
Automated Elicitation of Functional User Requirements for Supporting

Cloud Service Search

Andrea Horch, Constantin Christmann and Holger Kett
Fraunhofer Institute for Industrial Engineering IAO

Stuttgart, Germany
{andrea.horch, constantin.christmann, holger.kett}@iao.fraunhofer.de

Abstract—The use of cloud services can generate tremendous
benefits for companies, especially for small and medium-sized
enterprises (SMEs). When searching for a cloud service the
specification of the required functions is an important aspect for
finding appropriate services. SMEs which may not have access
to the knowledge of an information technology (IT) expert can
have difficulties in formulating their functional requirements and
current cloud service search engines do not provide comfortable
assistance for the specification of functional requirements like
service features. The contribution of this paper is a technique for
the automated identification of service features for supporting
cloud service search. The technique uses an ontology to perform
an analysis of the functions provided by cloud services or on-
premise software which is currently used by the SMEs. The
technique was implemented and evaluated in the context of the
crafts domain.

Keywords–Functional Requirements; Requirements Elicitation;
Cloud Services; Service Search.

I. INTRODUCTION

The adoption of cloud computing holds vast potential for
companies. In particular small and medium-sized enterprises
(SMEs) can exploit the benefits of cloud computing like such
as the outsourcing of resources through the use of a completely
external infrastructure or the improvement of processes by
using readily available services, which can be accessed from
anywhere [11]. Due to its numerous advantages cloud com-
puting already plays an important role for business. Moreover,
for small and medium-sized enterprises (SMEs) which may not
dispose of high IT expertise it can be difficult to formulate their
functional requirements which are an important aspect when
searching for suitable software tools. Hence, there is a need to
assist the SMEs during the process of functional requirements
elicitation when searching for appropriate cloud services.

Current cloud service registries and search engine projects
like Cloud Search Portal [3] or the service directories of
cloudbook [2] and Cloud Showplace [13] are not adequate
in supporting the elicitation of functional requirements during
the search process (see Section II). This paper contributes a
technique to automatically identify required software features,
which is based on an ontology. The ontology represents the
domain of software features in the context of the crafts sector.
The method was implemented in form of a search engine
for the identification of required cloud service features in
the crafts domain. The evaluation has verified the suitability
of the technique for supporting users during the process of
the identification of required cloud service features for cloud
service search. The paper is organized as follows: Section
II presents related work and Section III is introducing the
approach. The implementation of the technique is presented

in Section IV. The approach of the evaluation and the results
are shown in Section V. We conclude in Section VI and we
propose the future work in Section VII.

II. RELATED WORK

Table I gives an overview of previous projects in the field
of cloud service search and the tasks they focus on. The cloud
portal introduced in [5] implements as a main feature a cloud
service search engine. The search engine is based on a domain
ontology describing the main features of a cloud service like
service type, vendor details, technical information or cost and
time details. Cloud service providers use the terms of the
ontology to describe their services. Additionally, they have the
possibility to add some keywords to the service description.
Service consumers, which are searching for an appropriate
service, also use the terms of the ontology to describe their
requirements for service search. Furthermore, they have the
option to add keyword for the search. The matching is done
by similarity reasoning based on the domain ontology. The
cloud service search engine CloudRecommender presented
in [14] is based on an ontology called Cloud Computing
Ontology (CoCoOn). The project focuses on the identification
and selection of infrastructure services, which belong to the
infrastructure as a service (IaaS) model of cloud computing.
Users can search by selecting basic configuration parameters
for the searched cloud service, which are provided by the
domain ontology. Additionally, regular expressions can be
used to search for appropriate services. The domain ontology
designed in [6] describes cloud services. The ontology is used
to assist cloud service providers to describe the cloud services
when registering a cloud service in a cloud service registry.
The ontology acts as a standard terminology for the service
descriptions of the different providers. They have implemented
a keyword-based cloud service search engine, which matches
the keyword query to the terms of the ontology and infers suit-
able services. In [7], Cloud Service Crawler Engine (CSCE) is
presented which is a crawler engine for cloud service discovery
and categorization. CSCE crawls the internet by using the
application programming interfaces (APIs) of conventional
search engines like Google, Bing or Yandex, as well as a
domain ontology describing cloud service characteristics. The
crawler uses the concepts in the first levels of the ontology as
query keywords to feed the search engines and the is-a and
is-not-a relations between the concepts for the decision
whether a search engine result is a cloud service or not. The
ontology is also used for the categorization of the service
providers of the discovered cloud services into infrastructure
as a service (IaaS), platform as a service (PaaS), software as
a service (SaaS), IaaS+PaaS, IaaS+SaaS, PaaS+SaaS and all.

