
Model-Based 3D Visual Tracking of Rigid Bodies

using Distance Transform

Marios Loizou

Department of Computer Science
University of Cyprus

1 Panepistimiou Avenue, Aglantzia
Nicosia, Cyprus

Email: mloizo11@cs.ucy.ac.cy

Paris Kaimakis

School of Sciences
University of Central Lancashire Cyprus

12 - 14 University Avenue, Pyla
Larnaka, Cyprus

Email: pkaimakis@uclan.ac.uk

Abstract—The core idea of model-based 3D tracking is that of
continuously estimating the pose parameters of a 3D object
throughout a sequence of images, e.g., a video feed. Here, we
present an edge-based method for achieving 3D object tracking,
via Gauss-Newton optimization. We rely on natural features
observations, like edges, for the detection of interest points and by
using the 3D pose of the object in the previous frame, we correctly
estimate its new 3D position and orientation, in real-time. There
is also a C++ implementation of the visual tracking system, with
the use of the OpenCV library, which can be found in our GitHub
repository (https://github.com/marios2019/Visual Tracking).

Keywords–Object 3D tracking; Model-based; Gauss-Newton
optimization; Distance Transform

I. INTRODUCTION AND RELATED WORK
Object 3D tracking is used in a variety of Computer

Vision applications, like Augmented Reality [1] where virtual
objects are super-imposed to the scene and in Robot Object
Manipulation [2] [3] where the target object is manipulated
with the use of a mechanical device. Also, 3D tracking enables
cultural heritage reconstruction applications, where usually
through a mobile device the user can reanimate and view
ancient architecture. In all of these cases, the goal is to estimate
the 3D pose (position and orientation) of the object with
respect to the observer.

There are many approaches to 3D tracking, depending on
the targeted application and the means that are being used [4]
[5]. Techniques like [6] and [7], fall into the marker-based
tracking category, were they make use of point and planar
markers, that are carefully placed in the scene by the user.
Because of their pattern uniqueness, they can be identified
as image features, which lead to 2D-3D correspondences
with high precision. The latter provides reliable measurements
for pose estimation. Despite their good performance, marker-
based tracking techniques require engineering the environment,
which sometimes the application’s end-users dislike and some-
times is impossible, e.g., outdoor environments. By contrast,
3D tracking by detection techniques, are based on natural
features that can be detected in the scene. Works like [8],
construct a database from Scale-invariant Feature Transform
(SIFT) features [9], that are detected from images with differ-
ent viewpoints of the object. Multi-view correspondences can
be found and the 3D positions of the features are recovered
using Structure-from-Motion (SfM) algorithms. At runtime,
SIFT features are extracted for each video frame, which yield

to 2D-3D correspondences. Camera pose can be estimated
using algorithms like Random Sample Consensus (RANSAC)
[10]. Also recent advances in Deep Learning has given rise to
techniques like [11] and [12] for simultaneously detecting and
tracking multiple objects, although they require huge datasets
for training. In this work we are focused on non-learning
methods, as they do not required collecting, analysing and
preprocessing huge amount of data.

Most of the work that is been done belongs to feature-
based 3D tracking category, where camera pose estimation,
just like tracking by detection, relies on natural features, like
edges or corners. Furthermore, techniques that belong to this
category provide a strong prior knowledge of the camera pose
for each new frame, which aids the pose estimation task. This
yields to a jitter-free camera pose between consecutive frames,
unlike tracking by detection methods, where camera pose is
recovered in each frame indepentedly. Edge-based methods
like Real-time Attitude and Position Determination (RAPiD)
[13] or [14], sample the edges of the model into 3D control
points, which they are rendered and impose onto the image,
along with model. Each control point is matched with a point
that lies on a detected edge, by searching along the normal
of the edge that the control point belongs to. Given enough
control points, pose estimation is achieved, by minimizing the
sum of squares of the perpendicular distances, using a least
squares approach.

