic Web Rule 
Language (SWRL) [9] can be seen as a combination of OWL 
DL and RuleML. A rule in SWRL is defined as follows: 
 

𝑎1^𝑎2^ … ^𝑎𝑛 → 𝑏1^𝑏2^ … ^𝑏𝑛                 (1) 
 

Variables are called atoms. While 𝑎𝑖  describes a 
precondition (body), 𝑏𝑖  describes a post condition (head). 

Atoms can be class expressions ( 𝐶(𝑥) ) or property 
expressions (𝑃(𝑥, 𝑦)), in other words relationships between 
two individuals. There are built in expressions that can be 
used to model a rule. Some of them are 𝑠𝑎𝑚𝑒𝐴𝑠(𝑥, 𝑦) , 
𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝐹𝑟𝑜𝑚(𝑥, 𝑦) and 𝑏𝑢𝑖𝑙𝑡𝑖𝑛(𝑟, 𝑧1 …  𝑧𝑛) . Built in 
expressions contain but are not limited to: date, 
mathematical, string operation. A rule can be read as:  

 
“If precondition X is true, then the post condition is also 

true.” 
 

An empty precondition is always true, an empty post 
condition always false. All rules that can be accomplish with 
the OWL axioms can also be modelled with SWRL rules, on 
the other side there are SWRL rules that cannot be 
accomplish with OWL axioms. 

Each individual that is added dynamically by a service 
into the ontology contains its own SWRL rule set. Since the 
capabilities-individuals of the ontology are permanently 
stored in the database immutable, the SWRL Rules can refer 
to the individual’s names of the capabilities but not to the 
names of other individuals like sensors or modules.  

The SWRL rule belonging to Module C of Figure 5. can 
be written as follows: 
 
AvailableLLC(Cap A) ^ capabilityProvidedBy(Cap A, ?a)           
 → AvailableModule(Module C) ^                                                  (2) 
uses(Module C, ?a) ^ providesCapability(Module C, Cap C) 

 
In SWRL “?x” is being used to declare variables. The 

rule reads as: 
 

“If the individual Cap A belongs to the class 
AvailableLLC and  the individual Cap A has the object 

property capProvidedBy, referencing to any other individual 
?a then assign Module C to the class AvailableModule and 

assign the object property uses referencing to any other 
individual ?a to the Module C and the object property 

providesCap Cap C.” 
 
Since there are two other modules that provide Cap A, 

Module C will belong to the classes “Module” and 
“AvailableModule” and will have the object property “uses 
Module B” and “uses Module A” and also have the object 
property “providesCap Cap C”. If another module or a 
perception task intends to use “Cap C”, there are two 
perception chains that can be used:  

 

 Module B → Module C 

 Module A → Module C 

III. EXPERIMENTAL EVALUATION 

The evaluation of the ontology comprises two categories. 
It is necessary to know (see section III.A) if at least one 
perception chain exists, that can solve a given perception 
task or respectively can provide a high level capability. Next 
it is necessary to (see section III.B) investigate if all available 
perception chains for a given HLC are valid and if all 
possible solutions have been found. Therefore some proof of 
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concept experiments have been done to validate that the 
identification of HLCs and the perception chains work as 
expected.  

A. Identifying available high level capabilities 

Testing to check if the ontology identifies available 
HLCs correctly, can be accomplished directly in the widely 
used ontology editor Protegé [10]. As mentioned in Figure 3. 
there is a special class category “Status”, more accurate 
“AvailableHLC” where an HLC individual gets assigned by 
the reasoner when there is a perception chain that provides 
this individual. This evaluation includes several SWRL rules 
for chain components that have to be tested. Each chain 
component should work self-contained and in combination 
with other components. Each component requires a positive 
and a negative test. The positive test describes a situation 
where the configuration of the ontology provides individuals 
that should allow the reasoner to assign a given HLC to the 
“AvailableHLC” class. For the negative test, the ontology 
gets changed in a way, that there is no valid path anymore to 
assign the HLC to the “AvailableHLC” class. 

Module N Capability HLC

Module Capability B
HLC

Module Capability A

V

Module C Capability B

HLC
Module B Capability AV

Module Capability A
HLC

Capability C
Sensor

ModuleCapability D Capability B

V

Sensor Capability

Capability

Capability

Capability

Capability

Sensor

Sensor

Sensor

Sensor

(a)

(b)

(c)

(e)

Module A Capability A HLCCapability BSensor
(d)

Sensor X

Module BCapabilitySensor X

Module A... ...

Module A...

V

 
Figure 6.  Five chain components that can appear during modelling 

perception chains.  