1Copyright (c) IARIA, 2015. ISBN: 978-1-61208-407-7

WEB 2015 : The Third International Conference on Building and Exploring Web Based Environments

The contribution of [10] is an approach for the generation of
semantic cloud service descriptions. The proposed technique
transforms a natural language description of a cloud service
into a semantic service description by using a domain ontology,
as well as natural language processing (NLP) tools. Based on
the semantic description of the cloud services a search index
is generated, which is used for processing a keyword-based
search.

There are further recent approaches which pursue the
goal to ease the use and reuse of cloud services. One of
those projects is the Artist (Advanced software-based seRvices
provisioning and migraTIon of legacy SofTware) project [1]
which offers a set of methodologies and tools to owners and
developers of cloud services for transforming their software
in a way that it can exploit the benefits of cloud features.
Another project called REMICS (REuse and MIgration of
legacy applications to Interoperable Cloud Services) [9] di-
rectly translates natural user requirements to Java code by
transforming natural language phrases into the Requirements
Specification Language (RSL). Since the approach of the Artist
project needs a deeper IT know-how and thus, is more suitable
for owners and developers of cloud services than for non-
experts it will be not further considered in this paper. The
approach of the REMICS project offers the possibility to the
users to easily define their software requirements in natural
language, but it does not give them a hint if they do not
completely know their requirements. As our approach aims
to assist the users in identifying their functional requirements
it needs to use other techniques than proposed in [1] and
[9]. [1] and [9] are not compared to the cloud service search
approaches in Table I since they do not mainly focus on cloud
service search.

As illustrated in Table I the previous projects presented
in this section deliver solutions for cloud service discovery,
the description of cloud services as well as the elicitation
of non-functional user requirements for cloud services. The
elicitation process for the required features is only partially
solved by some projects. These projects, which deliver a
partial solution for the investigation of the required service
features only consider the service type like IaaS or some
technical requirements like the available storage size, but they
do not consider the denotations of functions nor determine
the functions offered by a service. Thus, there is a deficit in
the assistance of users during the elicitation process of their
required service features when searching for appropriate cloud
services, which is filled by the technique introduced in this
paper.

III. APPROACH

Our approach for an automated identification of required
service features is based on the assumption that the users
already have a software in use, which they want to substitute
with an appropriate cloud service. Another possible scenario
is that the user knows an on-premise software having all
required functions and they are looking for a corresponding
cloud service. Figure 1 shows the steps of our approach for
automated elicitation of required service features.

In the first step, the user enters the search query, which is
the URI of the software website, which should be substituted
by the cloud service, or the URI of a similar software having
the required functions. Having received the website URI, the

1. User Input

URI of the website of the software, which
should be replaced with the searched cloud

service, or website of a similar software.

2. Crawling

Crawling of the content of the entered URI
and all links on that website.

3. Feature Extraction

Identification and extraction of all features
listed in crawled website content by

matching ontology terms.

4. Result Preparation

Construction of a hierarchical tree of the
matching service features.

5. Result Presentation

Displaying the search results, which
correspond to the service features required

by the user.

Figure 1. Approach for automated elicitation of required service features

content of the website and of all pages linked on it have to
be crawled. In the next step, the content is checked against
a domain ontology, which contains software function classes.
These classes include several labels of function terms. Each
class of the ontology is checked for its occurrence in the
crawled content. Classes whose labels match a term in the
content, are added to the result set. After that step the result
set is transformed into a hierarchical order corresponding to
the hierarchy of the function classes in the domain ontology.
Finally, the hierarchical result list of software functions is
displayed to the user.

