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Abstract—This work presents a new architecture for creating
virtual assistants on personal computers, building upon prior

work on deep learning neural networks, image processing, mixed-
initiative systems, and recommender systems. Recent progress
in virtual assistants enables them to converse with users and
interpret what the user sees. These systems can understand the
world in intuitive ways with neural networks, and make action
recommendations to the user. The assistant architecture in this
work is described at the component level. It interprets a computer
screen image in order to produce action recommendations to
assist the user. It can assist in automating various tasks such as
genetics research, computer programming, engaging with social
media, and legal research. The action recommendations are
personalized to the user, and are produced without integration
of the assistant into each individual application executing on the
computer. Recommendations can be accepted with a single mouse
click by the computer user.

Keywords–Recommender systems; Image processing; Deep
learning.

I. INTRODUCTION

Personal computers typically push the cognitive effort of
solving a problem or discovering a task onto the user, requiring
the user to take the initiative and tell the computer how to solve
the problem based upon hints provided by the computer. For
example, a search engine box presents a blank slate to the user,
who must decide what to type into the box, and similarly, an
error message can lead the user to search in a search engine
for a solution, rather than the computer offering a solution to
the problem.

Virtual assistants can take many forms, including assis-
tance hardware appliances [1], cloud-based assistants [2], and
application specific assistants [3]. Advances in artificial intel-
ligence have enabled the user to express her intent using voice
commands [4]–[12]. Additional recent advances in mobile
computing such as Google Now on Tap enable a mobile phone
to interpret a picture of the phone’s screen and recommend
relevant actions and information [13] [14]. This type of image
processing recommender system represents a step in the right
direction towards intelligent anticipatory computing. However,
Google Now on Tap is not available for personal computers,
where many users work, and it is not a proactive system. In
other words, Google Now on Tap waits for the user to request
recommendations by pressing a button. With the exception of
reminders, personal computer assistants, such as [15] and [16],
were designed to require the user to express intent in order to
access a recommendation [17].

Anticipatory computing with artificial intelligence can as-
sist users in real-time as they interact with personal computers
[18]. However, the basic mismatch in initiative between the
computer and user remains unresolved. Virtual assistants for

personal computers can converse with users more naturally
than ever, but cannot see what the user sees, or take the
initiative to understand the computer screen in some intuitive
way and provide action recommendations to the user. Current
efforts revolve around extracting the intent of the user from
the user’s input, transforming the identified intent into a query,
and then returning query results to the user. Some systems go
further and attempt to support interactive dialog, reminders,
and application launching. This command and dialog approach
to virtual assistants continues to place the onus of specifying
intent squarely onto the user. It is that cognitive pressure
applied to user by the assistant - the need to have the user
specify what the user wants - that is a limitation of existing
works.

To reduce the cognitive pressure on the user, this work
presents a virtual assistant called Automated Virtual Recom-
mendation Agent (AVRA). AVRA follows a Mixed-Initiative
(MI) approach to human-computer interaction, where a human
and virtual agent work together to achieve common goals. The
approach is to offload to AVRA some of the cognitive pressure
of understanding onscreen problems and goals visible on the
computer screen, and recommending actions to the user as
solutions.

At the heart of AVRA is a Recommender System (RS)
which provides action recommendations to the user on its own
initiative. This approach is different from contemporary user
assistance software, which typically provides a text box for
the user to enter a command as in [19], voice recognition to
speak commands to the computer as in [20], or other such
user-driven computer interaction mechanisms. The difference
in AVRA is that there is no dialog for user input. AVRA
observes the visible information on the computer screen to
produce recommendations on its own, and the user can accept
or reject the advice from AVRA.

The contribution of this work is to describe the architecture
of a virtual assistant with shallow application integration. Re-
lated work is discussed in Section III. The process of training
AVRA to recognize contexts and keywords is described in
Section IV. In Section V, AVRA is evaluated using execution
time, recall, precision, precision-recall and Receiver Operating
Characteristic (ROC) curves as metrics. Section VI contains
a summary of this work and a discussion of future research
directions.

II. SYSTEM OVERVIEW

AVRA follows a series of steps in order to produce recom-
mendations. The primary goal of providing action recommen-
dations based upon an image of the computer screen leads to
several sub-tasks such as context identification (Section II-A),
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Figure 1. AVRA’s graphical user interface showing recommendations to explore a specific gene name, a Java programming error, and compose an e-mail.

context-specific text filtering (Section II-B), context-specific
character-level classification of onscreeen text (Section II-C),
and objective ranking of all possible recommendations and re-
ranking these recommendations according to the user history
(Section II-D).

To provide the user with action recommendations, AVRA
begins by detecting the particular graphical contexts appearing
on the computer screen. This is followed by the detection of
tasks within those contexts for which the RS knows how to
help the user. Next, it ranks the recommendations for the user
so that they are customized to the user’s past behavior. Finally,
the RS presents three action recommendations to the user via
a Graphical User Interface (GUI), as shown in Figure 1. The
buttons are decorated with meaningful icons, making it clear
what action recommendations are being offered to the user,
and reducing the footprint of the GUI on the screen. Further
insight into why the recommendation was made is available
as a tooltip when the user’s mouse scrolls over a GUI button.
Interaction with the GUI is very simple, limiting the scope of
the interaction between the RS and the user. When the user
clicks on one of the GUI buttons, the action corresponding to
the solution recommendation in that button is executed. These
actions may be email composition, opening a browser window
to a particular website, opening a document, etc.