Our approach on model-based 3D visual tracking belongs
to the feature-based 3D tracking category, specifically in the
edge-based methods, as we rely on measurements being made
along an edge, to find the displacement between the virtual and
real object. Unlike RAPiD methods, the measurements are not
being made on 3D edges of the virtual model, but on their 2D
projections on the image. Additionally, we do not search along
the normal direction of each edge, to find correspondences
between control points and points on the detected edges.
Instead, we detect features - edges from the original image and
calculate the Distance Transform (DT) [15] [16] of the image,
that is formed by the detected edges. The distance between the
edge measurements and the detected edges is calculated using
the image produced from DT. Finally, by using the Gauss-
Newton algorithm, we minimize the distance between the edge
measurements of the virtual model and the detected edges from
the real object.

39Copyright (c) IARIA, 2019. ISBN: 978-1-61208-724-5

VISUAL 2019 : The Fourth International Conference on Applications and Systems of Visual Paradigms

Section II provides a formulation of the 3D visual tracking
problem. In Section III we present the architecture and of
our visual tracking system and the experimental results on
simulated and real data are shown in Section IV. Finally, in
Section V we discuss about the merits of our method and
provide some cues for further improvement.

II. FORMULATION
We treat the 3D visual tracking problem, as a procedure of

estimating the camera pose (3D position and 3D orientation of
the camera) relative to the object, i.e., estimate the extrinsic
parameters of the real camera that led to the projection of
the object onto the image. With the use of a known model
of the object, we construct a virtual camera that projects and
imposes the model to the real image. By finding the distance
between the projection of the virtual object (model) and the
real object (object in the real scene, that we want to track),
we are able to estimate the extrinsic parameters of the virtual
camera that minimize this distance, with the use of the Gauss-
Newton iterative algorithm. If the distance of the projection of
the two objects is nearly zero (global minimum), the extrinsic
parameters of both cameras match, and the pose of the real
camera is adequately estimated.

A. Camera Model
For our purposes, we use the full camera model, which

is described by the projection matrix P, that projects each
world point of a 3D scene to the image plane of the camera.
The projection matrix is constructed by the multiplication of
the intrinsic and extrinsic parameters matrices of the camera.
We use the following intrinsics matrix, which maps a 3D
point in camera coordinates (xc, yc, zc) to a 2D point in pixel
coordinates (u, v),

KKK =

[
fp 0 u0 0
0 fp v0 0
0 0 1 0

]
∈ R3×4 (1)

where fp is the focal length in pixel units and (u0, v0) is
the principal point i.e., the point of intersection between the
camera’s optical axis and the image plane. We do not take into
account any lens distortion that may occur by defects in lens
design and manufacturing or by the nature of the lens. In this
approach the intrinsic parameters are known and fixed, so the
camera we use is calibrated. In a future implementation of our
algorithm as a mobile phone application, camera calibration
could easily be incorporated during installation or first use
on the end-user’s phone. During this stage, the end-user can
be guided through the process of calibration, following the
procedure explained in [17].

The extrinsic parameters matrix holds the position and
orientation of the camera in world coordinates and it maps a 3D
point in world coordinates to a 3D point in camera coordinates.
This matrix is defined as follows,

EEE =

[
RRR ttt
000> 1

]
∈ R4×4 (2)

where RRR = RRR(θy)RRR(θz)RRR(θx) ∈ R3×3 is a 3D rotation matrix
represented in Euler angles and ttt = [tx, ty, tz]

> ∈ R3 is a
position vector. The matrix in (2) describes the position and
orientation of the object relative to the observer - camera. In
our approach, we want to estimate the camera pose, i.e., the
position and orientation of the observer - camera relative to

yw

zw

xw

v1 v2

v3v4

v5 v6

v7v8

Figure 1. Model in world coordinates.

the object. To achieve this, we calculate the inverse of the
aforementioned matrix as,

EEEc =

[
RRR> −RRR>ttt
000> 1

]
(3)

B. Cuboid Object
We are using a cuboid object (box) for tracking, which

is depicted in Figure 1. The model is composed of a set of
eight vertices V = {vvv : vvv ∈ R3}, |V| = 8 and a set of six
surfaces S = {sss : sss ⊂ V}, |S| = 6, |sssi| = 4, 1 ≤ i ≤ |S|.
Because there are no other objects in the scene, the model’s
local coordinates are equal to the scene’s global coordinates.
With the use of the known intrinsic parameters KKK and an
initial hand-picked estimation of the real camera’s extrinsic
parameters EEE(0), we construct a virtual camera, that is being
defined by the following projection matrix,

PPP = KKK(fp, u0, v0)EEE(0)
c (tx, ty, tz, θx, θy, θz)

= KKK(fp, u0, v0)EEEc(xxx
(0)) (4)

where xxx(t) is a vector containing the extrinsic parameters at
time t.