IV. IMPLEMENTATION

The implemented system consists of a user interface, a
domain ontology, a component for web content crawling, a
component for feature extracting and a component for pro-
cessing the results.

A. Ontology Creation
For the implementation of the approach a domain ontology

is needed for identifying terms of functions and interfaces in
the crawled content of the software websites. For the creation
of the ontology we used the ontology editor Protégé [12]
and followed the Ontology Development 101 methodology
described in [8]. The Ontology Development 101 methodology
comprises the following steps:

1) Determination of domain and scope of the ontology.

2Copyright (c) IARIA, 2015. ISBN: 978-1-61208-407-7

WEB 2015 : The Third International Conference on Building and Exploring Web Based Environments

TABLE I. OVERVIEW OF CLOUD SERVICE SEARCH PROJECTS

cloud service
discovery

generation of cloud
service description

identification of
required functions

identification of
other features

[5] J. Kang and K. M. Sim, 2011 G#
[14] M. Zhang et al., 2013 # G#
[6] V. S. K. Nagireddi and S. Mishra, 2013 # # #
[7] T. H. Noor et al., 2013 # # #
[10] R. Sahandi, A. Alkhalil and J. Opara-Martins, 2013 # # #

Legend: # no solution, G# partial solution, solution

2) Consideration of reusing existing ontologies.
3) Enumeration of important ontology terms.
4) Definition of the classes and class hierarchy.
5) Definition of the properties of classes (slots).
6) Definition of the facets of the properties (cardinality,

value type, domain and range).
7) Creation of instances.

The domain of the ontology covers functional cloud service
requirements such as functions and interfaces. It shall be used
for the elicitation of the functional requirements by analysing
the functional range of a currently used software tool or a
similar software from the software description on the website
of the provider. We restricted the ontology to describe cloud
software in the crafts domain, but it was designed to be
easily extended to other domains. Concerning step 2 of the
methodology, we have analysed the ontologies of previous
work whether these can fit our needs. For this purpose we
examined the ontologies used in [4]- [7]. All these ontologies
offer several meta data for describing software, especially
cloud software. However, they do not include terms or a
hierarchy for describing the concrete functions and interfaces
of software. Hence, we decided to create a new ontology which
includes terms and a hierarchical structure of software func-
tions and interfaces. Important ontology terms where identified
by scanning the websites of five different software services of
the crafts domain for terms of functions and interfaces and
adding them to the ontology in a hierarchical structure. The
ontology consists of a class hierarchy (is-a relationships) and
different labels for the classes to express synonyms.

Since we plan to extend the ontology to store additional
knowledge about the data which is processed by each function
in order to be able to increase our system for the search
for trusted cloud services it was created in the Resource
Description Framework Schema (RDFS) which is a standard
of the W3C. For the search for trusted cloud services it is
important to know if a service processes or stores critical data
like personal data of customers or business secrets.

Feature

hasLabelDE

hasLabelEN

hasLabelEN

hasLabelEN

Interface

Function

String

String

String

String

Figure 2. Structure of the software feature ontology

ECM
ECollaboration

DocumentManagement

Feature
Interface

Datanorm

DATEV

Office

Exchange

UGS

GAEB

IDS

Mareon

CRM

JobManagement

Operation

CAD

AutomaticVehicleLocation

DataBackup

Measurement

RoomManagement

AssetsManagement

ProjectPlanning

CalendarManagement

Scheduling

TaskManagement

ContractManagement ConstructionProgress
ProjectOrderCreation

Function

Service

CustomerDataManagement

Marketing
ERP

MaterialsManagement
OperationalAccounting

PersonnelManagement
+

+

+

+

+

+

Figure 3. Extract of the software feature ontology

Figure 2 presents the structure of the ontology, whereas
Figure 3 shows an extract of the ontology. The class feature
describes all features of a software and includes the subclasses
function and interfaces, which are features of a soft-
ware. The class function contains several subclasses, which
represent concrete functions of a cloud software in the crafts
domain like Enterprise Resource Planning (ERP) or Customer
Relationship Management (CRM) and their subclasses. The
class interface is a meta class of software interfaces
including several subclasses describing concrete interfaces of
cloud software in the crafts domain like an office interface or
a DATEV interface for transferring product data.