Action recommendations are presented as binary choices
in the GUI, limiting the scope of user feedback to clicking or
not clicking buttons. This simple interaction makes the user
experience significantly more intuitive than a voice command
system, because the user does not know with certainty when
issuing a voice command that the computer will comply
correctly with the command, whereas AVRA advertises what
actions it proposes to perform prior to the user command-
ing the action to be performed. Furthermore, the GUI only
updates the recommendations when the mouse is stationary
and not hovering over the GUI. This way, if the user sees a
recommendation in the GUI and begins to move the mouse
toward the buttons, the recommendation will not be replaced,
as this would likely annoy the user. Similarly, if the user
is pondering a recommendation (perhaps reading the tooltip
text while hovering the mouse over a button in the GUI), the
action recommendation should not be replaced. This type of
confidence building is important in MI system design and is
discussed in [21] and [22].

Figure 2. AVRA System Overview.

Like many artificial intelligence platforms, AVRA s im-

plemented as a web service. Each client repeatedly captures
an image of the screen which is then interpreted by a server-
side program. The server processes the image by parsing and
classifying the text and graphics on the computer screen. The
server responds to the client’s image submission with a set of
3 personalized action recommendations presented to the user.

The client consists of components A and I in Figure 2,
while the server implements components B − H . The ad-
vantages of placing most system components on the server
in a thin-client design include the ability to leverage server-
side GPU acceleration, having the user profile accessible from
multiple computers as a user moves from machine to machine,
and having access to the user profiles of many users for future
work on collaborative filtering of recommendations.

This approach to assisting the user generalizes to non-
programming domains where the user researches items that
appear onscreen. For example, when the user is browsing social
media, the RS can detect the names of friends and recommend
an action such as composing an email to the detected contact
when that friend’s name appears onscreen. Another example
developed in AVRA is genetic research, where the user is
reading a PDF document involving genetic research. The RS
can detect this genetic research context, and propose to open
a browser window to a web page detailing the relationship
between a gene name recognized on the computer screen and
other genes.

A. Context Identification

A computer screen image may contain graphical informa-
tion regarding several topics. For example, a terminal window
alongside a browser window conveys graphical information
on these topic. Each topic detected in the computer screen
image is called a context, and each context is recognized by
a trained Convolutional Neural Network (CNN). The image
features within a context can be the contents of a program
such as a document format, or the look and feel of a program
such as menus and color schemes. Figure 2 shows that each
screen capture is parsed by a CNN (Figure 2 B) to identify
what contexts should be explored for each image. The context
recognition CNN that steers recommendation generation is
not tightly integrated into each specific application producing
onscreen information. Rather, an image of the computer screen
is processed by the CNN classifier to detect contexts, and these
detected contexts guide text filtering and classification units,
which search the onscreen text for keywords based upon which
AVRA can recommend actions. This shallow integration of an
RS into the programs executing on a personal computer system
is novel. Because of this shallow integration approach, AVRA
has visibility over all programs visible to the user, and can
therefore help with multitasking, whereas an isolated program
restricted to text or voice commands has insufficient visibility
into the workspace (i.e., the computer screen) to make such
recommendations. Effectively, AVRA sees what the user sees.

In AVRA, the classifier can make more than one prediction
per image. Multiple different contexts can be present on the
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computer screen at the same time, and therefore consider
that one image of the computer screen containing side-by-
side windows of the Eclipse IDE and a console window could
trigger two predictions which may both be accurate.

Through supervised learning, AVRA is initialized with
knowledge of context-detection for certain domains, context-
specific textual terms (called keywords), and action recom-
mendations corresponding to each possible context-specific
keyword detection.

B. Text Filtering

Optical Character Recognition (OCR) (Figure 2 E) con-
verts the screen image (Figure 2 A) into a string of text
to be parsed. The raw text from the OCR system (Figure 2
E) is cut into many small text segments, which are then
very quickly filtered (Figure 2 F ), selecting for a minimum
similarity between the candidate text and keywords of each
detected context (Figure 2 B). This filtering step is necessary
to reduce the number of text segments reaching the relatively
slow text classifier (Figure 2 G).

C. Character-level Text Classification

A Deep Neural Network (DNN) for each activated context
(Figure 2 G) processes the text output of the text filtering stage
(Figure 2 F ) using character-level neural network classification
to detect keywords within the text that are associated with
recommendations stored in the RS database. Each DNN is
trained by processing an image of the keyword text through
OCR software (generated using a text-to-image generator),
and then encoding the results into vectors that include letter
frequency information. The training process is described in
[23], and the goal of the approach is to robustly detect
keywords even in the presence of OCR output spelling errors
and frame-shifts in the text.

D. Recommender System

The recommendations generated by the DNNs are filtered
(Figure 2 H) to identify the top 3 ranked recommendations
to be presented in the user interface (Figure 2 I). The user
may accept recommendations by clicking a button in the user
interface, causing the corresponding action(s) to be executed
on the computer (Figure 2 D) and the user history is also
updated (Figure 2 C).

