
A Framework for the Coordination of the Invocations of Web Services

Mohammed Alodib
Qassim University

P.O BOX 385
Buraidah 51411

Qassim, Saudi Arabia
alodib@qu.edu.sa

Abstract—Coordinating the various Web services invocations
is one of the key challenges of Service oriented Architectures.
When services fail due to lack of availability this may violate
Service Level Agreements causing financial penalties or cus-
tomer dissatisfaction to providers. Therefore, it is crucial to
develop a method of on-line coordination of these invocations
in order to enhance the performance of the systems in place
and avoid the overuse of services. This paper aims to present
a Model Driven Architecture (MDA) approach to the auto-
mated creation and integration of Protocol Services, which are
deployed with the system to coordinate invocations between
services. The outline of this method is as follows. Business
Process Execution Language (BPEL) models of services are
parsed and the PartnerLink for each Invoke activity is assigned
to the Web Services Description Language (WSDL) file of the
Protocol Service using MDA transformations. Then, the Proto-
col service is computed, generated and integrated automatically
into the system. As a proof of concept, an implementation of
the suggested approach was created, in the form of an Oracle
JDeveloper plugin that automatically produces new Protocol
services and integrates them with existing services.

Keywords-Web services; Quality of Service; Coordinating;
Model Driven Architecture

I. INTRODUCTION

Service oriented Architecture (SoA) is a framework which
provides a layered architecture for organising software re-
sources as services, so that they can be deployed, discovered
and combined to produce new services [1]. In real-world
business processes, it is crucial to develop architectures to
discover the most suitable service in order to avoid excessive
use of services, and so enhance the performance of the
system.

In the current version of SoA, an invocation request
is processed using BPEL activity known as Invoke. This
requires assigning a WSDL file of the target service to
the Partner Link property of the Invoke activity. If the
destination service becomes unavailable for any reasons, this
may cause distraction to other services and lead to customer
dissatisfaction. In addition, a service may become slow in its
responses due to the uncoordinated overuse of its operations
by other services. To resolve such issues, the WSDL file
for the failed service, or the slow service associated with
the Invoke activity can be manually replaced with another
WSDL file, one designed for a service that gives the same

result, but it is deployed by a different provider. Therefore,
a model-driven approach to automating this replacement is
proposed.

The presented approach provides a dynamic technique to
discover the best available service using a simple genetic
algorithm. This algorithm is based on ranking Web services
using the previous invocations history. In this approach,
all the invocations are forwarded to a Protocol service,
which works as a coordinator controlling all invocations.
The the Protocol service is initiated by the request from the
consumer; it then forwards the request to the target service,
obtaining the result from the provider, and returning the
result to the consumer.

From a performance perspective, this architecture can
potentially result in a bottleneck, as all invocations should
be processed by the Protocol service. However, the Protocol
service is distributively generated and integrated into the
system; i.e. each site has its own Protocol service, which
controls the internal invocation requests. When faced with
an external invocation for a remote service, i.e. deployed
at different server, the Protocol service interacts with the
Protocol service located at the external site by forwarding
the invocations.

This paper is organised as follows. Section III-A presents
a brief review of Service oriented Architecture (SoA). Sec-
tion III-B reviews the Web Services. An introduction to the
fundamentals of the Business Process Execution Language
(BPEL) is described in Section III-C. Section IV presents
the principles of Model Driven Architecture (MDA). The
description of the problem is discussed in Section V. Section
VI presents the solution, which is implemented as an Oracle
JDeveloper’s plugin.

II. DISCUSSION AND RELATED WORKS

Yan et al. [2], [3] proposed a method to monitor Web ser-
vices in order to trace faults and recover from their effects.
Their method utilises Model-Based Diagnosis (MBD) theory
[4], which provides techniques to monitor static and dynamic
systems using partial observations. Such methods require in-
depth knowledge of the system. Their method is designed
to monitor failures, such as mismatching parameters when
occurrences are thrown up as exceptions. On the other hand,

42Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

our approach aims to deal with monitoring and coordinating
the invocations in order to avoid failed or overused services.
Our goal is to maintain the system at a high level of
performance by avoiding dynamically failed or overused
services.