Each vertex vvvi of the cuboid is projected to the image plane
of the virtual camera as,

p̃ĩpĩpi = PPPṽĩvĩvi (5)

where p̃̃p̃pi = [x
(i)
p , y

(i)
p , z

(i)
p]> and ṽ̃ṽvi = [x

(i)
w , y

(i)
w , z

(i)
w , 1]>

are expressed in pixel and world homogeneous coordinates,
respectively. The conversion to cartesian pixel coordinates is
done as follows,

pppi =

[
x(i)
p

z
(i)
p

,
y(i)p

z
(i)
p

]>
=

[
ui
vi

]
(6)

C. Parameter Estimation
As we have mentioned in Section II-A, we model our

camera in such a way, that the intrinsic parameters are fixed.
In this case, the camera is said to be calibrated i.e., we
have a prior knowledge of the camera’s intrinsic parameters.
This reduces the degrees of freedom (DoFs) for parameter
estimation to only six; the extrinsic parameters of the camera
(three DoFs for camera position and three DoFs for camera
orientation).

The extrinsic parameters x̂̂x̂x can be estimated as the mini-
mization of the squared sum of the reprojection errors between
vvvi and pppi,

x̂̂x̂x = argmin
xxx

∑
i

‖ PPP (xxx)ṽ̃ṽvi − pppi ‖2 (7)

40Copyright (c) IARIA, 2019. ISBN: 978-1-61208-724-5

VISUAL 2019 : The Fourth International Conference on Applications and Systems of Visual Paradigms

Initial Camera Parameters
K,E(0)K,E(0)K,E(0)

Projection Matrix
P = KE(i)P = KE(i)P = KE(i)

Render Model - virtual
object

Locate edges of real object
in video feed

Calculate edge distances
between real and virtual

object

Calculate δt, δRδt, δRδt, δR, between
real and virtual model

Calculate new Extrinsic
Parameters Matrix

E(i) = E(i)(t(i−1) + δt, R(i−1) + δR)E(i) = E(i)(t(i−1) + δt, R(i−1) + δR)E(i) = E(i)(t(i−1) + δt, R(i−1) + δR)

Rendering

Image ProcessingPose Estimation

Figure 2. Visual Tracker work-flow, illustration of the main building blocks a) Rendering (blue), b) Image Processing (green) and c) Pose Estimation (red).

where PPP and xxx are the projection matrix and the extrinsic
parameters, as shown in (4). The pose estimation problem can
be solved by minimising the sum of residual errors, ri =‖
PPP (xxx)ṽ̃ṽvi−pppi ‖. Equation (7) can also be written in vector form
as,

x̂̂x̂x = argmin
xxx
‖ f(xxx)− bbb ‖2 (8)

where again xxx is a vector that contains the extrinsic parameters,
bbb is vector containing some type of measurements made on the
image (detected features) and f(·) is a function that relates
vectors xxx and bbb (projection matrix as seen in (4)).

Function f(·) is usually of a non-linear nature, due to the
perspective projection transformation. So in our case we use
the Gauss-Newton optimization algorithm, which is a non-
linear least squares technique [18]. With the use of prior
knowledge of an initial state xxx0, the residual error between
consecutive states within a time frame τ , is minimized as

xxx
(τ)
k+1 = xxx

(τ)
k + δxxx

= xxx
(τ)
k − JJJ

†(τ)
k εεε

(τ)
k (9)

where δxxx = −JJJ†(τ)k εεε
(τ)
k is the minimization step defined by

the Gauss-Newton algorithm, JJJ†(τ)k is the pseudo-inverse of
JJJ
(τ)
k , the Jacobian of f(xxx

(τ)
k) and εεε(τ)k = f(xxx

(τ)
k)− bbb(τ) is the

residual error at iteration k.

