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Departmento de Didáctica
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Abstract—Natural growth processes tend to generate shapes in the
form of imprecise planar tesselations, where the tiles do not match
exactlyand leave some space among them. In this paper we model
these tesselations by means of Voronoi Diagrams. We look for
the set of 2D-sites whose Voronoi Diagram better approximates
the given imprecise tessellation. Since we conjecture the Inverse
Voronoi Problem (also known as Voronoi-fitting Problem) to be
NP-hard, we describe in this paper a heuristic algorithm that
looks for the optimal set of sites.. We study the algorithm’s
performance and validity on a set of tesselations extracted from
real-life images. With the aid of these experiments, we find
optimal values for a tunable parameter of the algorithm. In the
long run, our main goal is to develop a tool that can automatically
analize an image of a tessellation that is expected to be modelled
with a Voronoi Diagram (e.g., pictures from chrystals, trees in a
forest, etc), and decide whether the growth process was or was not
affected by some external force. This inverse computation should
be able tell how far is the image from its theoretical model.

Keywords–Planar tesselations; Voronoi Diagram; local search;
Inverse Voronoi Diagram.

I. INTRODUCTION
Voronoi Diagrams (or Dirichlet tesselations) are a funda-

mental geometric structure with many applications in Graphics
and Image Processing, among other uses. Informally, the
Voronoi Diagram generated by a set S of points in the
Euclidean plane is a subdivision of the plane into (convex)
cells, where each cell is associated with one point p ∈ S, and
consists of the points on the plane that are closer to p than
to any other q ∈ S. In other words, the cell associated with
some point p can be thought of as a sort of sphere of influence
of p. For the precise definition, as well as the most important
properties of Voronoi Diagrams, we refer the reader to any one
of the many standard texts on the subject, such as [1].

The above definition lends itself very naturally to many
generalizations, such as using sites other than points, consider-
ing metrics other than the Euclidean metric, dimensions higher
than two, or surfaces other than the plane. Since many growth
processes in nature follow this very simple model, in this paper,
we will restrict ourselves to the Euclidean plane, the Euclidean
metric and point sites. In fact, due to the applied focus of this
paper, we will restrict the area of study to a bounded rectangle
in the 2D-plane where the tessellation is given, and perform
the algorithm’s adjustments using real-life image pictures.

Planar Euclidean Voronoi Diagrams have been applied to
describe images and other visual or spatial patterns since
the late 1970s [2], [3] and [4]. In particular, [2] attempts to

approximate a cellular pattern by a Voronoi Diagram and this
is, to the best of our knowledge the first reference to what we
now call the Inverse Voronoi Problem. In this paper, we present
an algorithm that focuses on finding how a picture, that looks
like a Voronoi Diagram to the naked eye, can (or cannot) be
approximated by that model. We conjecture that finding the
model that better approximates the final picture of a growth
process can give useful information on how the process itself
happened and if unforseen external circumstances may have
altered it. The Inverse Voronoi Problem (IVP) can be stated as
follows:

Problem 1 (Inverse Voronoi Problem): Given a Voronoi
Tesselation T in the Euclidean Plane, find the set of points
P that generate T .

After [2], this problem was addressed again in [5] and [6].
The approach followed by Suzuki and Iri in [6] is similar to
that of [2]: their aim is to find a Voronoi Diagram that best
approximates the tesselation T , according to some measure of
approximation. On the other hand, in [5] Ash and Bolker try
to find the Voronoi Diagram that fits T exactly. Unfortunately,
this is not always possible, since not every tesselation T
corresponds exactly to a Voronoi Diagram, even if all the cells
of T are convex.

In this paper, we continue along the lines of [2] and [6]: We
consider a relaxation of the concept of planar tesselation, and
we devise an algorithm that tries to find the Voronoi Diagram
that best approximates this relaxed tesselation.

In a standard tesselation of the plane, the tiles cover the
entire plane, and their intersection is a set of edges, with mea-
sure zero. However, this ideal situation does not correspond to
reality in many cases. In many actual spatial patterns, including
images, the cell boundaries may have some thickness, or to put
it in another way, the tiles do not match exactly, leaving some
space between them. This situation was recently considered in
[7], where the Voronoi edges have some constant width w > 0.
In this paper, we consider a more general situation, which we
may call imprecise planar tesselation.