Ardissono et al. [5] also proposes a model-based approach
to monitor and diagnose Web services. Their approach
aims to provide self-healing services, which guarantee au-
tonomous diagnostic and recovery capability. This approach
is based on adopting grey-box models for each Web service
to expose the dependency relationships between the input
and output parameters to the public. The dependency rela-
tionships are used by Diagnosers to determine the service
which results in exceptions.

In [6], [7], we present approaches to dealing with monitor-
ing failures caused by undesirable scenarios, such as Right-
First Time (RFT) Failure, which occurs when a business
process fails to complete a task the First-Time and is forced
to repeat a part of the task again (i.e., when a task is executed
more than once, indicating incorrect execution of the task in
the first place, or the invocation of an erroneous execution).
Such occurrences of failure may result in violations of
Service Level Agreements (SLA).

III. PRELIMINARIES

A. Service oriented Architecture (SoA)

SoA is directed towards the implementation of business
processes via the composition of interactive services [1]. In
general, SoA is a prevailing software engineering product,
which ends the domination of traditional, distributed system
platforms [8]. The growth rate for SoA use in industry has
been estimated at over 24%, as measured between 2006
and 2011 [9], and the rapid movement towards SoA has
been encouraged by the positive results already recorded;
for example, the level of reusability in SoA has, on average,
been enhanced to more than 2.5 times that of non-SoA
development.

A simple SoA infrastructure involves three independent
collaborative components, which are described below [10],
[11]; see Figure 1:

• Service provider: The service provider is responsible
for publishing the services, and is the owner of the
services; e.g. companies and organisations.

• Service requester: A requester is a client or organisa-
tion that wishes to make use of a service that is being
provided. The requester searches for the Web services
desired from the service registry.

• Service registry: A global registry acts as a central
service which provides a directory where service de-
scriptions are published by the Service Provider. Then,
Service Requesters find service descriptions in the reg-
istry and obtain binding information for services from
the Service Provider.

Figure 1. A Basic Service Oriented Architecture [11]

B. Web Services

Web services offer a preferred solution to the problem of
integration among autonomous and heterogeneous software
systems [12]. They are well-defined, self-contained, loosely
coupled, self-describing, modular applications that can be
published, located and invoked across the Web network [12].
These features mean that Web services have the ability to
be dynamically invoked by other applications or other Web
services, and are composed in tandem with other services
to achieve complex tasks. In other words, Web services
are highly reusable components, acting as building blocks
to develop service composition, as well as to solve the
application communication and integration issues.

The development of a composite web service is built upon
the Service oriented Architectural paradigm [13]. Commu-
nication in a composition of Web services is based on the
use of well-accepted standards and the XML messaging
framework [14]. Such standards can be used to encapsulate
the service’s business logic and functionality in order to
expose the functionality only, not the implementations via
the accessible interfaces. Therefore, application programs
communicate with one another irrespective of their program-
ming language, operating system and hardware platforms.

Web services communicate using common Extensible
Markup Language (XML), XML Schema Definition XSD
[15] and standard TCP/IP based communication protocols.
Moreover, various XML-based standards are used by Web
services in order to describe their architecture, intercommu-
nication, collaboration and discovery [12]. In particular, the
communication messages between a Service Requester and
a Service Provider are encoded into Simple Object Access
Protocol (SOAP) messages, which are plain text XML
messages. The Web Services Description Language (WSDL)
is used to describe the invocation details of a Web service,
such as the service name, the operations available, and the
information related to the input and output variables. The
Universal Description Discovery and Integration (UDDI)
provides protocols for querying and updating Web service
information. For communication purposes, Web services

43Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

utilise existing standard TCP/IP protocols such as HTTP,
HTTPS, SMTP, and FTP [16].

