
Web-native Video Live Streaming

Luigi Lo Iacono
Cologne University of Applied Sciences

Cologne, Germany
Email: luigi.lo iacono@fh-koeln.de

Silvia Santano Guillén
G&L Geißendörfer & Leschinsky GmbH

Cologne, Germany
Email: silvia.santano@gl-systemhaus.de

Abstract—The usage of the Web has experienced a vertiginous
growth in the last few years. Watching video online has been one
major driving force for this growth lately. Until the appearance of
the HTML5 agglomerate of (still draft) specifications, the access
and consumption of multimedia content in the Web has not been
standardized. Hence, the use of proprietary Web browser plugins
flourished as intermediate solution.
With the introduction of the HTML5 video element, Web browser
plugins are replaced with a standardized alternative. Still,
HTML5 video is currently limited in many respects, including
the access to only file-based media. This paper investigates on
approaches to develop video live streaming solutions based on
available Web standards. Besides a pull-based design based on
HTTP, a push-based architecture is introduced, making use of the
WebSocket protocol being part of the HTML5 standards family
as well. The evaluation results of both conceptual principles
emphasize, that push-based approaches have a higher potential of
providing resource and cost efficient solutions as their pull-based
counterparts.

Keywords-HTML5, Video, Live Streaming, DASH, WebSockets

I. INTRODUCTION

In the early days, video content has been delivered in
the Internet by specific streaming protocols such as Real-
Time Protocol (RTP) [1] or Real-Time Streaming Protocol
(RTSP) [2] in conjunction with specialized server-side software
to handle the stream. These protocols break up the streams –
it can be more than one, such as a video and multiple audio
channels – into very small chunks and send them from the
server to the client. This method is also denoted as push-based
delivery.

Such streaming protocols suffered, however, from unfavor-
able firewall configurations restricting in many cases the access
to media data. HTTP progressive download has been developed
partially to overcome this issue and to get multimedia streams
past firewalls. The basic concept behind HTTP progressive
download is to play back the media content while the resource
is being downloaded from the Web server. This approach is
also known as pull-based delivery, since the file containing
the media data needs to be pulled from the server by a client’s
request.

While capable of finding the path from a requesting client
to responding Web server, the HTTP progressive download still
did not offer true streaming capabilities. This lack motivated
the introduction of methods for adaptive streaming over HTTP.
To provide a streaming behaviour, adaptive streaming over

HTTP segments the media stream into small, easy-to-download
chunks. The adaptiveness is realized by encoding the media
content at multiple distinct bitrates and resolutions, creating
different chunks of different qualities and sizes. The available
encodings enable the client to choose between various bitrates
and resolutions and then adapt to larger or smaller chunks
automatically as network conditions keep changing. In order
to inform the client about the offered video quality levels
and the corresponding names of the resources, a meta file
containing this information is provided by the server. The client
then chooses a suitable quality level and starts requesting the
small chunks in the order given in the meta file. This pull of
media data needs to be performed by the client in a continuous
manner in order to construct an enduring stream out of the
obtained chunks. In an equivalent fashion an updated version
of the meta file needs to be requested as well, so that the client
retrieves information on upcoming chunks to request.

The arena of technologies for adaptive streaming over
HTTP has been dominated by proprietary vendor-proposed
solutions, as will be discussed in the subsequent Section II.
To harmonize the scattered picture a standardized approach
known as MPEG Dynamic Adaptive Streaming over HTTP
(DASH) has been ratified in December 2011 and published
by the International Organization for Standards (ISO) in April
2012 [3].

Although, adpative streaming over HTTP has been stan-
dardized and largely build upon Web standards, the play back
still requires propietary extensions to be included into the Web
browsers. Thus, from a perspective of a live video streaming
that is truly Web-native, the following set of requirements need
to be met:

• Live content support
Delivering live content by the concept of chunk-based
distribution.

• Web-native
Building solely upon Web standards, so that no addi-
tional components are needed to develop and use the
streaming services (e.g., by being HTML5-compliant
on the client-side).

• Minimal meta data exchange
Avoiding of extra message exchanges required for
media stream control, e.g., by the adoption of
communication patterns following the push model
instead of the pull model.