Figure 6. illustrates five different chain components that 
can appear in the modelling phase of HLCs. For each 
component there are different SWRL rules to achieve a 
desired behavior. The illustration shows a very simple setup 
starting with the sensor, using one layer of perception 
modules and connecting it with the HLCs. 

(a) is the most simple component where the HLC does 
need only one capability. The HLC does not care, which or 
how many modules there are, providing this capability, as 
long as there is at least one module available. The rule looks 
like: 

 
AvailableLLC(Capability) ^ capProvidedBy(Capability,  

?a) → AvailableModule(HLC) ^ uses(HLC, ?a)                         (3)                
 
(b) illustrates a component where the HLC can be 

activated either by “Capability A” or “Capability B”. The 
rule is similar to listing (3) but in this case there is the need 
for two SWRL Rules, one for “CapabilityA” and the other 
for “CapabilityB”: 

 
AvailableLLC(Capability A) ^ capProvidedBy(Capability   
A, ?a) → AvailableModule(HLC) ^ uses(HLC, ?a)      
                                                                                                         (4) 
AvailableLLC(Capability B) ^ capProvidedBy(Capability   
B, ?a) → AvailableModule(HLC) ^ uses(HLC, ?a)                   

              
In (c) there is an “and”-relationship between 

“CapabilityA” and “CapabilityB”. The HLC does need both 
capabilities to get classified as “AvailableHLC”. In Figure 6. 
there are two possible configurations: (Module A ˄ Module 
C) and (Module B ˄ Module C). The corresponding rule is: 

 
AvailableLLC(Capability A) ^ AvailableLLC(Capability B) 
 ^ capProvidedBy(Capability A,?a) ^ capProvidedBy               
(Capability B, ?b) → AvailableModule(HLC) ^                             (5) 
uses(HLC, ?a) ^ uses(HLC, ?b)      

                                                                                               
(d) shows a more restrictive component. Here it is not 

enough that there is a perception module that provides 
“Capability A”; there is also the restriction that the module 
that provides “Capability A” should also use “Capability B”. 
This guarantees that only the combination (Sensor ˄ Module 
A) but not the combination (Sensor X ˄ Module B) is a valid 
chain. 

 
AvailableLLC(Capability A) ^ AvailableLLC(Capability B) 
 ^ capProvidedBy(Capability A,?a) ^  capProvidedBy               
(Capability B, ?b)^ uses(?a,?b) →                                                  (6) 
AvailableModule(HLC) ^ uses(HLC, ?a)  

 
The rule in listing (6) looks similar to listing (5), expect 

that in (6) there is a “uses(?a,?b)” in the body that 
determines that individual “?a” that also provides 
“Capability A” has to use individual “?b”, which also 
provides “Capability B”. 

 (e) illustrates a exception where the HLC does need both 
capabilities “Capability A” and “Capability B”. But in this 
case it must be guaranteed that data, which is used by the 
modules providing both capabilities, must be from the same 
sensor. 
 
AvailableLLC(Capability A) ^ AvailableLLC(Capability B) ^ 
AvailableLLC(Capability C) ^ AvailableLLC(Capability D) ^ 
capProvidedBy(Capability A, ?a) ^ capProvidedBy(Capability B, 
?b) ^ capProvidedBy(Capability C, ?d) ^                                       (7) 
capProvidedBy(Capability D, ?e) ^ uses(?a,?c) ^  
uses(?b,?c) → AvailableModule(HLC) ^ uses(HLC, ?a) ^  
uses(HLC, ?b) 

 
To realize the behavior shown in (e) it is necessary to 

introduce another variable “?c” representing an individual. 
This individual has to be used by both modules, the ones that 
provide “Capability A” and the others that provide 
“Capability B”. If “Capability C” would be provided only by 
“Sensor” and “Capability D” would be provided only by 
“Sensor X” all capability and perception module individuals 
would be available but the HLC would still be not available 
because the rule “uses(?a,?c) ^ uses(?b,?c)” from listing (7) 
would be false. 
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B. Provide valid perception chains 