AVRA provides personalized recommendations that adapt
over time to the changing behavior of the user. The RS learns
from the history of user interactions with AVRA to adapt
recommendations to the user’s needs. Employing a virtual
assistant in this way is a novel approach to helping the user
with tasks. In the programming example, AVRA can share
with the user the task of identifying the error message on
the computer screen, looking up actions which may help the
user with the error, and identifying the most relevant action
recommendations. This approach puts little or no pressure on
the mind of the user in the course of normal computer use.

AVRA includes a probabilistic hybrid RS model, where
the RS model combines the classification confidence level as-
sociated with each action recommendation with the confidence
level associated to the each context detected on the computer
screen. These two confidence levels are further combined with
the user’s preferences (history of clicks and rejections of action
recommendations). Following this adaptive RS approach, the

recommendations generated by a given image of the computer
screen will change over time based upon the actions of the
user.

III. RELATED WORK

Using reinforcement learning, specifically a deep Q-
network, [24] developed a deep learning artificial intelligence
system that can play many different video games using com-
puter screen images as input and joystick positions as the
output. The breadth of different applications played by the
same neural network was an impressive validation of the
power of reinforcement learning. The overlap between AVRA
and [24] is the use of a CNN to process the image of the
screen, and then using fully connected layers of a DNN to
make a decision. In the case of AVRA, the DNN output is
a recommendation to be ranked, whereas in [24] the DNN
outputs represent joystick positions. Also, in [24] the goal
of the CNN in the system was regression, and the CNN
did not perform pooling (down-sampling), while in contrast
AVRA’s CNN does perform down-sampling via pooling, as the
AVRA CNN is outputting a classification rather than a target
score. Furthermore, unlike [24], AVRA’s CNN is connected
to multiple DNNs in a low resolution way (either activating
a DNN or not), while the CNN from [24] were connected
directly into the fully connected layers of the DNN.

The shallow integration between AVRA and the applica-
tions executing on the user’s computer relates to prior work
on high-level query processing proposed in [25]. The concept
in [25] is that shallow clues in a query can hint at the correct
databases to search. Therefore, a query to many databases
need not be written for each database; rather, a high-level
intermediate query engine can dynamically steer the query to
the right databases. In AVRA, the shallow search is performed
by a CNN to detect contexts, and then DNNs, along with
filtering algorithms and OCR, perform deeper context-driven
analysis. The key information to understand from [25] in
this work is that the low-level context by context search was
bypassed, and instead a dynamic high-level context search was
achieved.

A. Recommender Systems

An RS must score and rank recommendations in order
to present high-quality options to the user. Content-Based
Filtering (CBF) is an approach where the recommendation
score is increased if related items were rated positively in the
past. CBF makes it more likely for items and topics preferred
in the past to be recommended in the future [26] [27]. As
in [28], this work takes the approach to modify the score of
a recommendation based on both topic and item similarity.
Similar to [29], in which the user’s tagging history informs
the likelihood of recommending an item, AVRA uses the
user’s history of accepting and rejecting recommendations to
modify the likelihood of new recommendations over time.
Specifically, action recommendations in AVRA are biased
toward actions and contexts where the user clicked to accept a
recommendation. To a smaller extent action recommendations
are negatively biased toward recommendations that were not
accepted by the user. AVRA includes a probabilistic hybrid RS
model similar to [30].

Combining CBF with a taxonomic record of user prefer-
ences improves the quality of recommendations [31]. AVRA
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follows this approach by scoring recommendations based upon
context, while taking into account user preferences. Similarly,
[32] combines CBF with knowledge of the domain. Ontology
and taxonomy approaches to modeling recommendation scores
encapsulates entity relationships. An ontology-based approach
could be incorporated into AVRA’s RS in addition to the
described context-based CBF approach.

Context-aware recommender systems can focus on using
the context of the user (as in [33] in which the user profile
can guide the recommendation score) and/or the context of
the recommendation (as in [34]) to modulate recommendation
scores. In this work, context is approached from the perspective
of [34], where recommendations can be annotated with ad-
ditional situation-based information called the context. Rather
than interpreting the computer screen in every possible context,
this work is about narrowing down the search for onscreen
meaning to a select few contexts.

The cold start problem is a situation where the RS has
insufficient information about a user to make high-quality rec-
ommendations [35]. This quality problem is less pronounced
in AVRA as the recommendations are strongly driven by
onscreen activity, which leads naturally to an initial set of
recommendations that are adjusted over time based upon clicks
or recommendation rejections. The review article [35] provides
an overview of the RS state of the art. RS recommendation
quality is discussed in the literature, and some key ideas are
repeated here. Reverb [36] is an IDE plug-in that recommends
previously visited web pages related to code being written
by a programmer in the IDE. The idea is to reduce false-
positive recommendations when offering the programmer a
recipe to look up as she is writing a program. This increase
in quality is accomplished by only recommending pages that
have been previously visited by the user. A predecessor of
Reverb is Fishtail [37], which recommends web pages for
the same purpose, but without restricting recommendations
using the user history as Reverb does. The consequence of
recommending pages based only upon keywords is lower
quality recommendations [38]. Another interesting example
from application-specific RS is [3], an MI system that works in
tandem with the programmer to expose programming recipes
and other useful programming tips. Whereas [3] [37] [36] and
others integrate into specific programs, AVRA was designed to
process images of the computer screen as a whole, loosening
the integration between the applications and RS.