III. VISUAL TRACKING SYSTEM
Our method consists of three main building blocks: The

first building block, Rendering, is responsible for the correct
projection of the known virtual 3D object to the image plane.
The second building block, Image Processing, consists of
image processing methods for scanning every frame of the
video feed from the camera and identifying 2D image features,
which are likely to describe the object of the scene. In addition,
it measures the distance between the projection of the virtual
object and the extracted image features. The last building
block, Pose Estimation, uses a non linear fitting method
(Gauss-Newton), for accurate estimation of the 3D position
and orientation of the camera, so that the projection of the
virtual object matches the projection of the real object. Figure
2 illustrates the general procedure of our 3D visual tracker,
which consists of the aforementioned building blocks.

A. Rendering
The rendering procedure is responsible for rendering the

known model of the object we would like to track. By using
the virtual model as shown in Figure 1, we project each of
its vertices vvvi to the image plane (5). The projection matrix
PPP is constructed as shown in (4), which models our virtual
camera. Each vertex is projected to a 2D point pppi expressed in
pixel coordinates. Subsequently, visibility culling techniques
are applied to the projected object, to determine if it is visible
form the virtual camera.

The first technique is called front camera visibility, where
for each vertex vvvi we calculate its distance d relative to
the camera position ttt. If any distance ddd is smaller than fm
(camera’s focal length in metric units), then this vertex is not
visible and in this case, we cull the whole object. Secondly,
back face culling is used to determine which surfaces of the
model are facing the camera. For each surface, the angle θ is
calculated between the camera’s look vector, from the camera’s
position ttt and a vertex of the surface, and the normal of the
surface. If the angle is smaller than 90◦, then the surface is
facing the camera and it should be rendered. Finally, edge
clipping is applied, where each edge of the imposed model, is
clipped along the borders of the image.

The output of the rendering procedure, for simulated and
real data, are illustrated in Figure 3.

B. Image Processing
The second main building block of our visual tracking

system, Image Processing, is responsible for dividing each
projected edge of the virtual models into control points and
calculating the minimum distances between them and the
image features extracted from the real image. These control
points help in measuring the spatial difference between the
virtual and real projected object and give an estimate of how
much the extrinsic parameters of the virtual camera have to be
altered, so the edges of the virtual object match the edges of
its real counterpart.

For each visible projected edge of the virtual model, we
form its direction vector as oooi = ppp

(2)
i − ppp

(1)
i , i = 1, · · · , |N |,

where N is the set of all the visible projected edges,|N | = N

is their corresponding number and ppp(1)i , ppp
(2)
i are the projected

41Copyright (c) IARIA, 2019. ISBN: 978-1-61208-724-5

VISUAL 2019 : The Fourth International Conference on Applications and Systems of Visual Paradigms

(a)

(b)

Figure 3. (a) The red and black cuboid represent our simulated data and the
virtual model, respectively, (b) A frame from a real video-feed and the
imposed virtual model (green cuboid).

vertices of the cuboid and the endpoints of the i-th edge. The
control points are then calculated as,

mmmij = ppp
(1)
i + j

oooi
M − 1

(10)

where mmmij is the j-th control point of the i-th edge and M are
the number of control points for each edge. We omit control
points at the endpoints of the edge so j = 1, · · · ,M − 1
and the correct number of control points are M − 2. Figure
4a illustrates the calculated control points for the real data
scenario.

The next step of the image processing procedure is to
extract features from the real image. The type of features
that we are detecting are edges, which appear as intensity
discontinuities on the image. For the purposes of our method,
we used the Canny edge detection algorithm [19]. Because the
real image of the simulated data is rendered by us, the only
information that appears on it are the projected edges so there
is no need for edge detection. This is not the case for real data,
as every frame of the image contains a lot of information with
a high quantity of noise. The use of Canny edge detection
algorithm in this case is mandatory. We also want to remove
as much noise we can, so the two thresholds for the hysteresis
procedure of the algorithm, are set to high values, to make
sure that edges that represent noise or small and weak edges
of the scene are discarded.