C. Business Process Execution Language (BPEL)

In the past few years, SoA has been adopted and widely
used by the IT industry. One of the most popular standards
of such adaptations is Business Process Execution Language
for web services (BPEL) [17]. BPEL is a modelling language
used to specify a sequence of actions that take place within
business processes in order to generate enterprise applica-
tions. BPEL offers a rich number of diagrammatic notations
ideal for supporting the modelling of complex behaviours;
i.e. sequential, parallel, iterative and conditional. In addition,
similar to traditional programming languages, BPEL offers
constructs, in the form of loops, branches, variables and
assignments.

Business Process Execution Language for Web Services
(BPEL, WS-BPEL, BPEL4WS) is a graphical language that
is used for the composition, orchestration, and coordination
of Web services [1]. Combining and linking existing Web
services and other components to deliver new composition
services is referred to as business processes; therefore, BPEL
is used to specify a set of actions within business processes,
in order to achieve a common business goal. The BPEL
specification is based on the Web Services Description Lan-
guage (WSDL) [18], which is an XML language describing
services as a set of accessible interfaces, for producing
business processes that support interoperability [19].

IV. MODEL DRIVEN ARCHITECTURE (MDA)

Model Driven Architecture (MDA) [20], [21] is a frame-
work introduced by the Object Management Group (OMG)
in order to promote the role of modelling in software
development. One of the main goals of MDA is model
transformation; a process whereby models in a source lan-
guage are mapped so as to be captured in the destination
language. In the MDA context, model transformation is
defined by a number of transformation rules, which specify
the mapping of the meta-elements of the constructs of the
metamodel of the source language into the meta-elements of
the destination language. The metamodels of the source and
the target language are specified using a common language,
called the Meta Object Facility (MOF) [22]. In general,
models in the MDA are instances of metamodels.

Meta Object Facility (MOF) Query/View/Transformation
Specification (or QVT for short) [23] is the OMG specifica-
tion, which is proposed as a method to specify model trans-
formation rules with MOF. QVT provides a declarative and
imperative language, structured into a layered architecture
consisting of Relations, Core and Operational Mappings.
Relations language is a high level language that provides a
textual and graphical notation for the purpose of defining the
mappings, while Core language is a small language based on
Essential MOF (EMOF) and OCL, which is used to support

pattern matching and the evaluation of conditions. QVT
Operational Mappings language is a high level imperative
language that extends Object Constraint Language (OCL)
[24] with essential features (such as the ability to define
loops) in order to write complex transformation rules [23].
In this study, we used QVT Operational Mapping language
to obtain the specifications for the transformation rules.

The QVT Operational Mapping language is specified as a
standard method for providing imperative implementations.
This language is based on using MOF as a repository
for metamodels. The general syntax for the body of an
Operational Mapping is depicted in Figure 2, where the
source is the source of the model transformation. The
mappingFunction is the name of the model transformation,
which may require some inputs, as captured by variable
parms. The target is the destination model of the transfor-
mation. The ‘init’ part has some code which can be executed
prior to implementing the main body of the mapping rules.
The population is then used to populate the results of the
mapping. The code included in the end part is executed
before the operation completes. The ‘when’ part has a
Boolean expression that should be verified as true before
commencing the execution. The ‘where’ part includes the
conditions that have to be satisfied by the model elements
involved in the mapping (i.e., it acts as a post-condition for
the mapping operation).

mapping source::mappingFunction(parms):target
when {...}
where {...}
{

init{...}
population{...}
end{...}

}

Figure 2. The general syntax for the body of a mapping operation.

There are many industrial and academic case tools sup-
porting model transformations, such as Kermeta [25], Arc-
styler [26], OptimalJ [27], ATLAS [28] and SiTra [29].
In this paper, we will use the Simple Transformer (SiTra)
[29] transformation engine to execute the transformation
rules. SiTra is a lightweight Model Transformation Frame-
work, which intends to use Java for both writing Model
Transformations and providing a minimal environment for
transformation execution.