Definition 1 (Imprecise planar tesselations): An
imprecise (or incomplete) tesselation of a bounded region
R ⊆ R2 is a set P of polygons, or tiles (not necessarily
convex), such that each P ∈ P is strictly contained in R, has
a non-empty interior; and

⋂
P∈P P has zero measure.

Note that we preserve the condition that the intersection
between cells has zero measure, but we do not require that⋃

P∈P P covers the entire Euclidean plane R2, hence P is not
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a tesselation in the usual sense. The set R −
⋃

P∈P P will
be called the grey area. When we try to approximate P by a
Voronoi Diagram, we care about where each P ∈ P lies with
respect to the Voronoi Diagram, but we are indifferent as to
where some part of the grey area goes.

Section II describes the heuristic algorithm to approximate
planar imprecise tesselations. In Section III, we give examples
of imprecise tesselations of the plane taken from real-life
applications, and we run the algorithm with those tesselations,
in order to analyze its performance. From these experiments,
we draw conclusions regarding a certain tunable parameter of
the aforementioned algorithm. Please note that, since this is
a Work In Progress, the obtained values and the decisions
made in order to tune our algorithm are still subject to further
research.

II. APPROXIMATING IMPRECISE TESSELATIONS
In the following, we will assume that P consists of n

polygons {P1, . . . Pn}, and our aim is to approximate it by a
Voronoi Diagram V with exactly n cells {V1, . . . Vn}, i.e. one
per polygon. For each 1 ≤ i ≤ n, the Voronoi cell Vi should
cover the tile Pi as much as possible, and perhaps some of the
gray area, but should refrain from invading any other tile Pj ,
with j 6= i.

Using the area of the missclasified region as a measure of
the fitness of a candidate solution, we can define our goal as
follows: For each Voronoi cell Vi, we compute the area of the
portions of polygons in P other than Pi that lie inside Vi. The
sum of the areas of all regions for each 1 ≤ i ≤ n is the
area of the missclasified region. (Note that the portions of Pi

that do not belong to Vi will be counted when the containing
Voronoi cell is processed.)

Since we will, in practice, never work with the entire plane
but with a bounded region, typically a rectangular section R,
if a(X) represents the area of a polygon X , we may define
the normalized unwanted area of V , relative to P , as follows:

ΥP(V) =
1

a(R)

n∑
i=1

(a(Pi)− a(Pi ∩ Vi))

=
1

a(R)

n∑
i=1

a(Pi)−
1

a(R)

n∑
i=1

a(Pi ∩ Vi)
(1)

Hence, we treat the problem of approximating P as an
optimization problem, where we have to minimize the ob-
jective function Υ, which in general, is a non-linear and
non-differentiable function. Note that the first term of (1),
i.e. 1

a(R)

∑n
i=1 a(Pi), is constant, therefore, minimizing Υ

amounts to maximizing the term
∑n

i=1 a(Pi ∩ Vi).
In order to minimize Υ, we may use any of the well-

known heuristics developed for non-linear optimization, such
as any variant of local search, simulated annealing, genetic
algorithms, etc. (see [8], for instance). In this paper, we settle
for a simple variant of local search, which is roughly described
in the algorithm in Fig. 1 as a first attempt to explore the
solution space. We will also see that looking for this minimum
is not an easy task and that, being the optimal location for each
point dependant on every point other than itself, careful tuning
needs to be performed in order not to fall in a local minimum.
Starting with the centroids of the tiles, the algorithm is going to
try to move one site at a time in any of the 8 main directions.

Input: An imprecise tesselation P = {P1, . . . Pn}, an
approximation ε.
Output: A set of sites S = {s1, . . . sn} whose Voronoi
Diagram approximates P .

. Compute First Candidate Solution
1: for each polygon Pi ∈ P do
2: si ← centroid of Pi

3: end for
4: V ← Voronoi Diagram generated by S
5: A← ΥP(V)

. Improve the solution
6: while solution still improving do
7: for each site si ∈ S do
8: for each direction {N,NE,E,SE,S,SW,W,NS} do
9: s′i ← translation(si,direction,distance)

10: candidate ← S with s′i instead of si
11: V ′ ← Voronoi Diagram(candidate)
12: A′ ← ΥP(V ′)
13: (s∗i , A

∗)← best among all directions
14: end for
15: si ← s∗i ; A = A∗

16: end for
17: if solution not improving then
18: distance ← some factor of distance
19: end if
20: end while