The final step of image processing is about finding and
measuring the distances between the control points and their
closest image features, i.e. the edges that have been extracted in
the previous step. To achieve this, we apply the Distance Trans-
form to the image being produced by the Canny algorithm.
This results to a new image, where the value of each point
is the Euclidean distance between that point and its nearest

(a)

(b)

Figure 4. (a) Control points for each edge of virtual object, (b) distance
transform.

image feature, as seen in Figure 4b.
Formalizing distance transform in the context of our

method, we can write,

dij = DT (FFF)[mmmij] ≡ min
fff

dist
(
mmmij , fff

)
(11)

where dij is the distance measurement for each mmmij (control
point), F = {fff1, · · · , fffE}, fffe ∈ <2 is the set of all edge
pixels fffe that have been extracted, |F| = E is the number
of all edge pixels and dist

(
mmmij , fff

)
=‖ mmmij − fffe ‖2 is the

Euclidean distance between mmmij and fffe.
The distance dij for each control point mmmij can be found

by treating the distance transform image as a lookup table, i.e.,
just lookup the value from the pixel of the distance transform
image with the same position as the mmmij pixel position.

The main advantage of using DT is that is easy to express
the distance of each edge pixel fffe and control point mmmij in
closed form w.r.t. extrinsic parameters of the camera. So using
this in the context of the Gauss-Newton algorithm, as explained
in Section III-C, is straightforward.

C. Pose Estimation
The last building block, Pose Estimation, is the main

procedure of the 3D visual tracker. In this phase, based on the
measurements that have been made to the real image, we try
to minimize the difference between the extrinsic parameters
of the virtual and real camera. To achieve this, we use the
Gauss-Newton algorithm, as it has been explained in Section
II-C. In our case, the state vector xxx = [x1, x2, x3, x4, x5, x6] ≡
[tx, ty, tz, θx, θy, θz], contains the extrinsic parameters of the
virtual camera and f(xxx) is the function that maps the distances
that are found for the control points mmmij , w.r.t. the extrinsic

42Copyright (c) IARIA, 2019. ISBN: 978-1-61208-724-5

VISUAL 2019 : The Fourth International Conference on Applications and Systems of Visual Paradigms

(a) (b)

Figure 5. Fitting of model cube (black) to real cube (red), after 5 iterations.

parameters. The residual error ε equals to,

εεεk =


r1
r2
...

rNM

 = dddk =


d1,1
d1,2

...
dN,M

 (12)

where dddk is a vector that contains the distances for all control
points, for the k-st iteration of the Gauss-Newton algorithm.
To iteratively minimise the residual errors we use (9). Here,
the objective function that we are trying to minimize is fff(xxx) =∑NM
i=1 ri(xxx) =

∑N
i=1

∑M−1
j=1 dij(xxx), where ri(xxx) = dij(xxx) is

the Euclidean distance between control point mmmij and edge
pixel fffk, as a function of xxx. Therefore, the Jacobian of fff(xxx)
for iteration k equals to,

JJJ (k) = ∇f(xxx) =

[
∂ddd(xxx)

∂x1
, · · · , ∂ddd(xxx)

∂xS

]
∈ <MN×6 (13)

where xs is one of the 6 parameters of the state vector xxx and
ddd(xxx) is the function that maps the measured distances from
the distance transform, with the extrinsic parameters, i.e., the
pose of the camera.

By minimising this quantity, the distance between the
control points and image features will also be minimized. At
this point, the real object’s edges match the virtual object’s
edges, in which case the pose parameters can be inferred.

IV. RESULTS
In this section, we present some experiments that we have

made with our visual tracker both on simulated and real data,
so we can determine it’s strengths and weaknesses.

A. Simulated Data Experiments
For our experiments on simulated data, we have ren-

dered another cuboid with the use of a computer gener-
ated (CG) camera. The intrinsic parameters for both cam-
eras are set to the same values. The CG camera extrin-
sic parameters are set to xxxCG = [tx, ty, tz, θx, θy, θz] =
[−26cm, 30cm, 80cm, 160◦,−30◦, 0◦] and we use them as
ground truth. The virtual camera extrinsic parameters are set
to xxxvirtual = [−13cm, 14cm, 71cm, 170.5◦,−21◦, 11◦]. Finally,
we render on the same image, using both cameras, the cuboid
depicted on Figure 1.