An RS for personal computers that learns and predicts
actions was described in [39]. In that work, a distinction
is made between types of information extracted by the RS:
action features describe items that happened recently on the
computer, while state features describe the current state of
the machine. Examples of action features are a history of
program calls, the stream of keyboard characters, and onscreen
streaming video. Examples of state features are a list of
programs that are currently running, the current directory,
and the current language settings. In [40], the goal of the
RS is prediction of the next command to be typed into a
terminal program. Recommendations from this type of RS
are based upon previous input (action features), but cannot
see the current or past output resulting from the execution
of these commands. AVRA seeks out information from many
different programs visible onscreen, while command prediction
only detects the command history within one program. An

unrelated feature in [40] that influenced the design of AVRA
is the mapping of recommendations to function keys. In [40]
the keyboard keys F1 to F5 were mapped to five different
command recommendations presented onscreen to the user.
Picking up on this interface design, AVRA uses three onscreen
buttons to expose recommendations.

The RS user interface design and behavior is a major driver
of user adoption, and is a factor in the user’s trust of the RS
recommendations [38]. Furthermore, exposing the capability
to explore and comprehend recommendations in the GUI can
be a negative influence on the user experience [38]. The
virtual assistant “Clippy” from Microsoft Word is an example
of good RS design combined with bad GUI design [38].
Clippy was considered by many users to be too intrusive, even
though the recommendations provided were typically useful
[38]. In contrast, less intrusive features such as spellcheck,
autocomplete and autocorrect are now widely adopted in many
technologies. Two independent factors influencing GUI design
in RS are obviousness of the recommendations and cognitive
effort required to use the interface [38]. Cognitive effort in
AVRA is reduced by limiting the number of buttons in the GUI,
restricting the action recommendation type, and restricting the
complexity of the action recommendations. The obviousness of
the recommendations in the GUI is enhanced by the graphical
icons used to symbolize various tasks. For example, a mail
icon next to a person’s name (e.g., “Daniel”) is more obvious
than the sentence “Compose an e-mail to Daniel”. The former
contains only one word (the name), and can be interpreted at
a glance without reading into the text of the recommendation
with full focus.

AVRA was designed to continuously prompt the user. Sim-
ilarly, [41] presents a smart home application for assisting the
elderly that involves prompting the user many times. To limit
the negative effects of repeated prompting, the system learns
rules that define when activities normally occur and utilizes
these rules to automate prompting. Whereas [41] focuses on
waiting to prompt until the notification is needed, AVRA
focuses on recommending quickly based upon the current
content on the computer screen, or not at all.

B. Mixed Initiative

Iterative sensemaking is a process of working with data
sets of semi-reliable structure to produce intermediate results
along the way to a conclusion [42] [43]. Each sensemaking
iteration involves two steps: foraging and synthesis. These
steps are easier to perform quickly with assistance from a
predictive intelligent system, such as an MI system. An MI
system assists a human analyst to derive and take advantage
of insights into data. In MI systems, the breakdown of work
between the computer and the human focuses on the strength
of each participant in the iterative problem solving activity
[44]. The goal of the collaboration between human and virtual
agent is producing insights leading to one or more conclusions
regarding the data [22]. AVRA’s design was based upon
recent work that recommends the desired characteristics for
MI systems [45] [22].

Graphics-based interaction with the MI system helps the
user to more effectively concentrate on decision making [46].
AVRA’s 3 button UI design was influenced by similar interface
designs, including the “Smart Reply” feature of Google Inbox,
which offers up to 3 candidate email message replies as draft

4Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-577-7

VISUAL 2017 : The Second International Conference on Applications and Systems of Visual Paradigms



responses [47]. Unlike Smart Reply, AVRA’s UI needs to
specify multiple items per button: an action, a short snippet of
text describing the data used by the action, and a longer tooltip
message about the recommended action. The representation of
these 3 items per button is accomplished using action icons in
the GUI rather than action description text, saving real estate
in the GUI that is better utilized by the action data description
text. The tooltip hides the longer full-text description of the
recommended action. The tooltip text feature allows the user to
glean additional insight by reading a longer text explanation
for the proposed action recommendation. Having compacted
the form factor of the GUI, there is a tendency to increase
the number of GUI buttons. However, including too many
buttons in the GUI would create a paradox of choice where
the interface begins adding cognitive pressure onto the user by
forcing her to think about many possible options, rather than
achieving the goal this system was designed for, which is to
reduce that cognitive pressure [48].

IV. RECOMMENDATION LEARNING

AVRA contains processes for supervised learning of new
contexts through CNN training, and for learning new keywords
for existing contexts through DNN training. The RS associates
each DNN keyword with one or more recommendation actions.
AVRA can also learn new information from unsupervised
learning of contexts and keywords.