After collecting information about available high level 
capabilities it is necessary to verify that the provided 
combinations of perception modules (in form of perception 
chains) result in the correct outcome. The list of existing 
perception chains for a specific HLC does not allow chains 
that cannot handle the perception task. Therefore the chain 
count as well as the chain composition is tested against an 
expert model. All valid chains must be represented. The 
concatenation and validation of modules into perception 
chains is done outside the ontology in a special application 
that can read, write and parse the ontology. The algorithm 
checks the dependency from one individual to another, 
starting with the HLC individuals. Recursively each 
dependency is put into a list (the perception chain list). If an 
individual has more than one dependency, the chain gets 
split. The process ends, when an individual has no more 
dependencies to other individuals. Individual can have 
multiple SWRL rules, resulting in equal chains. During the 
concatenation process chains can arise that are formally 
correct but not valid for the specific HLC since not all low 
level capabilities can be satisfied within the chain. After the 
recursive process terminates, duplicates and invalid chains 
are filtered. There are some cases where the algorithm cannot 
filter all invalid chains due to rule complexity. In these cases, 
special data properties are parsed after the initial validation. 
Whichever parameters are set, special filtering mechanisms 
are being triggered inside the application to erase the 
remaining invalid chains. 

To guarantee that all valid chains have been found 
smaller ontologies can be manually matched against an 
expert design result. For bigger ontologies the complexity 
rises with each individual added. Above a certain ontology 
size it gets very difficult for an expert to observe all possible 
outcomes. It may also be the case that the inference 
mechanism discovers perception chains, which the expert did 
not intend to create. This outcome must also be checked 
against an expert’s design results manually. This can be an 
advantage since solution can arise that are more intelligent or 
less resource intensive. But it can also be a disadvantage due 
to the difficult way to evaluate the systems correct way of 
working. 

C. Proof of concept  

Based on the founding functions in A) and B) a more 
general proof of concept was conducted using the example 
depicted in Figure 6. . The perception graph obtained from 
the ontology is illustrated in Figure 7.  
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Module 2

HLC 1

Sensor 2
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HLC 2

Module 3
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V

HLC 3
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HLC 4Sensor 3 Cap 5
Module 4

Cap 6

HLC 5
Module 5

Cap 8Cap 7Sensor 4

SWRL_useSameSensor
Module 6Sensor 5 Cap 9
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Figure 7.  Perception graph generated by example ontology 

The system assumes all resources (sensors and modules) 
to be available and operational. From this point all available 
HLCs and their perception chains are calculated. Starting the 
reasoner, we can observe that all HLCs are available like 
expected (see TABLE II. (a)). 
       Next each sensor is deactivated until no HLC is 
available. Each step the perception chains are recalculated by 
the inference mechanism. The results can be observed in 
TABLE II. One can see that the modeled rules are working 
as anticipated: the available HLCs and chain count 
decreases.  

TABLE II.  EVALUATING THE DEACTIVATION OF SENSORS  

Sensor Module HLC Chains 
 

Sensor Module HLC Chains 

Sensor 1 Module 1 HLC 1 6 
 

Sensor 1 Module 1 HLC 1 4 

Sensor 2 Module 2 HLC 2 7 
 

Sensor 2 Module 2 HLC 2 5 

Sensor 3 Module 3 HLC 3 6 
 

Sensor 3 Module 3 HLC 3 4 

Sensor 4 Module 4 HLC 4 3 
 

Sensor 4 Module 4 HLC 4 3 

Sensor5 Module 5 HLC 5 1 
 

Sensor5 Module 5 HLC 5 1 

  Module 6     
 

  Module 6     

 
(a)   

   
(b) 

  Sensor Module HLC Chains 
 

Sensor Module HLC Chains 

Sensor 1 Module 1 HLC 1 1 
 

Sensor 1 Module 1 HLC 1 0 

Sensor 2 Module 2 HLC 2 1 
 

Sensor 2 Module 2 HLC 2 0 

Sensor 3 Module 3 HLC 3 0 
 

Sensor 3 Module 3 HLC 3 0 

Sensor 4 Module 4 HLC 4 0 
 

Sensor 4 Module 4 HLC 4 0 

Sensor5 Module 5 HLC 5 1 
 

Sensor5 Module 5 HLC 5 0 

  Module 6     
 

  Module 6     

 
(c) 

    
(d) 

    
In TABLE II (a) all sensors are available hence all 

modules and HLCs are available with a different amount of 
perception chains. In TABLE II (b) “Sensor 1” is 
deactivated. Since “Sensor 1” and “Sensor 2” provide the 
same capability no module is being affected but the chain 
count for “HLC1”-“HLC3” decreases.  