14Copyright (c) IARIA, 2014. ISBN: 978-1-61208-333-9

WEB 2014 : The Second International Conference on Building and Exploring Web Based Environments

• Low protocol and processing overhead
Reducing overheads introduced by communication
and processing means.

In the following section, available technologies will be
described and analysed in the light of these requirements. After
that, in Section III, the proposed approach will be introduced in
terms of an architecture. Section IV then introduces an imple-
mentation of such architecture which serves as foundation for
building various evaluation testbeds as described in Section V.
Finally, a detailed discussion of the evaluation results obtained
from performed test runs will conclude the contribution of the
present paper.

II. RELATED WORK

Microsoft Smooth Streaming (MSS) [4] has been one of
the first adaptive media streaming over HTTP announced in
October 2008 as part of the Silverlight [5] architecture. MSS
is an extension for the Microsoft HTTP server IIS (Internet
Information Server) [6] that enables HTTP media streaming
of H.264 [7] video and AAC [8] audio to Silverlight and other
clients. Smooth Streaming has all of the typical characteristics
of adaptive streaming. The video content is segmented into
small chunks that are delivered over HTTP. As transport format
of the chunks MSS makes use of fragmented ISO MPEG-
4 [7] files. To address the unique chunks Smooth Streaming
uses time codes in the requests and thus the client does not
have to repeatedly download a meta file containing the file
names of the chunks. This minimizes the number of meta file
downloads that in turn allows to have small chunk durations
of five seconds and less. This approach introduces, however,
additional processing costs on the server-side for translating
URL requests into byte-range offsets within the MPEG-4 file.

Apple’s HTTP Live Streaming (HLS) [9] came next as
a proposed standard to the Internet Engineering Task Force
(IETF). As MSS it enables adaptive media streaming of H.264
video and AAC audio. At the beginning of a session, the HLS
client downloads a play list containing the meta data for the
available media streams, which use MPEG-2 TS (Transport
Stream) [10] as wire format. This document will be repeatedly
downloaded, every time a chunk is played back. The content is
embedded into a Web page using the HTML5 video element,
whose source is the m3u8 manifest file [11], so that both
the parsing of the manifest and the download of the chunks
are handled by the browser. Due to the periodic retrieval of
the manifest file, there exists a lower bound for the minimal
duration of the chunks, which is commonly about ten seconds.

With the announcement of HTTP Dynamic Streaming
(HDS) [12] Adobe entered the adaptive streaming arena in
late 2009. Like MSS and HLS, HDS breaks up video content
into small chunks and delivers them over HTTP. The client
downloads a manifest file in binary format – called bootstrap
information (F4M) [13] – at the beginning of the session and
periodically during its life time. As in MSS, segments are
encoded as fragmented MP4 files that contain both audio and
video information in one file. It, however, differs from MSS
with respect to the use a single aggregate file from which
the MPEG file container fragments are extracted and then
delivered. In this respect, HDS follows the principle used in

HLS instead, which requests and transmits individual chunks
via an unique name.

These three major adaptive streaming protocols have much
in common. Most importantly, all three streaming platforms
use HTTP streaming for their underlying delivery method,
relying on standard HTTP Web servers instead of special
streaming servers. They all use a combination of encoded
media files and manifest files that identify the main and
alternative streams and their respective URLs for the player.
And their respective players all monitor either buffer status or
CPU utilization and switch streams as necessary, locating the
alternative streams from the URLs specified in the manifest.
The overriding problem with MSS, HLS and HDS is that these
three different streaming protocols, while quite similar to each
other in many ways, are different enough that they are not
technically compatible. Indeed, each of the three proprietary
commercial platforms is a closed system with its own type
of manifest format, content formats, encryption methods and
streaming protocols, making it impossible for them to work
together.

Seeing the need for a universal standard for the delivery
of adaptive streaming media over HTTP, MPEG decided to
step into. MPEG DASH (Dynamic Adaptive Streaming over
HTTP) [3] is an international standard for HTTP streaming
of multimedia content that allows standard-based clients to
retrieve content from any standard-based server. It offers the
advantage that it can be deployed using standard Web servers.
Its principle is to provide formats that enable efficient and
high-quality delivery of streaming services over the Internet to
provide very high user-experience (low start-up, no rebuffering,
trick modes). To accomplish this, it proposes the reuse of
existing technologies (containers, codecs, DRM, etc.) and
the deployment on top of HTTP-CDNs (Web Infrastructures,
caching). It specifies the use of either MPEG-4 or MPEG-
2 TS chunks and an XML manifest file, the MPD (media
presentation description), that is repeatedly downloaded to the
client making it aware of which chunks are available.