A. Supervised Context Learning

One expects that a CNN recognizing activities on the
computer screen requires thousands of classes to represent
the wide variety of activities taking place on the computer.
Training the CNN through supervised learning to recognize a
new context requires many example images. Typically, several
hundred representative images of a context are required to train
the CNN. To acquire images that look like a particular context
(e.g., the Eclipse IDE) an Internet image scraper was used to
pull many high-resolution images from online image search
engines based upon DNN keywords within the context, and
adjusted these keywords manually to improve the quality of
the scraped images (e.g., “eclipse IDE java programming”).
The scraper was implemented in nodejs using the images-
scraper library [49], and filtered results by file type and file
name to exclude unhelpful or damaged images. The resulting
many thousands of images for each context were reduced
with automated duplicate image deletion, followed by further
manual inspection. Images were selected that best represent
the context to the person selecting the images. A second
source of training data was locally generated training images.
In order to test out the feasibility of unsupervised learning,
AVRA’s image capture program was executed for several days
in the background as the computer was used for normal work
activities, in order to generate sufficient data to browse and
extract relevant images. Once the data set of representative
images was finalized, the supervised training was ready to
proceed.

Cross-validation is the fitness measure used for supervised
context learning during CNN training. Transfer learning was
used to decrease CNN training time and increase classification
accuracy [50]. The transfer learning was implemented using
the inception v3 CNN [51], taking advantage of feature de-
tection capabilities of image recognition software trained on
large sets of images.

TABLE I. CNN CONFUSION MATRIX FOR K=1% RESULTED IN HIGH
RECALL WITH LOW PRECISION.

Predicted Recall

Actual

A B C D E F G H I J K

A 5 5 5 0 4 4 0 0 0 0 0 1

B 2 5 5 2 5 5 0 0 0 0 0 1

C 0 3 5 0 5 5 0 0 0 0 0 1

D 0 0 0 5 2 0 1 0 1 0 1 1

E 0 4 1 2 5 0 0 0 0 0 0 1

F 0 0 5 5 5 5 0 0 0 0 0 1

G 0 0 0 0 0 0 5 0 0 0 4 1

H 0 0 0 0 0 0 0 5 0 1 0 1

I 0 0 0 0 0 0 3 1 5 4 0 1

J 0 0 0 0 0 0 2 3 2 5 0 1

K 0 0 0 0 0 0 3 0 0 0 5 1

Precision .71 .29 .24 .36 .19 .26 .36 .56 .63 .50 .50

To provide a motivating example of AVRA in action, the
CNN was trained on 9654 images in total, covering 11 different
contexts. A graph of the training and cross-validation accuracy
at each epoch during the CNN training is presented in Figure 3,
produced with inception’s retraining code [51]. The retraining
configuration included 4000 training steps. Figure 3 shows
that validation accuracy lags training accuracy, as expected.
The shape of the learning graph is also as expected, with an
initial high rate of learning followed by slower incremental
improvements in accuracy. The performance of the CNN was
measured in terms of recall and precision when trained to
identify several contexts. The testing images (5 images per
class for 11 classes) were not included in the training dataset.
The testing data had 1 class per image. The results are
presented in a confusion table (Table I).

Figure 3. Training and validation classification accuracy during the 4000
epochs of the CNN training process. The final test accuracy was 92.20%

The testing dataset used to produce the confusion matrix
of Table I only contained images with one class per image.
Hyperparameter K of the CNN is a classification threshold
that tunes AVRA to be more conservative (higher threshold)
or more open to evaluating hypotheses (lower threshold). The
recall observed in Table I is high at the expense of precision.
There is a fundamental trade-off between recall and precision
determined by the threshold K . This is observed in Table II,
where K=95%. With such a high requirement for certainty
that a context has been detected, there is a higher precision,
but only when the context is detected. The cost of increasing
K is missing the context completely, costing the algorithm
on both the precision and the recall metrics. Because false
positive context detection is generally less damaging to the
recommendation quality than false negative context detection,
AVRA is configured with a low K threshold as in Table I,
rather than a high value as in Table II.
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TABLE II. CNN CONFUSION MATRIX FOR K=95% RESULTED IN LOW
RECALL WITH HIGH PRECISION.

Predicted Recall

Actual

A B C D E F G H I J K

A 0 0 0 0 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0 0 0 0

D 0 0 0 3 0 0 0 0 0 0 0 0.6

E 0 0 0 0 1 0 0 0 0 0 0 0.2

F 0 0 0 0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 0 2 0 0 0 0 0.4

H 0 0 0 0 0 0 0 5 0 0 0 1

I 0 0 0 0 0 0 0 0 1 0 0 0.2

J 0 0 0 0 0 0 0 0 0 2 0 0.4

K 0 0 0 0 0 0 0 0 0 0 3 0.6

Precision 0 0 0 1 1 0 1 1 1 1 1

B. Supervised Keyword Learning

The DNN for each context was trained to recognize
keywords within filtered OCR output text. The purpose of
the DNN is to detect keywords in the presence of OCR
transcription errors. The classification task is accomplished
through a process of learning the mistakes made by the OCR
system. More specifically, AVRA generates test images for
each keyword, feeding the images through the OCR software
to obtain string data. Next, AVRA encodes the error-laden
OCR string output as binary ASCII characters into numerical
vectors, which include letter frequency information in the
encoding scheme [23]. The input vectors for DNN training
were produced using this approach, while the index of each
keyword within the RS is the output vector corresponding to
a particular recommendation.

