
Contributing to Mathematics Lessons Authoring System (MLAS)
A Web-based Application Programming Interface

Samer F. Khasawneh
Department of Mathematics and Computer Science

The College of Wooster
Wooster, Ohio, USA

skhasawneh@wooster.edu

Abdulelah A. Algosaibi
Department of Computer Science

Kent State University
Kent, Ohio, USA

aalgosai@kent.edu

Abstract—In this paper, we give a broad overview of a Web-
based system, MLAS, that enables teachers, who do not
necessarily know how to program, to dynamically author and
deploy mathematical lessons on the Web. Our primary focus,
however, is on a feature inside MLAS; an on-Web Application
Programming Interface (API). It is possible through this API
to embed educational objects by any developer with XHTML/
JavaScript expertise. With an intuitive and easy-to-use
Graphical User Interface (GUI), programmers can deploy
their own code and add new materials to be used by anybody
using MLAS. The API utilizes the simple, yet powerful, site
architecture which guarantees structured content placement
and retrieval between the application and the back-end
MySQL database.

Keywords- API; GUI; Web Technologies.

I. INTRODUCTION

Web-based Mathematics Education (WME) [1, 2], which
started in 2003, is a mathematics education system that uses
the Web to promote the quality of education. It aims to
deliver classroom ready, dynamic, and hands-on lessons and
modules to teachers and students. In WME, mathematical
lessons are offered as collection of Web pages using cutting-
edge Web standards such as PHP [9], JavaScript [7],
Document Object Model (DOM) [8], and MySQL [12].
These web pages are connected through a giant architecture
that allows easy interoperability and sharing across different
schools participating in the WME project. While those WME
lessons have proved to be helpful resources and students
found them fun to use, from a programming perspective, the
process of creating a lesson is considered to be long and
challenging. Each WME lesson needs to be hand-coded and
should comply with a number of requirements and follow
certain protocols in order to work as intended.

The on-Web MLAS [3, 14] is an independent work under
the big WME project. MLAS features a well-organized
architecture that abstracts all aspects of manipulating the
contents. The process of creating a lesson in MLAS is
automated and content-rich lessons can be created with few
mouse clicks without any programming know-how. Editing
lessons enjoys the same simplicity and assumes no advanced
computer skills.

 Because MLAS can be thought of as a content
management system for mathematics education, it might be
relevant to explain some terminologies that will be used in
this paper. Manipulatives, in general, are any objects, such as

coins, tiles, and even a paper that is cut or folded, used to
help students understand abstract math concepts such as
fractions and percentages in an active, hands-on approach.
With the advent of the Web and based on its potential effect
in enhancing the quality of education in general, and the
math subject in particular, a new term has come into
existence, “virtual manipulatives”. This term refers to those
manipulatives that cannot be “touched” but rather can be
“seen” on a computer screen, allowing students to explore
them using computer hardware, such as a mouse and
keyboard [4].

Existing Web-based systems, including MLAS and
WME, assume that a mathematical lesson is a collection of
virtual manipulatives. MLAS features a library of
customizable virtual manipulatives. When authoring a
lesson, a teacher may include one or more interactive virtual
manipulatives. The manipulatives can be customized and can
interact with one another or questions and comments in the
lesson page. MLAS offers a growing library of virtual
manipulatives that are fully customizable, editable, and
reusable.

Due to the nature of the MLAS project and the need to
have dedicated people adding new manipulatives, we think
that it is necessary to let others contribute to expand those
manipulatives of MLAS.

 An Application Programming Interface (API) is a
specification intended to be used as an interface by software
components to communicate with each other. An API may
include specifications for routines, data structures, object
classes, and variables [5]. Through the Web-based API
MLAS offers, the MLAS library is easily expandable by
adding new manipulatives contributed by developers and
other experts.

MLAS supports two views: teacher view and student
view. Obviously, a teacher is the one who controls the form
in which a lesson would look to students. A lesson in the
authoring stage where customization is possible is the
teacher view, while the view of the “final product” in the
lesson page where no customization is allowed is the student
view.