Support Live
Streaming

Use HTML5
video element

Push
delivery

Low
overhead

HDS

HLS

MSS

DASH

Figure 1: Characteristics of HTTP-based adaptive live streaming platforms

Although the DASH standard may become the format of
choice in the future, there is a lack of native Web browser
integration. The DASH-JS [14] project from the University of
Klagenfurt introduces an approach to overcome this gap. It
proposes a seamless integration of the DASH standard into
Web browsers using the HTML5 video element and the media
source extensions [15]. The media source extensions are at
the moment the only possibility to access the HTML5 video
element via JavaScript, enabling a seamless playback of a
chunk-based stream. The media source extensions are still
a W3C working draft and they are currently only supported
by the Chrome browser. As the segments are downloaded,
this sequence is played back by feeding it chunk-wise into

15Copyright (c) IARIA, 2014. ISBN: 978-1-61208-333-9

WEB 2014 : The Second International Conference on Building and Exploring Web Based Environments

a HTML5 video element and using media source extensions.

The characteristics of the discussed adaptive live streaming
platforms over HTTP are summarized in the light of the
requirements defined for a Web-native live video streaming
(see Figure 1). As can be observed, none of the currently
available platforms covers all of these characteristics, which
motivates this implementation and research.

III. ARCHITECTURE

The basic idea of the proposed architecture is to ground the
live streaming approach on a distinct communication protocol
other than HTTP, which is still native to the Web but allows
for a different communications design.

The WebSocket protocol was standardized by the IETF
as RFC 6455 in 2011 [16]. It has been designed for Web
applications, and is at the moment supported by all major
browsers such as Chrome, Internet Explorer, Firefox, Safari
and Opera in their desktop as well as mobile occurrence. The
protocol operates on top of a standard TCP socket and offers a
bidirectional communication channel between a Web browser
and a WebSocket server. The WebSocket is established by a
HTTP-based opening handshake commonly operated on port
80 which preserves firewall-friendliness.

The code running on the browser side acts as client
while there must be a server program running awaiting for
connections, usually installed on a web server.

Figure 2 illustrates the architecture of the developed sys-
tem, where the two different communication protocols used
are represented, as well as a sample of the message exchange.

Web Browser
HTTP

WebSocket Channel

WebSocket Client

Web Server

Web
 Application

...

Video Chunks

WebSocket
Server

Media Server

...

Figure 2: Proposed push-based architecture

The communication between the Web browser and the Web
server will be the first to be executed, as for every website, via
HTTP. After the web browser has downloaded the website, the
JavaScript code on the Web Appication will attempt to start
the communication via WebSocket with the Media Server.

The communication between client and media server starts
with a two-way handshake, as can be seen in Figure 2, before
the actual data transmission. The way the data transmission
between the two parts takes place, facilitates its use for
live content and real-time applications. This is achieved by
enabling the server to send content without the need of the

client asking first for it, creating a real bidirectional connection
that remains open for both parts to send data at anytime.

The fact of being able to follow a push model is a great
advantage for the purposes of this implementation, where a lot
of real-time data needs to be sent, and will be sent from the
server periodically, as soon as it is available instead of using
a request-response procedure.

The second greatest advantage over implementing the same
application over HTTP is the significant reduction in the length
of the headers, which normally introduces an overhead of about
400 bytes for the request and about the same amount for the
response on HTTP, while a regular header on WebSocket, as
specified on RFC 6455, introduces an overhead of as low
as two bytes, or maximumly up to 8 bytes, for an extended
payload length.

IV. IMPLEMENTATION

A prototype implementation of the proposed pushed-based
architecture has been developed. The technologies and com-
ponents used for developing the prototype are depicted in
Figure 3.

Web Browser
HTTP

WebSocket Channel

WebSocket Client

Web Server

...

Video Chunks

Media Server

...