TABLE III.  CHAIN COMPOSITIONS FOR (A) FROM TABLE II 

HLC 1 6 
 

HLC 2 7 
 

HLC 3 6   

Sensor 1 Module 1 
 

Sensor 1 Module 1 
 

Sensor 1 Module 1 Module 3 
Sensor 1 Module 2 

 
Sensor 1 Module 2 

 
Sensor 1 Module 2 Module 3 

Sensor 2 Module 1 
 

Sensor 2 Module 1 
 

Sensor 2 Module 1 Module 3 
Sensor 2 Module 2 

 
Sensor 2 Module 2 

 
Sensor 2 Module 2 Module 3 

Sensor 2 Module 4 
 

Sensor 2 Module 4 
 

Sensor 2 Module 4 Module 3 
Sensor 3 Module 4 

 
Sensor 3 Module 4 

 
Sensor 3 Module 4 Module 3 

   
Sensor 2 Module 3 

             HLC 4 3 
    

HLC 5 1   

Sensor 2 Module 1 
    

Sensor 3 Module 4 Module 5 

Sensor 2 Module 2 
       Sensor 2 Module 4 
       

TABLE IV.  CHAIN COMPOSITIONS FOR (B) FROM TABLE II 

HLC 1 4 
 

HLC 2 5 
 

HLC 3 4   

Sensor 2 Module 1 
 

Sensor 2 Module 1 
 

Sensor 2 Module 1 Module 3 
Sensor 2 Module 2 

 
Sensor 2 Module 2 

 
Sensor 2 Module 2 Module 3 

Sensor 2 Module 4 
 

Sensor 2 Module 4 
 

Sensor 2 Module 4 Module 3 
Sensor 3 Module 4 

 
Sensor 3 Module 4 

 
Sensor 3 Module 4 Module 3 

   
Sensor 2 Module 3 

    

      
HLC 5 1   

HLC 4 3 
    

Sensor 3 Module 4 Module 5 

Sensor 2 Module 1 
       Sensor 2 Module 2 
       Sensor 2 Module 4 
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TABLE V.  CHAIN COMPOSITIONS FOR (C) FROM TABLE II 

HLC 1 1 
 

HLC 2 1 
 

HLC 3 0   

Sensor 3 Module 4 
 

Sensor 3 Module 4 
 

      

         HLC 4 0 
    

HLC 5 1   

    
    

Sensor 3 Module 4 Module 5 

 
When deactivating “Sensor2” (cf. (c)) three modules are 

not operative any more since there is no sensor that can 
provide the required data respectively capabilities. As a 
hoped consequence “HLC3” and “HLC 4” is being 
deactivated and the chain count for the operative HLCs drops 
drastically. When “Sensor 3” is also being deactivated we 
can observer that in (d) “Module 4” stops working and there 
are no more available high level capabilities. 

TABLE III. TABLE IV. and TABLE V. list the possible 
module compositions for the results illustrated in TABLE II. 
(a), (b) and (c). In TABLE IV. one can see that no more 
chain compositions for Sensor 1 are available anymore. In 
TABLE V. only chain compositions using Sensor 3 are 
available since Sensor 1 and Sensor 2 are deactivated and for 
the other two sensors there are no perception chains. Overall 
the experiments show a supposed behavior of the inferred 
results taking the modeled relationship and SWRL rules into 
account. The results prove a suitable usage of the ontology to 
model sensor and data processing resources using OWL. 

IV. CONCLUSION AND FUTURE WORK 

We presented an approach to manage sensor and data 
resources with an ontology based knowledge management 
system. It was shown how the knowledge representing 
language OWL can be used respectively. The presented 
solution proposes to model image processing algorithms as 
perception modules providing different low level 
capabilities, which in turn can be combined to high level 
capabilities, representing various perception tasks e.g., 
vehicle detection. For each task different perception chains 
are calculated, dependent on the current environmental 
situation and platform setup respectively resource 
configuration (sensors, algorithms, etc.). 

An important next step is to develop a decision-making 
system that takes available perception chains for a given 
perception task in account and determines, based on different 
parameters and meta-information, which chain is most 
suitable to solve the given task. 

The system shall be further tested in a multi UAV 
scenario where each UAV has a different sensor and 
perception module configuration. The aim here is to combine 
different capabilities onboard UAVs and let the UAVs 
collaborate to solve a complex perception task as a team. 

Eventually investigations are planned in human-machine 
scenario, where a helicopter operator can fall back to 
S&PMS functions that assist him during his mission and 
therefore reduce the operator’s workload. The operator can 
choose between different automation levels so that the 
S&PMS can process full perception tasks or only parts of it 

[11]. In this scenario, the human capabilities are a part of the 
knowledge base and are modeled into the ontology. The 
inference mechanism takes the human capabilities into 
account when generating perception chains for different 
perception tasks. For example, when there is no algorithmic 
way for a processing step, the S&PMS can make use of 
human capability to still find an adequate perception chain. 
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