V. DESCRIPTION OF THE PROBLEM

From a SoA point of view, an interaction between two
services can be performed with the help of an Invoke activity,
which is a BPEL component used to specify the operations
of the service that we intend to execute. Such operations
are identified using Partner link. To achieve this, the WSDL
file for the target service is assigned to the Partner Link

44Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

property of the Invoke activity. However, the target service
may then become unavailable due to technical issues; such
as a failure in the system, updating procedures, or the high
load of executions, and this may cause the process to crash
and throw exceptions. Consequently, it is critical to identify
failed services, so that suitable remedial actions can be taken.

The typical method for resolving those issues caused by
unavailable services is to manually replace the WSDL file
of the service, as linked to the Invoke activity with another
service providing the same functionality, but deployed by
a different server. For example, assume that there are two
services called find flight and FlightSearch. These services
provide the same functionality, and it is supposed that there
is an Invoke activity used to execute the find flight service. If
we assume that the find flight service becomes unavailable
for any reasons, it becomes necessary to perform a recovery
action so as to solve that issue. This can be achieved
by replacing the current WSDL file of the service with
another one, such as FlightSearch. Although this solves the
problem, it is both a costly and time consuming solution as
it should be carried out manually by a developer. Therefore,
a dynamic approach to enhance and automate the process of
this replacement is presented.

The approach presented proposes a framework that pro-
vides on-line automated modifications. In other words, the
approach aims to provide dynamic executions based on the
automatic runtime replacement of the WSDL file, in case
the target service becomes unavailable or where it is already
overused.

VI. THE MODEL-DRIVEN APPROACH

The approach presented here proposes a service intended
for monitoring and coordinating interactions between ser-
vices. The service introduced is referred to as the Protocol
service and aims to discover the best available service,
depending on its performance and availability. This method
requires that all invocations between services are carried
out using a Protocol service, whereby each source service
provides the name of the target service to the Protocol
service. Then, the Protocol service checks all the services
that match the request received. From a performance and
availability point of view, it then evaluates these services in
order to find the most suitable service.

The basic idea of the Protocol service is that it receives
an invocation request from the source service and forwards
this to the target service. Each invocation request involves
the name of the target service, the inputs values for the
target service. This request is then validated by the Protocol
service to check whether the name of the service is valid,
and to ensure that all the values for the required parameters
of the destination service are provided. Based on the type
of invocation, there are two options for processing the
request received. Firstly, if it is an asynchronous invocation,
i.e., no result is expected from the target service, then

Figure 3. The proposed Architecture with the Protocol service

the Protocol service executes the target service and ends
the process. Alternatively, if the request involves two-way
operations (synchronous), the Protocol service executes the
target service and the result is eventually returned to the
consumer.

Figure 4. The outline of the Transformation method

The Protocol service is automatically and distributively
generated for each site in the system as depicted in Figure
3. Each Protocol service is responsible for monitoring and
coordinating interactions on the site in which it resides.
An invocation between the two services deployed in two
different sites requires that the Protocol service at the first
site interacts with the Protocol service at the second site in
order to complete the invocation. For example, suppose that
we have two services (Service A and Service B) deployed at
separate servers; Server 1 and Server 2 respectively. Assume
that Service A intends to invoke Service B. To accomplish
this invocation, Service A sends a request to the Protocol
service in Server 1. This request includes details about
the target Service. Next, the Protocol service at Server 1
forwards the request to the Protocol service at Server 2,
which then carries out the invocation, and if the invocation is

45Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

a synchronous operation, it returns the result to the Protocol
service at Server 1. Eventually, the Protocol service for
Server 1 returns the results to Service A.