Pywebsocket

Media Source Extensions

HTML5 Video

Figure 3: Implementation of push-based live video streaming prototype

The initial Web page is delivered by any HTTP server
containing a JavaScript program, which gets downloaded by
the browser. While being executed, the code creates an HTML-
VideoElement object and a MediaSource object and connects
them using the API. This API allows the construction of media
stream objects for the HTML5 video element through which
the media segments can be passed to the HTMLMediaElement
for play back. Thus, the decoding and rendering parts will be
natively handled by the browser.

In what follows, the client needs to create the WebSocket
connection and to assign the according event listeners to
specific functions waiting for the next content chunks to arrive
so that they can be added to the corresponding media source
buffer. This will be performed until the end of the session,
which is reached either when the server has no more content
to deliver or when the user decides to stop watching.

The WebSocket server application is implemented in
Python language, using Pywebsocket [17], an extension for
the Apache HTTP Server. This API makes possible to develop
a server for the test, which resulted consuming very low RAM
memory even for a large amount of clients connected, which
is actually translated to a large amount of threads for the
operative system. Just like most server applications, it does not

16Copyright (c) IARIA, 2014. ISBN: 978-1-61208-333-9

WEB 2014 : The Second International Conference on Building and Exploring Web Based Environments

start connections by itself but waits for connection requests.
After the establishment, the client applications emit a starting
signal, with which the video session begins and remains open
as long as there is more content available.

V. EVALUATION

To evaluate the proposed approach two distinct testbeds
have been implemented. One (browser-based, in JavaScript) is
targeting the amount of meta data, i.e., data not part of the
video, required to be exchanged between client and server.
The second (not browser-based, in Python) is concerned with
the processing overhead on the server-side and the number
of simultaneous clients servable from one server instance.
These testbeds have been realized for both a DASH-like HTTP
transfer and the proposed WebSocket-based approach.

To perform the first evaluation, two different browser-based
clients have been developed. The version over HTTP avails
itself of Apache HTTP server and the one over WebSocket,
after establishing the connection, of our WebSocket server
application.

To perform the second evaluation, for the client-side the
programs have been implemented using the Python modules
websocket-client [18] and httplib [19], respectively. The server-
side of the HTTP approach is programmed on top of the HTTP
protocol implementations provided by the Python modules
BaseHTTPServer [20] and SocketServer [21]. Based on these
components, the implementation of a multi-threaded HTTP and
WebSocket server has been undertaken. The server-side of the
WebSocket approach is the same described on previous section.

The video used to perform the evaluation is the open source
movie Big Buck Bunny [22], which has been produced by
the Blender Foundation and has been released under Creative
Commons License Attribution 3.0 [23]. The AVC codec is used
in an MP4 container. The test video’s bitrate is 100 kbps, the
duration is 9’ 56” and the total file size is 6.7 MB (6,656,763
bytes).

To simulate a live stream, the movie has been chunked
into separate segment files according to the MP4 standard.
These segements contain each a short portion of two seconds
of duration and are stored in the media server. Since the chunk
length is approximately two seconds, the number of chunks is
300.

A. Communication Overhead

To gather the overhead introduced by each one of the two
investigated communication alternatives, the network traffic
has been captured, analysed and contrasted with theoretical
thoughts. The network packets exchanged in both scenarios
have been captured using Wireshark [24].

Each layer of the TCP/IP model introduces its own meta
data in form of a header and in some cases even a trailer,
but since Ethernet, IP and TCP are common to both compared
approaches, only the protocol elements of the application-level
are taken into account, which are the HTTP messages and the
WebSocket frames respectively.

Figure 4 shows the typical size of an HTTP GET request
for retrieving the next video chunk which has in this particular
case a size of 440 bytes.

Figure 4: Captured HTTP request asking for video chunk #4

Figure 5: Captured HTTP response containing video chunk #4

Figure 5 presents the size of an corresponding HTTP
response packet. The upper-most mark in the figure shows that
a total of 22,912 bytes have been transmitted in the HTTP
response. From the HTTP content-length header the amount
of video bytes contained in this chunk can be retrieved, which
is 22,617 bytes. With these two values, the size of the HTTP
response header can be calculated (300 bytes). This makes a
final amount of metadata of 740 bytes per chunk (440 bytes for
the whole request and 300 bytes for the response header). This
again sums up to an overall overhead of 222,000 bytes when
considering all of the 300 chunks. For Transmitting the test
video of the size of 6,656,763 bytes, this method introduces
an overhead of 3.3% in relation to the media content.