Moreover, the ontology contains the meta classes
FunctionMetaclass for the description of software func-
tions and a meta class InterfaceMetaclass for soft-
ware interfaces. Another meta class is an extension of
the system class Slot called SlotWithLabel which
was designed to be able to add multilingual labels in
the form of class properties to a function and an inter-
face class. The ontologies includes the slots (class prop-
erties) labelDE and labelEN which both have the do-
mains Function, FunctionMetaclass, Interface,
InterfaceMetaclass and SlotWithLabel. The prop-
erties use the value type String for adding English and
German labels to a function or interface class in order to define
several English and German synonym terms for describing the
name of a service function or interface. The ontology includes
36 classes for service functions and 10 different interface
classes. It consists 118 German labels and 111 English labels
for describing the different function classes. It has 16 German
labels as well as 16 English labels for naming the interface
classes.

B. System Built
After building the ontology the system for the identification

and extraction of required service functions was created. Figure

3Copyright (c) IARIA, 2015. ISBN: 978-1-61208-407-7

WEB 2015 : The Third International Conference on Building and Exploring Web Based Environments

4 presents the system design.

Feature Identifier

Functions and
Interfaces

User Interface

Content Crawler Feature Extractor Result Processor

Domain Ontology

User Input
(URI of Software Website)

 User Input (Keywords)

Website Content

Hierarchical
Result List

Domain Knowledge

SPARQL queries /
Domain Knowledge

Figure 4. System design

• User Interface: The user interface is a web applica-
tion where the users can enter a search query in form
of a URI of the software to substitute or a software,
which offers a similar set of functions and interfaces
as the searched service. We designed the system to
use the online description of an actually used software
(on-premise software or web service) on the website
of the software provider or retailer since we assume
that the user will already use a software.
Having processed the search the results are presented
in the user interface in the form of hierarchical lists of
the identified functions and interfaces. The users can
decide, which of the listed features they require and
send their selection to the service search engine. An
example of displayed results is shown in Figure 5.

• Content Crawler: If the user query is the URI of the
website the content crawler crawls the content of that
website and all websites of the same domain, which
are linked on it. After the crawling process the content
crawler transfers the crawled content to the feature
extractor.

• Feature Extractor: The feature extractor uses the
domain ontology to compare the class labels (terms
of functions and interfaces) with the website content.
All matching ontology classes are added to the result
list, which is referred to the result processor. Since
the crawling is done in real-time during the search
operation and some website linking many other do-
main websites we decided to interrupt the crawling
after three minutes. That means, the functions and
interfaces only occurring on websites, which are not
crawled within three minutes, will not be identified
by the system. The interruption after a time of three
minutes was chosen because a three minutes time
space for crawling has provided good results in our
tests - even for bigger websites. We plan to reduce
the processing time of three minutes for later versions
of the system (e.g. by incremental result generation or
a parallel programming approach).
If the user query is formulated as keywords the feature
extractor checks the ontology classes directly against

the keywords.

• Result Processor: The result processor takes the
result list from feature extractor and prepares it for the
presentation on user interface. It processes SPARQL
Protocol And RDF Query Language (SPARQL)
queries on the domain ontology to get information
about the hierarchical structure of the results and con-
verts the result list to hierarchical lists of functions and
interfaces, which are transmitted to the user interface,
which is shown in Figure 5.

Figure 5. Result lists of the identification of required service features

Figure 5 shows an example for a result list from the system
for a search for suitable functional service requirements which
can be used for a cloud service search in order to substitute a
currently used service.

V. EVALUATION

The evaluation of our approach is separated into two parts.
In the first part, we measure the adequacy of the approach
in eliciting the functional user requirements from software
websites for being able to run a precise search for relevant
cloud services. The second part of the evaluation validates the
results of the elicitated functional requirements for running a
cloud service search.