C. Unsupervised Keyword and Context Learning

Generating recommendations from unsupervised learning
involves learning CNN contexts as well as DNN keyword
sets. AVRA’s unsupervised learning function is to search for
an onscreen keyword that the user searched for in the past
(verbatim) after seeing it on the screen. This approach will be
discussed in upcoming work.

V. PERFORMANCE EVALUATION

Execution time for the OpenMP and multicore approaches
are reported here. Next, GP-GPU acceleration with CUDA is
presented. Finally, recall, precision, precision-recall and ROC
curves are presented.

1) OpenMP and Multicore DNN Training Acceleration:
Each DNN in AVRA was trained for 150 epochs, and each
epoch required approximately 250 seconds to complete on a
low cost VM. This execution time is related to the size of the
training and testing sets, and so these figures are different for
each DNN. Assuming 50 DNNs with 150 epochs each, and an
average epoch execution time of 250 seconds, the training time
on a single VM would be: (50 DNNs) x (150 epochs) x (250
seconds) which is approximately 520 hours. This slow training
and classification did not provide a reasonable response time
at scale. Even if every DNN is trained on a different dedicated
VM, the execution time becomes (150 epochs) x (250 seconds)
which is approximately 10.5 hours. Reducing the number of
epochs would reduce the accuracy of the DNN classification.
This leaves the epoch execution time as the variable to be
reduced.

OpenMP is a shared memory parallel programming API
suitable for parallelizing applications on a multiprocessor
computer [52]. Theano is compatible with OpenMP and ships

TABLE III. THEANO’S OPENMP BENCHMARK, TIMED WITH A VEC-
TOR OF 200,000 ELEMENTS AND 4GB RAM

OpenMP CPU Operation Without With Speedup

Threads Cores Type OpenMP (s) OpenMP (s)

1 2 Fast 0.000113 0.000099 1.14

2 2 Fast 0.000110 0.000066 1.67

3 2 Fast 0.000114 0.000137 0.83

4 2 Fast 0.000111 0.000128 0.87

1 2 Slow 0.006590 0.006091 1.08

2 2 Slow 0.006208 0.003060 2.03

3 2 Slow 0.006107 0.004127 1.48

4 2 Slow 0.006253 0.003738 1.67

TABLE IV. DNN TRAINING TIME PER EPOCH. THE AVERAGE BASE-
LINE EXECUTION TIME WAS 257.

OpenMP CPU RAM Epoch Training Time Speedup from

Threads Cores (GB) (s) Average Baseline

1 2 4 0 263 N/A

1 2 4 1 251 N/A

2 2 4 0 196 1.3

2 2 4 1 220 1.2

3 2 4 0 151 1.7

3 2 4 1 173 1.5

with a benchmark for testing the speedup provided by OpenMP
[53]. This benchmark was used to generate the data in Table III
which is a generic view of accelerating theano with OpenMP.

The results from theano’s benchmark indicate that config-
uring theano with 2 OpenMP threads is the best option for
reducing epoch execution time. Perhaps this result is a product
of the VM having 2 CPUs and OpenMP mapping one OpenMP
thread to each CPU. However, testing with AVRA’s DNN code
reported in Table IV indicates that 3 OpenMP threads is best.
This disagreement between the generic benchmark and the
AVRA code itself is a reminder that often benchmarks are a
poor proxy for testing performance improvements in computer
architecture [54]. Note that even though a 2x speedup was
achieved by using OpenMP, this only reduced the per-DNN
execution time from 10.5 hours down to 5.25 hours (> 150s
/ training epoch), which is still impractically slow. In the next
section GP-GPU acceleration is leveraged to further reduce the
per-epoch execution time of DNN training.

2) DNN Training Acceleration using GPU and CUDA: An
AWS instance of type g2.2xlarge with a GRID K520 GPU was
configured with an existing AMI containing theano for cuda
6.5 [55]. The system was tested with the same DNN code and
data used to produce the data in Table IV, although OpenMP
was not enabled.

CUDA is a parallel computing programming model which
enables GPU hardware acceleration of computations [56].
The per-epoch execution time was reduced from 151 seconds
without the using CUDA and the GPU, to 6.5 seconds when the
GPU is used. This represents a 23x speedup relative to the best
OpenMP result in Table IV. With a 6.5 second epoch execution
time, training a DNN can take (6.5 seconds) x (150 epochs)
which is approximately 16 minutes and 15 seconds. Note that
the epoch execution time is highly variable based upon the size
of the training data, and the number of classes trained into the
DNN. With OpenMP, multicore, and GPU acceleration, the
time required to interpret the computer screen with AVRA did
not scale as the number of DNNs increased. With one DNN the
latency from changes on the screen to updates in the GUI was
approximately 40 seconds. Execution time scaled linearly so
that 10 DNNs required 400s to analyze the screen and update
the GUI. This challenge led to a change in approach, leaving
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behind the slow but precise DNNs as future work, and instead
using the text filter as the main text classifier in AVRA.