This paper is organized as follows. Section II presents the
related work in the field. Section III gives detailed overview
of our API including its features and capabilities. Section IV
shows case study on how to embed an external work to be as
if it was natively supported by MLAS. We conclude this

7Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

work by presenting our views on possible development and
enhancements.

II. RELATED WORK

In this field, it been somehow difficult to find a project
that implement this kind of API. The reason behind it, as we
researched most of the work [15][16][17][18], is that
consider as project who software company take care of its
maintenance (adding, deleting or editing a feature). Such
softwares suffers allowing users themselves to contribute on
systems. In this work, it is essential that teacher has the
ability to author hands-on, fully customizable virtual
manipulatives e.g. copy old web lesson and paste it at API.
We built MLAS project with API feature in order to support
ability to be expanded or shrinked in terms of future virtual
manipulatives or removing unnecessary one. All that without
necessarily programming skills. The research done on [19]
aimed to solve the the cost of time and financial issues in the
way of developing reusable personalized e-Learning content
with appropriate metadata. In here, we are considering API
helps in the reusability of manipulatives. In this context, as
learning style, the idea of building reusable pedagogical
components that transferable to other learning style have
been introduced in [20]. Our work is different in the way of
solving mentioned issues. Technically, the API architecture
built in the way increase the level of the degree
customization and reduce implementation overhead.

III. API OVERVIEW AND SPECIFICATION

It is possible through MLAS to embed any number of
manipulatives by any developer with XHTML [11] and
JavaScript expertise. With an intuitive and easy-to-use GUI,
programmers can deploy their own code and add
manipulatives. Such manipulatives would appear in the
manipulative library so any user can use them

There are basically little to no limitations at all through
the self-guided interface. XHTML, JavaScript, and CSS [13]
contents can be uploaded to the server and their contents will
be stored in our MySQL database. Alternatively, these
contents can be written directly into designated text boxes.
Because a manipulative often engages the use of dynamic
resources, the interface also allows our users to upload any
type of resource they wish (.swf, .class, .jpg, etc.). In short,
this is a very intuitive work that strengthens MLAS and
expands its usability.

It is worth to mention that throughout our literature
search, we were unsuccessful trying to find a system that
provides such noble feature MLAS offers.

As appears in Fig. 1, the user interface has three separate
code segments for the user to fill-in with XHTML and/or
JavaScript. The organization and order of these boxes were
selected and arranged in a way that we think is very
convenient and easy to follow. Therefore we have separated
the JavaScript-only box from other boxes. We also gave the
users the opportunity to directly type or even copy-and-paste
contents in designated areas.

Fig. 2 shows the requirements that have to be taken into
account once a user wishes to submit a manipulative. All

these requirements appear underneath the form on the same
interface.

Figure 2. List of requirements.

The first box is to be filled with HTML only and may
have some JavaScript inside any HTML event such as
onmouseover or onclick. This aids in manipulative flexibility
and the multi-form property of all manipulatives. However,
this HTML forms the teacher view of a manipulative and
hence it is not yet ready to be previewed on the lesson page.
Technically, a manipulative content has to be saved in the
database in order for the script to be able to pull up its
content and display it. At this point, the HTML here can only
be appended to a parent element in the DOM tree and as a
result would disappear with every page refresh

The second box should have JavaScript code embedded
to capture specific behavior from the HTML in the first box.
For instance, if the HTML from the box above had two
HTML checkboxes and one is initially checked, such as:

<input checked=”checked” type=”checkbox” id=”cb1” />First

<input type=”checkbox” id=”cb2”/>Second

The jQuery [6] statement below can be used in the
second box of the GUI and should pop-up the ID of the
selected checkbox.

if($(‘#cb1’).attr(‘checked’)==true){
alert(‘cb1!’);