As we can see from Figure 5, after 5 iterations, the
pose of the virtual object matches the simulated object’s
pose. The final virtual camera extrinsic parameters we get
after the end of the pose estimation procedure are xxxvirtual =
[−26.3cm, 29cm, 80.2cm, 160.8◦,−29.6◦, 1.6◦], which are re-
ally close to the extrinsic parameters of the CG camera. As

x0 x1 x2 x3 x4 x5
−40cm

−20cm

0cm

20cm

40cm

60cm

80cm

100cm

Iterations

T
ra
n
sl
a
ti
o
n

tx Model
ty Model
tz Model
tx Data
ty Data
tz Data

(a)

x0 x1 x2 x3 x4 x5
−50◦

−25◦

0◦

25◦

50◦

75◦

100◦

125◦

150◦

175◦

200◦

Iterations

R
o
ta
ti
o
n

θx Model
θy Model
θz Model
θx Data
θy Data
θz Data

(b)

Figure 6. Convergence between virtual and simulated camera extrinsic
parameters, a) cameras position, b) cameras orientation.

x0 x1 x2 x3 x4 x5
0

0.5

1

1.5
·104

Iterations

E
rr
or

Figure 7. Error between simulated and virtual cuboid for each iteration.

shown in Figure 6, with each iteration k, each parameter of the
state vector xxxvirtual gradually converges to the the ground truth
parameters. We can actually notice the gradient descent step,
as for each time we get closer to the minimum, the next step
tends to be smaller, because the gradient magnitude decreases.

The error between the two cuboids is calculated as the
squared sum of the distances d, Ek = dddk ·dddk =

∑MN
i=1 d

2 (k)
i ,

43Copyright (c) IARIA, 2019. ISBN: 978-1-61208-724-5

VISUAL 2019 : The Fourth International Conference on Applications and Systems of Visual Paradigms

x0 x1 x2 x3 x4 x5
0

20

40

60

80

100

120

140

160

Iterations

E
rr
or

M = 1
M = 3
M = 5
M = 7
M = 9
M = 11

(a)

x0 x1 x2 x3 x4 x5
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Iterations

E
rr
or

400× 300
640× 480
800× 600
1280× 960
1680× 1050
1920× 1080

(b)

Figure 8. Error evaluation a) for various number of control points, b) for various image resolutions

(a) (b) (c)

Figure 9. a) Fitting of virtual cube on a real data image, b) Edge clipping along the borders of the image, c) Fitting of virtual cube with two surfaces visible.

for each iteration k, which is the square of the objective
function f(xxx) calculated at the extrinsic parameters xxxk. From
Figure 7, it is clear that the error drops exponentially, another
clue that the pose estimation was correct. Again, the exponen-
tial rate of the error has the same traits as the convergence of
the extrinsic parameters.

As seen in Figure 8a, in all cases error converges to 0,
except the case where M = 1 because a small amount of
measurements are extracted from the frame. Furthermore, if
M ≥ 11 despite the fact that the error after 5 iterations is
close to 0, the time that is needed for each frame for the
fitting procedure starts to exceed the acceptable limits (33ms
time cap). This is even worse in the case where we are using
real data, as the number of iterations is doubled to 10. Here
the error is normalized w.r.t. number of the control points for
all visible edges Êk = Ek/MN . Also in Figure 8b , we show
that our tracking method works well for various number of
resolutions and aspect ratios. In all cases, after 5 iterations the
squared distance between the virtual and the simulated object
converges to 0. Here the error is normalized with the image
area Êk = Ek/(Width×Height).

With frames of 400× 300 we ensure that our data contain
sufficient information for our models to extract the correct
pose, while not posing a significant computational overhead.
Likewise, we choose to operate with M = 9 in an effort to
ensure that a good majority of the elements in dddk of (12) indeed
holds the distances between truly corresponding points in the
model and data.

B. Real data experiments
For our real data experiments, we have used a box of

cuboid shape. In this scenario, we altered the intrinsic param-
eters of the virtual camera, so they match the intrinsics of the
real camera. The fitting of the cuboid in Figure 9a is achieved
after the 3 first frames of the video. This happens because,
even after we doubled the number for iterations for each frame
(k = 10), the image gradient of the distance transform for each
frame is calculated with the use of the Sobel operator, which
smooths the produced image. This smoothing results to smaller
∆ steps at each iteration. Nevertheless, we want to keep it that
way, so it does not affect the overall accuracy of our visual
tracker and the first 3 frames work as an initialization stage.