The evaluation task involves selecting the most suitable
destination service as based on a simple genetic algorithm
to rank Web services using the invocations history. This
algorithm aims to check all services in order to identify
the best services from a performance point of view. Due
to the nature of SoA, which requires the assignation of a
specific WSDL file of a service to each Invoke activity at
the runtime, it is possible to note an excessive use of that
service, despite the fact that there are other services offering
the same functionality and that they can be used to avoid
such an overuse. This may occur because there is no on-
line coordinator for the distribution of the request received
for the available services. Therefore, it can be seen that it
is necessary to control routing requests between services in
a balanced manner, and this is achieved using the Protocol
service.

<invoke name="CheckCustomerAccount"
partnerLink="CustomerService"
portType="ns1:CustomerService"
operation="CheckCustomerAccount"/>

Figure 5. A Constructor of an Invoke Activity

VII. INTEGRATION OF THE PROTOCOL SERVICE

For already pre-existing projects, the approach presented
can be integrated automatically using a model-driven tech-
nique, which is implemented as an Oracle JDeveloper plu-
gin. The implementation follows the outline of the method as
depicted in Figure 4. This method requires passing all BPEL
files and their XML Schema Definition (XSD) as inputs. For
each BPEL file, the set of Invoke activities are extracted.
Then, the Partner link for each Invoke activity is automati-
cally replaced with the Partner Link for the Protocol service.
For example, Figure 5 depicts a constructor of an Invoke
activity used to execute a service called CustomerService.
This is automatically modified by assigning the WSDL file
of the Protocol service to the Partner Link property of the
Invoke activity as depicted in Figure 6.

<invoke name="CheckCustomerAccount"
partnerLink="ProtocolService"
portType="ns1:ProtocolService"
operation="CheckCustomerAccount"/>

Figure 6. A replaced Constructor of the Invoke Activity of Figure 5

As discussed in Section VI, the Protocol service requires
that the user assigns the name of the target service and its
inputs in order to complete the process. For this reason the

Assign activity precedes the Invoke activity, and is used to
assign the inputs required by the target service, being also
modified in order to assign the inputs and the name of the
target service to the Protocol service.

<assign name="AssignID">
<copy>
<from variable="CustomerID"/>
<to variable="FindCustomerInfoInput"/>

</copy>
</assign>

Figure 7. A Constructor of Assign Activity

The Assign activity contains one or more Copy operations,
which are used to copy data from one variable to another, as
well as to construct and insert data using expressions [30].
Figure 7 presents a simple example of a construct for an
Assign used to copy the value of CustomerID to FindCus-
tomerInfoInput. To accomplish the required modifications,
each ‘to’ property of the Copy operations of the Assign
activity is replaced and it is assigned to the Protocol Service
input variable. The following code depicts a snippet of code
that is then used to map each Assign activity to a new Assign
activity, where the ‘to’ property of the Copy operation is
assigned to the input variable of the Protocol service. The
following QVT transformation rule depicts the specification
of our transformation explained above:
mapping Assign::assign2assign() : Assign
{
name := self.name;
foreach(e Element | copy:Copy)
{

e.form.variable=e.form.variable;
e.to.variable="ProtocolServiceInput";

}
}

VIII. CASE STUDY & EVALUATION

The presented approach is tested with the help of a simple
case study described by Guillou et al. [31]. This example is
based on a typical on-line e-shopping system consisting of
three main services: Shop, Supplier and Warehouse.

As depicted in Figure 8, the customer accesses the Shop
Web site to search for items. Then, he adds his items to the
Shopping Cart which is then passed to the Supplier service
by the Shop Service. For each item in the list, the Supplier
service sends a request to the Warehouse to check if the item
is available. If the item is available the Warehouse service
sends an acknowledgement to the Supplier to complete
processing the order. Next, the Supplier Service send back
the list of available items to the Shop service. Finally, the list
is forwarded to the customer who then confirms his order.