}
else {

alert(‘cb2!’);}

To make the manipulative available for display, a
programmer has to make an explicit call to the JavaScript
function “save”, which is defined by MLAS. This allows for
a manipulative to be saved in the appropriate database table
through some PHP and Asynchronous JavaScript And Xml
(AJAX) [10] implementations. The save function takes three
string parameters: The first parameter is the manipulative
HTML content to be saved in the database and thus to be
previewed in the lesson page. It could be related to the
HTML from the first box, but they are not necessarily the

Requirements:
1. In Box 1: You need to enter only HTML inside it. Javascript

code can be entered inside HTML events like onclick.
2. In Box 2: You must make explicit call to the Javascript

function inside the HTML events.
* Parameter 1: String of HTML elements that will be

saved in the DB and which will be seen by the
students. This may also contain Javascript inside the
HTML events.

* Parameter 2: String that tells the type of your
manipulative.

* Parameter 3: The string name of your manipulative.
3. In Box 3: Define your needed Javascript functions.
4. Give your functions unique name to avoid conflicts.
5. Resources can be applets, flash files, etc. They get uploaded to

“uploaded_files” directory.

8Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

http://www.articulate.com/%5D
http://www.articulate.com/%5D

same. The second and third string parameters do not affect
the functionality and behavior of a manipulative, but rather
are needed to describe its overall meaning. The third
parameter, in particular, can be any text and will appear in
the “progress menu” that documents all user activities.

The third box allows the user to define the JavaScript
functions needed. Very often, HTML events will make
explicit calls to JavaScript functions which can be defined in
this box. Users can include all the functions their
manipulatives need in this box. To avoid name conflicts, we
ask our users to choose unique names for their functions.
Since the user might not always need to define his/her
functions, this box can be left unfilled.

Once the user finishes filling out the necessary items in
the HTML form and submits it, everything else gets taken
care of by MLAS. The resources get saved in a dedicated
directory on the server and the user’s code gets saved in a
secure database. Then through PHP, we extract that code
from the database and encapsulate it, along with other pieces
of data, under a couple of JavaScript functions – One
function will be triggered once the manipulative is called
from the manipulative library (the show function), while the
other will be called once the teacher is happy with the
manipulative and decides to have it included in the lesson
(the submit function). Fig. 3 explains the process in details.

From Fig. 3, we can see that we use PHP to write two
JavaScript functions to encapsulate the user inputs which is
already saved into the database. These files can then be
included in the lesson page and both functions will be ready
to be called once the manipulative is in use.

A typical user cannot distinguish between a user-added
and an admin-added manipulative. A user-chosen
manipulative image and name would appear inside the
manipulative library as if they were natively supported by
MLAS. MLAS also includes all the necessary code needed
to make user-added manipulatives appear and interact
seamlessly in their enclosing pages.

Since user’s HTML input is allowed, this implies that
interactive contents can be inserted to MLAS and will be
supported as well. For example Java applets and flash files
can be embedded to the system with the use of the
appropriate HTML tags. Below is a simple example of how
an applet can be embedded to MLAS. In the applet context,
only the compiled version of the Java program (.class
extension) needs to be uploaded to the server so the browser
can display the applet (assuming the browser has the Java
plug-in installed).

IV. CASE STUDY

In this section we present a simple case to show how
smoothly embedding an manipulative applet in MLAS. The
applet that we will be showing is very simple. It is a single
button labeled as “This button doesn’t do anything.” For this
case, the only resources we need are the applet image and the
applet .class file. We begin by giving our manipulative a
name (say, Applet Example), and then we upload the
manipulative image and the .class file (Assume named,
ExampleApplet.class) through the user interface.

To embed an applet in a Web page, the HTML <applet>
tag needs to be used, with the codebase attribute indicating
the directory on the server where the .class file exists, and

the code attribute to denote the name of the .class file itself.
Other attributes, such as width and height, might be used to
control the size of the applet. Therefore, the first HTML box
can be filled with the following HTML segment.

<applet codebase = ”uploaded_files/”
code=” ExampleApplet.class”
width = ”400” height = ”50” > </applet>

The GUI in Fig. 2 clearly indicates that all user uploads
go inside “uploaded_files” directory. Therefore that directory
is referenced in the codebase attribute above.