Figure 1. Voronoi Approximation of Imprecise Tesselation

The best among these positions for that particular site, will
be chosen and the site will be reassigned to that location. We
iterate this process until no site in the current solution can
be moved. When this happens, we decrease the distance that
we are going to test, looking for locations that are closer to
the site. Since we don’t expect real-world Voronoi Diagrams
to be centroidal, at the beginning, farther positions from the
centroid are explored. As the algorithm proceeds, the sites tend
to get closer to the optimal location and smaller steps are given.
We will see in Section III that how we reduce the distance in
those tests, drastically affects the final solution and the running
times.

Algorithm in Fig. 1 shows the main idea that we have
followed in order to implement the descent method for our
problem. Even though many different approaches can be tested
and small modifications can slightly improve the final result or
the computational time, we describe here the main decisions
that have been taken in order to optimize a given imprecise
tesellation.

• A candidate solution is found when translating one
site in the previous candidate solution. Note that this
movement has a direct effect on all Voronoi neigh-
bouring cells and, in the long run, might force the
move of any other site in S.

• Translation vectors have been carefully studied show-
ing that 8 directions give good enough approximations
in practical cases.

• Translation distance happens to be one of the most
important parameters, showing our results that both
optimization and performance benefit from a distance
reduction by some factor each time the algorithm gets
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stuck in a local minimum for the present distance.
• The algorithm terminates when the improvements in

the normalized unwanted area is smaller than ε after
several attempts.

We have implemented and tested several variations on this
algorithm in order to find a good balance between achieving a
good approximation and the computational time needed to ob-
tain it. Note that, whenever a new candidate solution is tested,
the whole Voronoi Diagram might have to be recomputed.
We briefly discuss in the following the choices that we have
made in our implementation and justify them according to our
experimental results:
• If site si moves in along a certain direction in one

iteration, we have seen that it is very probable that
the same direction will be chosen in the next move.
Therefore, we have also implemented versions for the
algorithm where not all 8 directions are tested, but
we move a site if the same direction as the previ-
ous iteration already gives an improvement without
needing to test the other 7 directions. This choice
does reach similar results in the approximation bounds
while being more efficient.

• Once all sites are tested and no movement is found to
improve the present solution, we decrease the distance
for the translation (which will be proportional to its
distance to its nearest neighbour). Intuitively, this
process allows the points to approach fast their best
location and improve within that location afterwards.

• Even though when we approach the best location
improvements tend to be small, this condition might
be also met during the whole process. We establish the
number of rounds in which we will already consider
that no further improvement is expected.

III. COMPUTATIONAL EXPERIMENTS
In order to test the performance of Algorithm 1 we have

chosen some imprecise tesselations, obtained by segmenting
real-life images coming from different domains.

The example, Fig. 2 [9] shows a honeycomb, which is an
almost perfect hexagonal tiling of the plane. With this im-
age, since the Voronoi Diagram originating perfect hexagonal
tilings is centroidal (i.e. generators lie on the centroids of
the cells), the objective function is essentially minimized at
the initialization step. On the other hand, we have several
non-centroidal Voronoi tesselation of the plane. Fig. 3 [10]
is a microscopic image of common waterweed, Canadian
pondweed (Elodea canadensis), an aquatic plant from North
America. Fig. 4 [11] is another microscopic image, from a
metal’s crystalline structure. Finally, Fig. 5 [12] is a satellite
image of a farming area in Oxfordshire, UK. Despite the limits
between farms not appearing through a natural growth process,
their resemblance to a Voronoi Diagram is remarkable (In the
best run, Υ = 4.6%, even smaller than our best run for the
crystal structure).

All the aforementioned images show a clear pattern of
tiles that tesselate the plane in an imprecise manner. We have
segmented the images in order to obtain imprecise planar
tesselations and, for each one of these tesselations, we have
run our algorithm with different step reduction factors. For
each experiment, we have measured the number of iterations,
the running times and the initial and the final values of the

Figure 2. Original Honeycomb picture (top), VD for centroids (left) and
optimal VD after running the algorithm (right).

Figure 3. Original Cells of Elodea canadensis picture (top), VD for centroids
(left) and optimal VD after running the algorithm (right).