Further down the same video feed, the real object is clipped
along the four edges of the image plane, in Figure 9b. Even
at these conditions our tracker manages to successfully track
the real object. Of course, there is a limit to the portion of the
object that is being clipped, which is about half of the object.
After that point, the pose estimation of the tracker becomes
unstable and at some point it completely loses the correct pose
of the real camera. In general, when we want to track some
object on a real scene, we usually set the pose of the real
camera to be looking straight at the object and the object being
in the middle of the image plane. So, conditions where half or
more of the object is clipped along some edge of the image, are
not expected in real applications, such as Augmented Reality.

The final experiment was conducted in order to determine
how many surfaces of the cuboid should be visible, for the
visual tracker to correctly estimate the camera’s pose. We have
concluded that at least two surfaces should be always visible
so the estimation of the state vector xxx is stable. In fact, at least

44Copyright (c) IARIA, 2019. ISBN: 978-1-61208-724-5

VISUAL 2019 : The Fourth International Conference on Applications and Systems of Visual Paradigms

0 100 200 300 400 500 600 700 800
0s

0.033s

0.066s

Frames

T
im

e

Figure 10. Elapsed time for the visual tracker process on each frame. Red
line is the 33 milliseconds cap, for real time performance.

6 rows of JJJ have to be linearly independent from each other, to
be possible to calculate correctly the pseudo-inverse of JJJ . The
mmmij’s along each edge are linearly dependable, so we need at
least 6 visible edges to surpass the previous constraint. For at
least 6 edges to be visible, we need at least 2 surfaces of the
object to be visible. This is the case in Figure 9c, where the
cuboid is correctly tracked.

Finally, our visual tracker can run in real-time, i.e., process
each frame of the video feed and estimate the camera’s pose in
under 33 milliseconds, which is the time interval between two
consecutive frames in a video feed of 30 frames per second,
as shown in Figure 10. This is due to the fact that, even if
three surfaces of the cuboid are visible, we have to render
9 edges of the model. Each edge contains M = 9 control
points and the overall number of control points are 81. So,
for each frame we have to compute the camera’s pose, using
only 81 distances for the non-linear fitting iterations, which is a
small number of data to process for modern workstations. This
leads to the fact that we can impose correctly a virtual object
that matches the real one, without adding any extra delay to
the video’s sequence. The experiments were conducted on a
3.1GHz dual-core processor with 8GB of RAM.

V. CONCLUSION AND FUTURE WORK
In this paper, we have presented an approach to model-

based 3D visual tracking with the use of Distance Transform,
which gives us an estimation of how far or close the virtual
projected object is, relative to the real object we want to track.
With the use of this estimation, we were able to measure the
difference between the extrinsic parameters of the virtual and
the real camera. Then we proceeded to the minimization of
this difference using the Gauss-Newton algorithm, which led
to the estimation of the real camera’s pose in real-time, for
each frame of a video feed.

One main problem of our method is that it does not
handle very well cases when the object we want to track is
partially occluded. To overcome this problem, we can explore
techniques that find outlier measurements from the image,
like RANSAC [10], and thus be able to remove features that
are being extracted and that belong to the occluding object.
Another approach is to find correspondences between the 2D

(non-occluded) projections of the real object and the 2D or
3D control points of the virtual object, so the pose estimation
process is based solely on them.

The initial extrinsic parameters of the camera are hand
picked, so that the projected virtual object bounds the real
one. An investigation on automatic initialization of the initial
parameters will also be conducted. Finally, the renderer of
our implementation needs to be expanded, so it can handle
more complex objects, non-convex objects. To achieve this, the
rendering procedure needs to support z-buffering techniques.

Although we use a simplistic model (cuboid) for our
tracking experiments, our method can be expanded to more
complex and non-convex objects, according to the targeted
application.

With the aforementioned improvements implemented, it
will be possible to compare our method with techniques like
[13] or [14]. To the best of our knowledge, there is not
any public source code for these two techniques, so their
implementation is left for future work.

REFERENCES

[1] J. Barandiaran and D. Borro, “Edge-based markerless 3d tracking of
rigid objects,” in 17th International Conference on Artificial Reality
and Telexistence (ICAT 2007), Esbjerg, Jylland, Denmark, Nov 2007,
pp. 282–283.