Figure 6: Captured WebSocket frame containing video chunk #4

The WebSocket protocol specification defines the header
as a variable size structure ranging from a size of at least two
bytes to a maximum of 8 bytes. This mainly depends on the
size of the payload carried by the WebSocket packet, since
this is encoded in a length field in the header which grows
depending on the actual content size. In case of a minimal two
bytes header, the payload of the WebSocket frame can contain
a maximum of 125 bytes. Since all of the 300 two seconds
video segments are in any case larger than this mark, the
resulting WebSocket packets do all have a header of four bytes,
as can be observed from the captured WebSocket frame shown
in Figure 6. This is due to a required extended payload length
header field, which introduces additional two bytes. With this
two byte extended payload length header field a maximum
of 65,662 bytes of payload can be specified, which is large
enough for all of the 300 video chunks.

Since there are no requests required to retrieve a next
video chunk, this communication overhead from the DASH-
like approach is not inherent to the proposed WebSocket-based
transmission. Thus, the total amount of meta data introduced
per chunk is four bytes (zero bytes for the request since it

17Copyright (c) IARIA, 2014. ISBN: 978-1-61208-333-9

WEB 2014 : The Second International Conference on Building and Exploring Web Based Environments

does not exist and four bytes for the header in the WebSocket
frame). For all of the 300 chunks this sums up to a total of
1,200 bytes for transferring the video from the server to the
web client. This represents an overhead of around 0.02% in
relation to the plain multimedia content of 6,656,763 bytes.

When observing carefully the numbers given in the Fig-
ures 5 and 6 it appears that the sizes of the payloads found
in the HTTP response and the WebSocket frame differ by
six bytes. This constant six byte offset can be found in any
WebSocket frame in comparison to the corresponding HTTP
response. This is due to additional meta data added by the
WebSocket implementation used in this testbed (binaryjs [25]).
Thus, the concrete WebSocket framework and libraries used for
development need to be examined whether they add additional
meta data to the payload, since this has an influence on the
overall efficiency. In this particular case, the exchanged meta
data sums up to a total of 3,000 bytes, which represents an
overhead of around 0.05% in relation to the plain multimedia
content of 6,656,763 bytes.

B. Processing Overhead

To further examine the potential benefits of the proposed
approach of using WebSockets as communication means for
video live streaming in the Web, an additional testbed has been
developed and operated, aiming at finding out the total quantity
of clients that one server is able to handle simultaneously.
Again, two equivalent instantiations of the testbed have been
deployed for the DASH-like and for the WebSocket-based live
video streaming.

The machine used for this evaluation is an Amazon EC2
small instance server composed of one 64 bit ECU (EC2
Compute Unit) which provides the equivalent CPU capacity
of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor and
1.7 GB of RAM [26]. To simulate a large number of clients
a set of 15 distinct and distributed EC2 micro instances have
been deployed. An EC2 micro instance is equipped with up
to 2 ECUs for short periodic bursts and 613 MB of RAM.
The developed components described in Section IV have been
installed on these systems in order to setup and operate the
testbeds. When building such a large scale testbed, the OS
settings for the maximum number of open files per user, the
maximum number of threads and the maximum number of
TCP connections need to be modified accordingly.

The clients are all set up at the same time. At the moment
the last of them connects to the server, all of them start being
simultaneously served with the test video. After each client
instance has received all content, it measures its own duration
time, measured from the moment it started receiving content,
to calculate the bitrate as follows:

Bitrate [bps] = Video size [bits] / Transfer time [s].

As mentioned previously, the video encoding bitrate is
around 100 kbps. Hence, as long as the receiving bitrate is
higher than the video bitrate, the user will be able to watch
the video without encoutering any disturbance. The moment in
time when the number of clients is so big that theythe majority
of them can not be served anymore at the required minimum
bitrate will be considered as the inflexion point. The expected
theoretical results of these tests are shown in Figure 7, with a
red dot simbolizing the defined inflexion point.

Figure 7: Expected curve of transmission bitrate

The number of clients has been increased stepwise starting
from 100 clients. On each run, all clients have been equally
distributed on 15 separate machine instances. Each run has
been repeated 10 times to obtain a mean value. In each
additional run, the server is restarted and the number of
concurrent clients is increased by 100, until reaching 2,000
clients in the final run.