In order to properly display the applet in the lesson page,
we need to have the above applet tag to be the first parameter
of the save function. Since, in this case, the teacher and
student views are similar, nothing else needs to be added to
the second box. That can be something like:
var applet = ‘<appletcodebase = ”uploaded_files/” ’;
applet +=’code =”ExampleApplet.class”’ ;
applet +=’width=”400” height=”50”></applet>’;

save (applet,”Applet”,”Applet added!”);

All other fields of the HTML form can be left blank, and
the user can now proceed. The applet image will now be
available in the manipulative library together and a click on
that image will show the applet in the lesson (Fig. 4)

Figure 4. The applet appears in the lesson.

 To test this API, we have also embedded a numerous
lessons and manipulatives. The time to add such one was fast
with no problem encouraged. Requirements for the API
ensure that MLAS work smoothly without affecting of
removing or adding manipulative. We were effortlessly able
to import any desired content and have them work perfectly
under MLAS’s framework. Table 1 below shows the time
taken on seconds to Add/Remove a manipulative with
respect to expert or Non-Expert. As Non-expert user, our
sampling included teacher with modest to no expertise. The
other way, adding/removing without API, to deal with
manipulative is to go to the row php page write necessary
piece code and test it. In compare that with API usage, the
difference noticeable in term of time and effort. The time
ratio in the table shows the deference ratio and how much
time this technique save. This ratio represent how this API
saved time to write necessary piece of code e.g. PHP/MySql
and test its result and presentation. The reader is referred to
[14] for more examples.

TABLE 1. shows the cost in time for applying API feature to MLAS
framework.

Add with
API

Add without
API

D e f .
ratio

Rem. with
API

Rem. without
API

D e f .
ratio

Expert 31 54 42.6% 14 24 41.6%
N o n -
Expert 84 2167 96.12% 35 808 95.6%

9Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

V. CONCLUSION AND FUTURE WORK
In this work, we briefly introduced an on-Web lesson

authoring system, MLAS, for mathematics education. Our
system permits teachers and experts to access and author
dynamic mathematical lessons without any programming
know-how. To achieve this, MLAS offers a growing library
of virtual manipulatives that can be extended through a well-
organized API. The architecture of the system and its
collaborative constituents make it easy to share and
exchange content both within and beyond MLAS.

We are constantly trying to reduce the requirements of
our API to make it even better. As a possible future work, it
might be useful to add a feature that allows the automatic
extraction of the HTML/JavaScript code of any external
manipulative to be inserted into the API. Further, we are in
the process of empowering the entire MLAS with the
upcoming HTML5 standards. With HTML5, MLAS would
have more dynamic features and be more up-to-date with the
Web standards.

REFERENCES

[1] P. Wang, M. Mikusa, S. Al-shomrani, D. Chiu, X. Lai, and X.
Zou. Features and advantages of WME: a Web-based
mathematics education system. In Proceedings of the IEEE
Southeast Conference. Florida, USA, 2008. pages 621-629.

[2] P. Wang, M. Mikusa, S. Al-Shomrani, X. Lai, X. Zou, and
Zeller. “WME: a Web-based Mathematics Education System
for Teaching and Learning.” ICME 11 – TSG 22 Theme 3 the
11th International Congress on Mathematical Education.
Mexico, July 2008.

[3] S. Khasawneh and P. Wang. “Overview of Mathematics
Lessons Authoring System (MLAS)”. Proceedings of CSEDU
2012, Porto, Portugal, pp. 48-54, April 2012.

[4] CITEd Research Center, Learning Mathematics with virtual
manipulatives, http://www.cited.org/index.aspx. Retrieved:
Jan, 2013.

[5] Application Programming Interface. http://en.wikipedia.org/
wiki/Application_programming_interface. Retrieved: Jan,
2013.