3) Execution Time Measurement for AVRA: The design is
shown in Figure 4, removing the DNNs and connecting the
output of the text filter to the RS. The image capturing and
OCR in AVRA were modified as well. Instead of capturing the
OCR of the whole screen, the fullscreen image was processed
into text in slices, with each slice processed in a separate
thread. The advantage of this approach was much faster OCR,
but the downside was that this approach would miss text sliced
at the lines between slices where the image was cut. To counter
this, a second set of image slices offset by half of the slice
height was also processed by OCR as well. This ensured that
no onscreen text was missed by the OCR process. Figure
5 shows how a screen can be cut into 2n − 1 slices. Each
thread is responsible for extracting text from its image slice
and uploading the text to the server. Testing various settings
for n yielded that n = 6 had the lowest execution time on
average for a computer screen of size 4800x3600 pixels using
an Intel Core i7 3.6GHz CPU, 16GB DDR3 RAM, an SSD
hard disk, and 2 GeForce GTX 770 GPUs. For 5 trials with
fullscreen color images, n = 6 (11 image slices) led to an
OCR execution time for a given slice of 4.4± 1.5 seconds per
slice, and an overall OCR execution time of 8.5± 1.4 seconds
per image. For 5 trials with fullscreen grayscale images, n = 6
(11 image slices) led to an execution time of 2.9±0.5 seconds
per slice, and an overall execution time of 5.4 ± 0.9 seconds
per image. The advantage of using color images was increased
CNN precision and recall. To balance the response time and
scalability with high recall, AVRA was set to process color
images to maintain the recall level at the expense of execution
time.

Figure 4. AVRA System Overview, after removing DNN to reduce execution
time.

Figure 5. OCR capture process, splitting fulscreen images into 2n−1 slices for
executing overlapping subtasks in parallel threads to reduce OCR execution
time.

Consider an example where AVRA is trained to recognize
11 contexts containing 2,103 keywords overall. Tracking the
flow of information through the color image processing design
described above, and rounding to the nearest second, an image
captured at time 0 passed enough information for the CNN
to complete context recognition after 4 seconds, and the first

context-filtered OCR results emerge from the text filter one
second later. The RS results were available 4 seconds later,
with another 2 seconds required to update the GUI. The
minimum time between information appearing onscreen and
a recommendation displaying on the GUI was therefore 11
seconds.

Improving on this design, the RS and filter were moved into
the same file, obviating the database communication between
these two modules. Tracking the flow of information through
the new design and again rounding to the nearest second,
an image captured at time 0 passed enough information for
the CNN to complete context recognition after 4 seconds,
and the first context-filtered OCR results emerged from the
text filter combined with the RS after 2 seconds, with an
average of less than one second required to update the GUI.
The minimum time between information appearing onscreen
and a recommendation displaying on the GUI was therefore 6
seconds.

The end-to-end execution time from detection onscreen to
recommendation in a button was measured. To collect data
from AVRA, the search text “looking for restaurant English
text” was inserted into the Google Images API along with the
restriction that the dimensions of the image results be exactly
1080x1920 pixels, corresponding to the dimensions of the
mobile phone used for testing. The first 50 results were saved
as a dataset of images referred to as SMALL IMAGES.

To simulate the latency of image capture, a region of the
desktop 1080x1920 pixels was captured into a file for each
processed image. After this simulated image capture delay,
the CNN and OCR processes of AVRA were passed one
of the static images from SMALL IMAGES. The total
execution time required to fully process all 50 images of
SMALL IMAGES through the OCR, CNN, text filter, RS,
and GUI was 176.0 seconds. The average execution time per
image was 3.52± 1.51 seconds.

To ensure that AVRA can execute relatively quickly when
many contexts have been trained into the CNN, ten latency
samples were recorded for AVRA CNNs trained with 5, 50,
100, 200, and 400 contexts. Each sample was obtained by
recording the CNN output after processing an image with
dimensions 4800x3600 pixels using a the same Intel Core i7-
based system described above. The results, shown in Figure
6, reveal that the execution time grows with the number
of added contexts. However, the incremental cost of adding
contexts decreases with the number of contexts added, as
shown in Figure 7. Furthermore, the execution time at 400
contexts remained low, at 3.97 ± 0.10 seconds. In Figure 6,
the vertical axis shows the execution time required to process
one 4800x3600 pixel image using AVRA’s CNN. Results for
5, 50, 100, 200, and 400 contexts are shown with error bars
indicating the standard deviation for each measurement. A
moving average line is added to the figure, revealing with a
decreasing slope that the latency cost of adding more contexts
is decreasing. In Figure 7, the vertical axis shows the execution
time required to process one image, divided by the number of
contexts trained into the CNN. Results for 5, 50, 100, 200, and
400 contexts are shown.

4) Recall, Precision, Precision-Recall and ROC Curve:
It is interesting to observe the capabilities of AVRA regarding
overlapping images because a program like AVRA must recog-
nize onscreen items such as program windows that may overlap
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Figure 6. CNN latency as number of context increases.