4Copyright (c) IARIA, 2015. ISBN: 978-1-61208-407-7

WEB 2015 : The Third International Conference on Building and Exploring Web Based Environments

TABLE II. CONSTRUCTION WEBSITES

software URL
pds abacus http://www.pds.de/cms/produkte/pds-abacus/

myfactory http://www.myfactory.com/

scopevisio https://www.scopevisio.com/

moser http://www.moser.de/produkte/mosaik/

kwp-bnWin.net http://www.kwp-info.de/

TABLE III. CONTROL WEBSITES

software URL
lexoffice http://www.lexoffice.de/

midcom http://www.midcom.de/

cas pia http://www.cas-pia.de/

reporta http://reporta.ag/de/

salesking http://www.salesking.eu/

A. Elicitation of Functional Service Requirements
The first part of the evaluation analyses the quality of our

system for the elicitation of the functional user requirements
from software websites by measuring precision, recall and
F1 score for the identification of the functions and interfaces
offered by software systems, which are described on (1) the
software websites we used to build up the domain ontology
(construction pages) and (2) other software websites of the
crafts domain (control pages), which act as control group.

Criteria for the selection of the construction and control
pages were the following:

• Construction pages: The construction pages should
contain a description of a cloud service of the crafts
domain including as many functions and interfaces as
possible.

• Control pages: The control pages should also contain
a description of a cloud service of the crafts domain.
The main criteria for a control page was that the ser-
vice described should differ a lot in respect to structure
and terms from those described in the construction
pages.

The websites for ontology construction are given in Table II
whereas the Uniform Resource Locators (URLs) for the control
websites are quoted in Table III.

For this purpose we manually collected all functions and
interfaces described on the mentioned websites and compared
these results with the result lists delivered by our system. The
evaluation results for the software websites used to build up
the ontology are shown in Figure 6.

For the construction pages we could achieve an average
value for precision of 0.95. We could reach an overall value
for recall of 0.87 and for the F1 score of 0.91. Reasons for
not achieving 1.00 for all values are the following:

• Crawling interruption: We interrupt the website crawl-
ing during the identification process after three min-
utes. Functions and interfaces only occurring on web
pages, which are not crawled could not be identified.

• Wording on websites: Some software functions are
described on the website using a sentence and not a
single term of the ontology. There is no match between

Figure 6. Precision, recall and F1 score for the construction pages

the terms of the ontology and the text on the website,
which describes the function.

• Asynchronous JavaScript and XML (AJAX): Some
websites use AJAX for displaying some information.
This information is only displayed after triggering
a specific action. Since we do not trigger actions
during the crawling process functions and interfaces
described in text, which only occurs after an action,
does not become identified.

• No semantic analyses of content: Our process does not
analyse the semantics of the crawled website content.
There are sentences like ”You can pay the service fee
by bank transfer or direct debit”, which specifies how a
customer can pay for the use of the software described
on the website. However, the system gets a match
between the words ”bank transfer” and ”direct debit”
in the sentence on the website and the corresponding
ontology classes describing the software functions
”bank transfer” and ”direct debit”.

The results for the control pages are shown in Figure 7.

Figure 7. Precision, recall and F1 score for the control pages

For this type of pages we achieved an average value for
precision of 0.90, and overall recall of 0.74 and an F1 score
of 0.81. This means, on average the system can identify 74 %

5Copyright (c) IARIA, 2015. ISBN: 978-1-61208-407-7

WEB 2015 : The Third International Conference on Building and Exploring Web Based Environments

of the features listed on software website not used to build the
ontology, which is a sufficient result for a system, supporting
users to identify their required service features and interfaces.

B. Cloud Service Search
In this part of the evaluation, the suitability of our approach

for cloud service search is validated. For this purpose we
take the results from the prior step of functional service
requirements elicitation for each of the control websites and
use the identified service functions and interfaces as input for
a cloud service search by using the search engine Google.
We used the Google search engine for our approach since
the previous approaches described in Section II were not
available online. The search query for the cloud service search
is created by the leading keyword “cloud service” followed by
the required service functions identified in the requirements
elicitation step followed by the determined service interfaces.
Thus, a search query for the evaluation has the following
structure:

“cloud service <function 1> <function 2> <function 3>
... <interface 1> <interface 2> ...”

For the service discovery only the search results of the
first result page of the Google search were taken into account
and maximum one link from search result page to reach the
website of an appropriate cloud service was followed. For
empty result sets of a keyword search or not sufficient result
sets the keyword for a minor interface or function was deleted
and a new search was started. For finding the cloud services
of Table IV a maximum of three keywords from the results of
the requirements elicitation step was deleted.