Evaluating the resources required to implement the Pro-
tocol service is considered a requisite task. Therefore, the

46Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

Figure 8. E-shopping Scenario

approach presented here have been evaluated in terms of
performance and it is compared with the traditional method
which does not use the Protocol service. A common practise
in evaluating services of SoA is to utilise the Stress Test. The
Stress Test is a technique used to identify and verify the
stability, capacity and the robustness of services [1]. The
Stress Test requires defining the number of the concurrent
threads that should be allocated to the service, the number
of loops, and the delay between invocations. With the per-
formance statistics, we can identify any possible bottlenecks
and optimise performance.

The example is implemented in two different methods;
one is based on the traditional way, i.e. without the Protocol
service, and the second method is to use the presented
approach, i.e., using the Protocol service. The Stress Test
has been applied to these methods by handling a different
number of concurrent threads. This is specified as 5, 10,
15, 20, 25, 30, 35, 40, 45 and 50 threads. The delay
between invocations is assigned to one second. The machine
which is used in this test has the following configuration:
Lenovo W520, Intel Core i72820QM 2.30GHz processor,
16G RAM.

The mean of the executions time has subsequently been
calculated and the results are depicted as a line chart in
Figure 9. The performance of using the Protocol service
can be seen as linear and parallel, and it shows better
performance.

In addition to the performance, modularity can play a key
role in the early design stages of the software architecture
discipline [32]. Therefore, using the Protocol service pro-
vides a modularised design, which brings to the system the
following benefits:

1) Reliability: using the Protocol Service provides faster
and more reliable processes.

2) Faster and easier development. The focus would be on

Figure 9. Stress Testing Result

the functionality of code modules rather than on the
mechanics of implementation.

3) Faster and easier testing.
4) Maintainability: this also makes modification of enter-

prise project easier.

Moreover, using the Protocol service supports the fact
that this architecture increases the efficiency of the system
as it is considered an Orchestration architecture which is
a more flexible paradigm offering the following advantages
over the Choreography [1]: i) the coordination of component
processes is centrally managed by a known coordinator; ii)
Web services can be incorporated without being aware that
they are taking part in a business process; iii) alternative
scenarios can be put in place in case of a fault. However, it
could be argued that using the Protocol Service may result
in bottlenecks affecting the performance of the system.

IX. CONCLUSION

This paper has presented a method of developing a service
that can monitor the execution of invocations in a Service
oriented Environment. The underlying concept relies on
utilising the capability of MDA to generate a Protocol
service, which coordinates invocations between services in
order to enhance the performance of a system by avoiding
failure or overuse of services. The automation of the creation
of the Protocol service is based on parsing the original
BPEL services, and generate a set of modified services with
an integrated Protocol service. The approach presented is
implemented as an Oracle JDeveloper plugin.

REFERENCES

[1] M. B. Juric, B. Mathew, and P. Sarang, Business Process
Execution Language for Web Services. Packt Publishing,
2004.

47Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

[2] Y. Yan, Y. Pencole, M.-O. Cordier, and A. Grastien, “Moni-
toring web service networks in a model-based approach,” in
ECOWS05 (European Conference on Web Services), Sweden,
2005, pp. 192–203.

[3] Y. Yan and P. Dague, “Modeling and diagnosing orchestrated
web service processes,” in IEEE International Conference on
Web Services, vol. 9, Salt Lake City, Utah, USA, 2007, pp.
51 – 59.

[4] W. Hamscher, L. Console, and J. de Kleer, Eds., Readings in
model-based diagnosis. USA: Morgan Kaufmann Publishers
Inc., 1992.

[5] L. Ardissono, L. Console, A. Goy, G. Petrone, C. Picardi,
M. Segnan, and D. Dupre, “Cooperative model-based diag-
nosis of web services,” in In 16th International Workshop on
Principles of Diagnosis, Monterey, 2005, pp. 125–132.

[6] M. Alodib, B. Bordbar, and B. Majeed, “A model driven
approach to the design and implementing of fault tolerant
service oriented architectures,” in IEEE International Confer-
ence on Digital Information Management (ICDIM), London,
2008, pp. 464–469.