[6] jQuery. http://www.jquery.com Retrieved: Jan, 2013.
[7] JavaScript. http://en.wikipedia.org/wiki/JavaScript. Retrieved:

Jan, 2013.
[8] Document Object Model (DOM). Technical report, http://

www.w3.org/DOM/. Retrieved: Jan, 2013.
[9] PHP: Hypertext preprocessor. Technical report, http://

www.php.net/ Retrieved: Jan, 2013.

[10] Asynchronous JavaScript and Xml (AJAX). Technical report,
http://developer.mozilla.org/en/docs/AJAX.

[11] XHTML. http://en.wikipedia.org/wiki/XHTML Retrieved:
Jan, 2013.

[12] MySQL. http://en.wikipedia.org/wiki/MySQL. Retrieved: Jan,
2013.

[13] Cascading Style Sheet (CSS) to style HTML elements . http://
en.wikipedia.org/wiki/Cascading_Style_sheet. Retrieved: Jan,
2013.

[14] S. Khasawneh. “A Web-based Lessons Authoring System for
Mathemtics Education”. PhD dissertation. 2012

[15] http://www.articulate.com/ Retrieved: Jan, 2013.
[16] http://www.courselab.com/. Retrieved: Jan, 2013.
[17] http://www.elicitus.com/. Retrieved: Jan, 2013.
[18] http://www.ispringsolutions.com/. Retrieved: Jan, 2013.
[19] O. Conlan, D. Dagger, and V. Wade. “Towards a standards-

based approach to e-Learning personalization using reusable
learning objects”. In: Driscoll, M. and Reeves, T.C. (eds.)
Proceedings of World Conference on E-Learning AACE.
Montreal, Canada, October 15-19, 2002. PP. 210-217.

[20] C. Bruen and O. Conlan. “Dynamic Adaptive ICT Support for
learning Styles – A Development Framework for re-useable
learning resources for different learning styles &
requirements”. Proceedings of the ITTE 2002, Annual
Conference of the Association of Information Technology for
Teacher Education. 2002 pp. 1238-1241. Chesapeake, VA

10Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

http://www.articulate.com/
http://www.articulate.com/

 Figure 1. The API.

// Assume the manipulatives table is fetched from the database and stored in $manip variable

//Now, also define a file variable and have a file ready (manipulatives.js) to accept content write

$file = fopen("manipulatives.js", "w");

//Go through the manipulatives table one record by another and place each manipulative in a JavaScript function

foreach($manip as $m) {

//Define a PHP variable that contains some JavaScript code,

// which later will be appended to the page. $m[‘name’] here refers to the name of the manipulative

$function = "function show_". str_replace(' ', '_', $m['name']) . "() {\n";

//Assuming user directly placed code in box ($m[‘html’] is user’s first box content). Then, perform some code cleaning

$m['html'] = str_replace('\'', '\"', $m['html']);

$m['html'] = str_replace(array("\r\n", "\r", "\n"), ' ', $m['html']);

//Add the buttons to allow work saving or cancellation

$submit = '<input type="button" value="Proceed" onclick="submit_'. str_replace(' ', '_', $m['name']) .'();”;

$submit .= ‘class="sbmt"><input onclick="cancel()" type="button" value="Cancel">';

//Finally allow user’s code to append to the page and end of the show function

$function .= '$("#page_element").append(\'<div>'. $m['html'] . ' ' . $submit. ' </div>\');';

$function .= "} \n";

//Write content to file

fwrite($file, $function);

// Define the submit_$m[‘name’] which will contain the contents of box 2 including

// the call to save function that will save code in the database

$function = "function submit_". str_replace(' ', '_', $m['name']) . "() {\n"

//Similarly, do code cleaning as we are assuming user has put code directly in box 2

$m['js'] = str_replace(array("\r\n", "\r", "\n"), ' ', $m[‘js’]);

$function .= $m[‘js’] . "\n";

$function .= "}\n"; //end of the submit function

//Write content to file and then close it

fwrite($file, $function);

fclose($file);

}//end of foreach loop. Finally, the file has to be included in the page for this to work
echo '<script type="text/javascript" src=" manipulatives.js"></script>';

11Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

Figure 3. PHP handling user’s input.

12Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