Table IV presents the results of a Google search for cloud
services by using the functional requirements reached by the
first step of the approach as search keywords. The table shows
the results for five different searches for a substitution of the
software services “lexoffice”, “midcom”, “cas pia”, “reporta”
and “salesking” by appropriate cloud services. Each search
has returned a minimum of three possible services. The results
were checked for their suitability to substitute the initial service
by comparing the functions and interfaces of the detected
service with those of the initial service. In Table IV the
suitability for substitution of a detected service is described as
“unsuitable” if no or only one function, which is not the main
function of the initial service, of the detected service matches
the functions of the initial service. The suitability for substitu-
tion of a service identified during the search is called “partially
suitable” if some functions of the initial service can be covered
by the service, but not all. The suitability for substitution of
a service is denoted as “suitable” since all functions of the
initial service can be substituted by the discovered service. The
results show that for each service of the control group at least
one cloud service could be found which can totally substitute
the initial service. For most services even two or more cloud
services for the service replacement could be discovered. The
outcome of our evaluation has demonstrated the adequacy
of our approach for the automated elicitation of functional
requirements to search for appropriate cloud services.

VI. CONCLUSION

The contribution of this paper is a technique for the auto-
mated identification of required (cloud) service functions. We
have implemented the approach in a system for the automated

TABLE IV. RESULTS OF THE CLOUD SERVICE SEARCH

Cloud service Suitablility for
substitution

lexoffice
Exact Online
http://www.exactonline.de/

Microsoft Dynamics
http://www.microsoft.com/de-de/dynamics/default.aspx

Sage Office Online
https://www.sage-office-online.de/

midcom
Salesforce
https://www.salesforce.com/ #

umantis Talent Management
http://www.umantis.com/ #

karg-edv emis
http://www.karg-edv.de/

cas pia
Exact Online
http://www.exactonline.de/

Salesforce
https://www.salesforce.com/ #

SuperOffice CRM Online
http://crmonline.superoffice.de/crmonline 062014-1/

pds abacus
http://www.pds.de/cms/produkte/pds-abacus/uebersicht.html

Microsoft Dynamics
http://www.kumavision.com/microsoft-dynamics-crm

reporta
Salesforce
https://www.salesforce.com/ #

zep
http://www.zep.de/

LogMyTime
http://www.logmytime.de/ G#

Odoo OpenERP
http://www.ife.de/

TimeNote
http://www.timenote.de/ G#

timr
http://www.timr.com/ G#

salesking
Exact Online
http://www.exactonline.de/

Salesforce
https://www.salesforce.com/ #

SuperOffice CRM Online
http://crmonline.superoffice.de/crmonline 062014-1/ G#

CRM on Demand
http://www.crm-on.de/ G#

projectfacts
https://www.projectfacts.de/

Legend: # unsuitable, G# partially suitable, suitable

identification and extraction of required cloud service functions
in the crafts domain. The system is based on a domain
ontology, which was manually built up by collecting the
functions listed on the websites of several cloud services for
the crafts domain. We have evaluated the system by measuring
its precision, recall and F1 score according to two different
test cases. In the first test case the system has identified the
functions and interfaces listed on the websites the domain
ontology was built up from. In the second case the system
had to examine the functions and interfaces from websites
of other crafts software as control group. For the control
group websites, we have got an average value for recall of

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-407-7

WEB 2015 : The Third International Conference on Building and Exploring Web Based Environments

0.74. This evaluation result is sufficient for a system, which
supports users to identify required service features. Moreover,
we have performed a cloud service search by using the elicited
functional service requirements as keywords for running a
Google search. The results of the Google searches for the
control group services have returned adequate cloud services.
Thus, we could demonstrate the suitability of our approach
for functional requirements elicitation to support searches for
suitable cloud services.