Figure 7. CNN latency per context.

when observed. AVRA recognizes multiple items in one image.
For example, as shown in Figure 8, AVRA analyzing an image
containing both a terminal window and an Eclipse IDE window
leads to the recognition of both by the CNN. AVRA sometimes
recognizes both contexts when they are partially occluded, but
when overlap is high the occluded context (eclipse) was not
recognized. However, in some cases the occluded context (in
this case a terminal window) was recognized by the CNN.
When two windows appeared side by side, the CNN usually
recognized the context associated with each one.

Figure 8. AVRA’s CNN recognizing content in side by side windows. CNN
output score was: eclipse (79.64%), console (12.73%), facebook (3.74%).

To observe the precision and recall for AVRA, it was tested
by displaying to the system images on the full screen area one
at a time. There were 50 4800x3600 pixel fullscreen desktop
images, which contained one of two contexts (eclipse or
console) and one specific keyword known to the CNN for that
context. The images were collected from real examples, and

TABLE V. CONFUSION MATRIX FOR ASSESSING AVRA.

Predicted
Recall

CA ∧ KB ¬CA ∨ ¬KB

Actual
CA ∧KB 36 14 0.7200

¬CA ∨ ¬KB 0 50

Precision 1.0000

so they sometimes contained several other keywords trained
into AVRA for the context in question. For the eclipse context,
the keyword was import, and for the console context the
keyword was apt-get. Note that in eclipse the text is blue
on a white background, and in a terminal the text is white on
a black background. Neither of these scenarios is the typical
OCR situation of black text on a white background. These
examples were selected because they are a more realistic
sample of text on a desktop computer than the obvious case of
black text on a white background. To test for TN results 50
additional images containing no relevant context or keyword
in them were also presented to AVRA one at a time. These 50
4800x3600 images were collected from Google Images using
the keywords “my pictures” and the photo type filter was set
to “photo”. No FP examples were recorded for AVRA during
the experiment, as the chance that a context and keyword are
incorrectly selected by AVRA at the same time is very small.

The confusion matrix for the recorded observations is
presented in Table V, after AVRA was trained on 11 classes.
Samples either contained context CA and keyword KB , or
they did not (¬CA∨¬KB). The testing data had 25 images per
class, with 1 class per testing image, one relevant keyword per
image, and classification threshold K=1% To generate an ROC
curve for the collected AVRA data, a binary classification mea-
sure was used. Any sample with a TP results was associated
with the ground truth state [1, 0], and any sample with no TP
results was associated with the ground truth state [0, 1]. The
classifier guess was set to [1, 0] in cases where TP or FP was
observed. Otherwise the classifier guess for the sample was set
to the state [0, 1]. The ground truth and classifier guesses were
used to create the ROC curve of Figure 9, and the Precision-
Recall curve of Figure 10. In 5 of the 50 images containing
recommendable information, the recommendation was picked
up by the text filter but was eliminated by the RS and 3 or
more items the RS could recommend ranked higher than the
keyword of interest.

Figure 9. ROC curve for AVRA binary classification experiment

The following is an example of the weaknesses of AVRA’s
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Figure 10. Precision-Recall curve for AVRA binary classification experiment

strict unsupervised learning approach described above. Due
to the strict nature of the learning algorithm, when AVRA
observes the user subtracting numbers in a calculator, the
exact sequence of operations (e.g., 25, 000 ∗ 4) is stored as
a pattern to be recommended later on, rather than being
learned symbolically as the multiplication of two numbers.
Another limitation of the current approach to unsupervised
learning is the keyword lexicon. At this time, only keywords
already present in the word embedding model can be added as
keywords in one of AVRA’s DNNs. AVRA sometimes misses
the context or keyword information, or has higher confidence
in unhelpful recommendations than detected helpful recom-
mendations. Two overall challenges in developing AVRA were
poor classification of keywords with very short text length
(e.g., the terminal command “ls”), and low context detection
confidence (e.g., 2% confidence in the correct class). These
cases were rare but noticeable. Perhaps the short keyword
recognition could be resolved by modifying the DNN input
filter hyperparameters. The low confidence context detection
cases may be mitigated by collecting additional image data for
context training.

VI. CONCLUSION

This work presented the overall design of AVRA, a virtual
assistant for personal computer users. Measures of perfor-
mance and measures of effectiveness were defined, and the
design of AVRA’s Mixed Initiative qualities was discussed.
The performance of AVRA and a similar closed source
commercial tool were recorded, and these two tools were
compared in the context of the aforementioned requirements.
The thesis statement claimed that a deep learning artificial
intelligence can provide action recommendations related to
onscreen messages. This work explained at a high level how
action recommendations can be provided within a reasonable
response time, and how these recommendations can be acted
upon with a single mouse click.

An architecture for a deep learning recommender system
for personal computer users was described in this work.
Action recommendations produced by this design are person-
alized to the user and are generated in real-time. The AVRA
system mines information from screen capture data, rather
than interface with individual applications. Recommendations
are presented to the user in an intuitive button-based user
interface. The architecture described in this work can provide

the foundation for further research into recommender system
for personal computer users.

Future work planned for AVRA includes collaborative
filtering and related privacy considerations, the expansion
of AVRA’s input processing and modeling capabilities, and
unsupervised learning. Applying content-based image recog-
nition and semantic segmentation of images for face and
object classification within a context (and generating related
recommendations) is an interesting area to explore as well.
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