Figure 8 shows the results obtained from the DASH-like
live streaming testbed. It can be observed that the graph for
HTTP transmission bitrate shows a corresponding shape as
theoretically expected and depicted in Figure 7.

Figure 8: Average transmission bitrate for DASH-like streaming

The bitrate decreases from an average of 1,228 kbps, when
there are 100 simultaneous clients to an average of 49 kbps,
when the number of connected clients increases to 2,000. The
red point indicates the inflexion point, which lies between
1,000 and 1,100 active clients. This denotes the largest quantity
of simultaneous clients for this server, so that the minimum
required video bitrate can still be served to the connected
clients.

Figure 9 summarizes the results obtained from the
WebSocket-based live streaming testbed. The bitrate decreases
from an average of 4,067 kbps, when there are 100 simulta-
neous clients to an average of 170 kbps, when the number of
active clients increases to 2,000. Thus, the WebSocket-based
video server can still handle as much as 2,000 simultaneous
clients and provide each with a video stream that comes with
a bitrate still above the required encoding bitrate of 100 kbps.

Figure 9: Average transmission bitrate for WebSocket-based streaming

The tests runs have been performed in both cases until

18Copyright (c) IARIA, 2014. ISBN: 978-1-61208-333-9

WEB 2014 : The Second International Conference on Building and Exploring Web Based Environments

2,000 concurrent clients have been reached. Further mea-
surements in the WebSocket-based testbed have not been
performed. When extrapolating the obtained results, then the
inflexion point will be located at around 2,300 clients (see
Figure 9).

From these experiments it can be deduced, that be-
sides the communication overhead advantages, the proposed
WebSocket-based live streaming approach has additional ben-
efits in terms of processing costs. These efficiency advantages
result in a larger user base being servable with the same
amount of infrastructure ressources.

VI. CONCLUSIONS

The access of video content in the web is evolving rapidly.
Currently, file-based video content is dominating whereas the
consumption of live streams is on the raise. The available
standards and technologies for enjoying live video content in
a web-native manner are, however, still in their infancy. The
HTTP-based DASH is a first step in this direction.

The adoption of HTTP for video distribution in the web
has its pros and cons. For the on-demand access of file-based
videos the comprehensive and pervasive HTTP guarantees
a broad usage of the content. This approach also fits well
with the current deployment and usages of CDNs (Content
Distribution Networks), ensuring the necessary scaling of such
an approach.

Things change, however, if it comes to live streaming of
video content. First, CDNs can not exploit their strength, since
the feeding of the content to the distributed cache servers does
not adhere to the real-time character of live video streams.
The idempotence of the HTTP GET method is henceforth
less relevant for live casts and brings other drawbacks of
HTTP back in focus. The client-initiated request-response
communication pattern is one major source of issues when
push-based communications need to be implemented as it is
the case for the transmission of media content.

This paper examined the possiblity of developing a live
video streaming solution in a web-native manner by means
of standards belonging to the HTML5 standards family. Such
an approach has been realized based on the HTML5 video
element and WebSockets as real-time communication means.
The performed evaluation of the developed video streaming
solution demonstrates that this approach is much more efficient
compared to methods relying on HTTP. Both, the communi-
cation as well as the processing overheads can be significantly
reduced by the proposed WebSocket-based solution in com-
parison to HTTP-relying methods such as DASH.

Future research activities will focus on the relation of
CDNs and connection-oriented protocols such as the Web-
Socket protocol. The lack of the idempotence property and the
real-time nature of such content stream pose new requirements
and challenges to such caching and load distribution systems.

REFERENCES

[1] Audio-Video Transport Working Group, “Rtp: A transport protocol for
real-time applications,” IETF, RFC 1889, 1996, online available at www.
ietf.org/rfc/rfc1889 (last accessed: Jan 2014).

[2] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming protocol
(rtsp),” IETF, RFC 2326, 1998, online available at www.tools.ietf.org/
html/rfc2326 (last accessed: Jan 2014).

[3] ISO/IEC Moving Picture Experts Group (MPEG), “Dynamic adap-
tive streaming over http,” ISO/IEC, Tech. Rep., 2013, online avail-
able at www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.
htm?csnumber=57623 (last accessed: Jan 2014).