VII. FUTURE WORK

There are some ideas which can improve our approach and
which are planned for future work. Currently, the users can
only enter an URI or keywords into the system for identifying
required (cloud) service features. We plan to offer the possi-
bility to process a keyword search after having received the
results for an URI-based search to provide an iterative search
process to the users. Another idea is the possibility to search
for the required features of several software. That means the
users can enter the URIs of multiple software websites to get
the all functions and interfaces offered by all software tools
together. An additional consideration is to extend the domain
ontology automatically by software descriptions of a repository
or by user input. The case of extending the ontology based on
user input could be implemented into the user interface. A
possibility could be to implement a dynamic result where the
users can add own classes of functions and interfaces in form
of terms into the hierarchy of the result list. Thus, the terms
entered by the users could be automatically added into the
hierarchy of the domain ontology. As mentioned in Section
IV-B we plan to reduce the waiting time for the users e.g.
by incremental result generation or a parallel programming
approach. The final version of the system shall be evaluated
for its practical usage by running a user study.

ACKNOWLEDGEMENT

This work was funded by means of the German Federal
Ministry of Economy and Technology under the promotional
reference “01MD11041”. The authors take the responsibility
for the contents.

REFERENCES

[1] Athens Technology Center, “Artist Project Website”, 2015 retrieved on
March 8, 2015 from http://www.artist-project.eu/.

[2] The Cloudbook Community, “cloudbook.net”, 2013 retrieved on
March 8, 2015 from http://www.cloudbook.net/directories/product-
services/cloud-computing-directory.

[3] CloudSearchPortal, “CloudSearchPortal.com”, 2015 retrieved on March
8, 2015 from http://www.cloudsearchportal.com/.

[4] H.-J. Happel , A. Korthaus, S. Seedorf and P. Tomczyk, “KOntoR:
An Ontology-enabled Approach to Software Reuse”, Proceedings of the
18th International Conference on Software Engineering and Knowledge
Engineering, 2006, pp. 349-354.

[5] J. Kang and K. M. Sim, “A Cloud Portal With a Cloud Service
Search Engine”, Proceedings of the 2011 International Conference on
Information and Intelligent Computing IPCSIT, vol. 18, IACSIT Press,
Singapore, 2011, pp. 1-8.

[6] V. S. K. Nagireddi and S. Mishra, “An Ontology Based Cloud Service
Generic Search Engine”, Proceedings of the 8th International Conference
on Computer Science & Education (ICCSE), 2013, pp. 335-340.

[7] T. H. Noor, Q. Z. Sheng, A. Alfazi, A. H. H. Ngu and J. Law, “CSCE:
A Crawler Engine for Cloud Services Discovery on the World Wide
Web”, Proceedings of the 20th International Conference on Web Services
(ICWS), 2013, pp. 443-450.

[8] N. F. Noy and D. L. Mcguinness, “Ontology Development 101: A Guide
to Creating Your First Ontology”, tech. report, Stanford University, 2001.

[9] REMICS, “REMICS Project Website, Reuse and Migration of legacy
applications to Interoperable Cloud Services”, 2011 retrieved on March
8, 2015 from http://www.remics.eu/home.

[10] M. Á. Rodrı́guez-Garcı́a et al., “Semantic Annotation and Retrieval of
Services in the Cloud”, Distributed Computing and Artificial Intelligence,
vol. 217, Springer International Publishing, 2013, pp. 69-77.

[11] R. Sahandi, A. Alkhalil and J. Opara-Martins, “Cloud Computing From
SMEs Perspective: A Survey-based Investigation”, Journal of Information
Technology Management, vol. 24, No. 1, University of Baltimore, 2013,
pp. 43-49.

[12] Stanford Center for Biomedical Informatics Research, Stanford
University, “Protégé”, 2014 retrieved on March 8, 2015 from
http://protege.stanford.edu/products.php.

[13] THINKstrategies, “Cloud Computing Showplace”, 2012 retrieved on
March 8, 2015 from http://www.cloudshowplace.com/.

[14] M. Zhang et al., “Investigating Techniques for Automating the Selec-
tion of Cloud Infrastructure Services”, International Journal of Next-
Generation Computing, vol. 4, no. 3, 2013, pp. 759-764.

7Copyright (c) IARIA, 2015. ISBN: 978-1-61208-407-7

WEB 2015 : The Third International Conference on Building and Exploring Web Based Environments