[7] M. Alodib and B. Bordbar, “A modelling approach to service
oriented architecture for on-line diagnosis,” the journal of
Service Oriented Computing and Applications, pp. 1–17,
2012.

[8] D. W. McCoy and Y. V. Natis, “Service-oriented architecture:
Mainstream straight ahead,” Gartner Research, Tech. Rep.,
2003.

[9] J. B. Hill, M. Cantara, E. Deitert, and M. Kerremans, “Magic
quadrant for business process management suites,” Gartner
Research, Tech. Rep., 2007.

[10] M. P. Papazoglou, “A survey of web service technologies,”
2004.

[11] H. Kreger, “Web services conceptual architecture.” IBM
Software Group, 2001.

[12] F. Leymann, “Web services: Distributed applications without
limits,” in 10th Conference on Database Systems for Business,
Technology and Web (BTW’03), Leipzig, 2003, pp. 26–28.

[13] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web
Services Concepts, Architectures and Applications. Springer,
2004.

[14] “Semantic web services: description requirements and cur-
rent technologies,” in In Proceedings of the International
Workshop on Electronic Commerce, Agents, and Semantic
Web Services held in conjunction with the Fifth International
Conference on Electronic Commerce (ICEC), 2003.

[15] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn,
“Xml schema part 1: Structures,” 2004.

[16] H. Petritsch, “Service-oriented architecture (soa) vs. compo-
nent based architecture,” Vienna University of Technology,
Vienna, Tech. Rep., 2006.

[17] S. Blanvalet, BPEL Cookbook: Best Practices for SOA-based
integration and composite applications development. PACKT
PUBLISHING, 2006.

[18] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana,
“Web services description language (wsdl) version 2.0,” 2006.

[19] BEA, IBM, Microsoft, A. SAP, and S. Systems, “Business
process execution language for web services. version 1.1,”
2003.

[20] D. S. Frankel, Model Driven Architecture: Applying MDA to
Enterprise Computing. Wiley, 2003.

[21] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: The
Model Driven Architecture- Practice and Promise,. Addison-
Wesley, 2003.

[22] MOF, “Meta object facility (mof) 2.0 core specification,
object management group, available at www.omg.org,,” 2004
[retrieved: 11, 2012].

[23] OMG, MOF QVT Final Adopted Specification, 2005, oMG
doc. [retrieved: 11, 2012].

[24] ——, OCL 2.0, 2006, oMG doc. ptc/06-05-01 [retrieved: 11,
2012].

[25] kermeta, “http://www.kermeta.org/, [retrieved: 11, 2012].”

[26] Arcstyler, “Arcstyler 5.0- interactive objects.”
www.interactive-objects.com, 2005, [retrieved: 11, 2012].

[27] OptimalJ, “Compuware software coporation,” 2005.

[28] OBEO, INRIA, “Atlas transformation language.”
http://www.eclipse.org/atl/, [retrieved: 11, 2012], 2005.

[29] D. H. Akehurst, B. Bordbar, M. J. Evans, W. G. J. Howells,
and K. D. McDonald-Maier, “Sitra: Simple transformations
in java,” in the 9th international conference on Model Driven
Engineering Languages, ser. LNCS, vol. 4199, Italy, 2006,
pp. 351–364.

[30] IBM, Microsoft, Web Services Business Process Execution
Language (WS-BPEL) Version 2.0, OASIS, 2007.

[31] X. Le Guillou, M.-O. Cordier, S. Robin, and
L. Rozé, “Chronicles for On-line Diagnosis of Distributed
Systems,” Research Report, 2008. [Online]. Available:
http://hal.inria.fr/inria-00282294/en/ , [retrieved: 11, 2012]

[32] M. Shaw and D. Garlan, Software architecture: perspectives
on an emerging discipline. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1996.

48Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