[4] Microsoft, “Microsoft smooth streaming,” www.iis.net/downloads/
microsoft/smooth-streaming (last accessed: Jan 2014).

[5] Microsoft Corporation, “Silverlight 5.1,” 2013, online available at www.
microsoft.com/silverlight (last accessed: Jan 2014).

[6] Microsoft, “Internet information services,” www.iis.net (last accessed:
Jan 2014).

[7] ISO/IEC Moving Picture Experts Group (MPEG), “Iso mpeg-
4,” ISO/IEC, International Standard, May 2012, online avail-
able at www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.
htm?csnumber=61490 (last accessed: Jan 2014).

[8] ISO/IEC Moving Picture Experts Group (MPEG), “Advanced au-
dio coding,” ISO/IEC, International Standard, 2004, online avail-
able at www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.
htm?csnumber=62074 (last accessed: Jan 2014).

[9] Apple Inc., “Http live streaming,” IETF, Internet-
Draft, 2013, online available at www.tools.ietf.org/html/
draft-pantos-http-live-streaming-12 (last accessed: Jan 2014).

[10] ISO/IEC Moving Picture Experts Group (MPEG), “Iso mpeg-ts,”
ISO/IEC, International Standard, 2013, online available at www.iso.org/
iso/iso catalogue/catalogue tc/catalogue detail.htm?csnumber=62074
(last accessed: Jan 2014).

[11] Apple Inc., “Http live streaming - section 3: Playlist file,” IETF, Internet-
Draft, 2013, www.tools.ietf.org/html/draft-pantos-http-live-streaming-
12 - Section 3 (last accessed: Jan 2014).

[12] Adobe, “Adobe http dynamic streaming,” www.adobe.com/products/
hds-dynamic-streaming.html (last accessed: Jan 2014).

[13] Adobe, “Flash media manifest file format specification
1.01,” 2010, online available at osmf.org/dev/osmf/specpdfs/
FlashMediaManifestFileFormat\-Specification.pdf base(last accessed:
Jan 2014).

[14] B. Rainer, S. Lederer, C. Muller, and C. Timmerer, “A seamless web
integration of adaptive http streaming,” in Signal Processing Conference
(EUSIPCO), 2012 Proceedings of the 20th European, 2012, pp. 1519–
1523.

[15] A. Colwell, A. Bateman, and M. Watson, “Media source extensions,”
W3C, Last Call Working Draft, 2013, online available at www.dvcs.
w3.org/hg/html-media/raw-file/tip/media-source/media-source.html
(last accessed: Jan 2014).

[16] I. Fette and A. Melnikov, “The websocket protocol,” IETF, RFC 6455,
2011, online available at www.tools.ietf.org/html/rfc6455 (last accessed:
Jan 2014).

[17] T. Yoshino, “Pywebsocket,” www.pypi.python.org/pypi/mod
pywebsocket (last accessed: Jan 2014).

[18] H. Ohtani, “websocket-client,” www.pypi.python.org/pypi/
websocket-client/0.7.0 (last accessed: Jan 2014).

[19] Python Software Foundation, “Http protocol client,” www.docs.python.
org/2/library/httplib.html (last accessed: Jan 2014).

[20] Python Software Foundation, “Basehttpserver,” www.docs.python.org/
2/library/basehttpserver.html (last accessed: Jan 2014).

[21] Python Software Foundation, “Socketserver,” www.docs.python.org/2/
library/socketserver.html (last accessed: Jan 2014).

[22] Blender Foundation, “Big buck bunny,” 2008, www.bigbuckbunny.org
(last accessed: Jan 2014).

[23] Creative Commons, “Creative commons license attribution,” 2007,
”www.creativecommons.org/licenses/by/3.0/us/legalcode” (last
accessed: Jan 2014).

[24] Open Source, “Wireshark 1.10.2,” 2013, www.wireshark.org (last ac-
cessed: Jan 2014).

[25] E. Zhang, “Binaryjs,” 2013, www.binaryjs.com.
[26] Amazon Web Services, “Amazon elastic compute cloud (ec2),” www.

aws.amazon.com/en/ec2 (last accessed: Jan 2014).

19Copyright (c) IARIA, 2014. ISBN: 978-1-61208-333-9

WEB 2014 : The Second International Conference on Building and Exploring Web Based Environments