[2] M. L. et al., “Fast object localization and pose estimation in heavy
clutter for robotic bin picking. the international journal of robotics
research, 31(8), 951-973,” International Journal of Robotic Research
- IJRR, vol. 31, 07 2012, pp. 951–973.

[3] D. Berenson and S. S. Srinivasa, “Grasp synthesis in cluttered envi-
ronments for dexterous hands,” in Humanoids 2008 - 8th IEEE-RAS
International Conference on Humanoid Robots, Daejeon, South Korea,
Dec 2008, pp. 189–196.

[4] E. Marchand, H. Uchiyama, and F. Spindler, “Pose estimation for aug-
mented reality: A hands-on survey,” IEEE Transactions on Visualization
and Computer Graphics, vol. 22, 01 2016, pp. 2633–2651.

[5] V. Lepetit and P. Fua, “Monocular model-based 3d tracking of rigid
objects,” Found. Trends. Comput. Graph. Vis., vol. 1, no. 1, Jan. 2005,
pp. 1–89. [Online]. Available: http://dx.doi.org/10.1561/0600000001

[6] W. A. Hoff, K. Nguyen, and T. Lyon, “Computer vision-based reg-
istration techniques for augmented reality,” in Intelligent Robots and
Computer Vision XV, 1996, pp. 538–548.

[7] D. K. et al., “Real-time vision-based camera tracking for augmented
reality applications,” in Proceedings of the ACM Symposium
on Virtual Reality Software and Technology, ser. VRST ’97.
Lausanne, Switzerland: ACM, 1997, pp. 87–94. [Online]. Available:
http://doi.acm.org/10.1145/261135.261152

[8] I. Skrypnyk and D. G. Lowe, “Scene modelling, recognition and
tracking with invariant image features,” in Third IEEE and ACM
International Symposium on Mixed and Augmented Reality, Arlington,
VA, USA, Nov 2004, pp. 110–119.

[9] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol. 60, no. 2,
Nov 2004, pp. 91–110. [Online]. Available: https://doi.org/10.1023/B:
VISI.0000029664.99615.94

[10] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, Jun. 1981,
pp. 381–395. [Online]. Available: http://doi.acm.org/10.1145/358669.
358692

[11] W. L. et al., “SSD: Single shot multibox detector,” in European
Conference on Computer Vision (ECCV), vol. 9905, Amsterdam, The
Netherlands, 10 2016, pp. 21–37.

[12] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA, June 2016, pp. 779–788.

45Copyright (c) IARIA, 2019. ISBN: 978-1-61208-724-5

VISUAL 2019 : The Fourth International Conference on Applications and Systems of Visual Paradigms

[13] C. Harris and C. Stennett, “RAPiD - a video rate object tracker,” in
In Proc. British Machine Vision Conference BMVC ’90, Oxford, UK,
1990, pp. 73–78.

[14] T. Drummond and R. Cipolla, “Real-time tracking of complex structures
with on-line camera calibration,” in In Proc. British Machine Vision
Conference BMVC ’99, Nottingham, UK, 1999, pp. 574–583.

[15] A. Fitzgibbon, “Robust registration of 2d and 3d point sets,” Image and
Vision Computing, vol. 21, 04 2002, pp. 1145–1153.

[16] D. Huttenlocher, “Cs664 computer vision - 7. distance transforms,”
2008, [retrieved: May, 2019]. [Online]. Available: https://www.cs.
cornell.edu/courses/cs664/2008sp/handouts/cs664-7-dtrans.pdf

[17] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 11, Nov 2000, pp. 1330–1334.

[18] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon,
“Bundle adjustment - a modern synthesis,” in Proceedings of the
International Workshop on Vision Algorithms: Theory and Practice,
ser. ICCV ’99. London, UK, UK: Springer-Verlag, 2000, pp. 298–372.
[Online]. Available: http://dl.acm.org/citation.cfm?id=646271.685629

[19] J. Canny, “A computational approach to edge detection,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6,
Nov 1986, pp. 679–698.

46Copyright (c) IARIA, 2019. ISBN: 978-1-61208-724-5

VISUAL 2019 : The Fourth International Conference on Applications and Systems of Visual Paradigms