Figure 4. Original Crystal grain picture (top), VD for centroids (left) and
optimal VD after running the algorithm (right).
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Figure 5. Original Farmland plateau in Oxfordshire (UK) picture (top), VD
for centroids (left) and optimal VD after running the algorithm (right).

objective function. We have randomized the order in which
the sites are processed in each loop. Even though neither the
running times nor the optimal solution is dramatically affected
by this randomness, we have run the algorithm ten times for
each distance factor, and have taken the average of these ten
values for each parameter. In each case we have also computed
the relative cost, which is the number of iterations that are
necessary to gain one percentage point of accuracy in the
approximation. Tables I, II and III contain the results of those
measurements. The experiments have been carried out on a
personal computer equipped with an Intel Core i5 processor,
with 8 GB RAM, running under Windows 10 and the algorithm
has been implemented using the R language.

TABLE I. COMPUTATIONAL RESULTS FOR FIG. 3

Initial Υ 10.6%
Step reduction 0.05 0.15 0.30 0.50 0.70 0.85 0.95
# iterations 228 139 122 115 108 74 3
Time (secs.) 210 122 132 163 238 299 104
Final Υ 7.4% 6.5% 5.5% 5.1% 4.7% 5.8% 9.8%
Relative cost 71.2 33.9 23.9 20.9 18.3 15.4 3.7

TABLE II. COMPUTATIONAL RESULTS FOR FIG. 4

Initial Υ 20.4%
Step reduction 0.05 0.15 0.30 0.50 0.70 0.85 0.95
# iterations 266 117 119 98 102 59 1
Time (s) 204 91 107 130 216 247 49
Final Υ 16.4% 16.2% 13.3% 12% 10.6% 13% 20%
Relative cost 66.5 28 16.7 11.6 10.6 7.8 2.5

TABLE III. COMPUTATIONAL RESULTS FOR FIG. 5

Initial Υ 11.1%
Step reduction 0.05 0.15 0.30 0.50 0.70 0.85 0.95
# iterations 238 59 59 59 46 14 0
Time (secs.) 91 23 27 34 46 33 10
Final Υ 6.6% 7.5% 6.3% 5% 4.6% 8.1% 11.1%
Relative cost 53 16.4 12.2 9.6 7 4.6 −−

Fig. 6 shows the degree of approximation achieved by
Algorithm 1 for the images above. Although the level of
approximation varies substantially from one image to another,
note that the maximum approximation is attained in all cases
with a step reduction factor approximately equal to 0.7.

Besides the degree of approximation, we are also interested
in the amount of work done to achieve the desired approxima-
tion. Fig. 7 makes a graphical comparison of the relative cost

Figure 6. Degree of approximation as a function of the step reduction factor

computed in Tables I, II, and III. Note that the minimum cost is
attained in all cases when the step reduction factor approaches
1.

Figure 7. Relative cost as a function of the step reduction factor

IV. CONCLUSIONS AND FUTURE WORK
In this paper we have introduced the concept of imprecise

planar tesselation, in order to model images arising in many
practical situations. Our experiments show that imprecise pla-
nar tesselations can be approximated quite accurately with the
aid of Voronoi Diagrams, which provides a nice geometric
model for several types of images. Moreover, we have detected
a coincidence in relation with the step reduction factor: in
all four images, the best approximation is achieved when
the step reduction factor is approximately equal to 0.7, and
the algorithm performs more efficiently with a larger step
reduction factor, although the approximation decreases sharply.
This gives us some rough guidelines for tuning the step
reduction factor, depending on our priorities at each moment.
As a rule of thumb, a step reduction factor between 0.7 and
0.75 seems to be a good choice, leaning towards 0.7 if we want
more accuracy, or towards 0.75 if we need more efficiency.
However, these guidelines have to be confirmed by more
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extensive experiments.
There are many ways to improve our method for ap-

proximating imprecise planar tesselations. We can replace
our algorithm by a more sophisticated metaheuristic, such as
simulated annealing, or an evolutionary algorithm. Another
improvement may be derived by considering a more general
variant of the Inverse Voronoi Problem, where we would allow
more than one Voronoi cell per tile. This Generalized Inverse
Voronoi Problem has already been considered before in [13]
and [14], for instance, but these two papers have focused on the
exact version of the problem only. The approximated version
might yield better results, in the sense that a reasonably good
aproximation might be found with far fewer Voronoi generators
than those used in [13] and [14].
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