
An Architectural Framework for Consistent UI in Android App Development

Abdul-Rahman Mawlood-Yunis
Department of Computer Science and Physics

Wilfrid Laurier University
Waterloo, Canada

amawloodyunis@wlu.ca

Abstract—The User Interface (UI) is an essential component
in the development of interactive apps and web applications.
In this study, we present an architectural framework designed
to simplify the creation of a consistent UI for Android apps.
The approach is both straightforward and innovative, utilizing
well-established object-oriented programming concepts, such as
abstraction and inheritance, to enable the development of flexible
and scalable apps. Apps built using this framework are developed
by extending abstract and generic concepts to ensure uniformity
across the entire interface. We outline the key components of
this architecture, provide sample code for implementation, and
present an app developed using this framework to highlight
its practical benefits. This paper offers two main contributions:
accelerating app development and enabling the creation of con-
sistent user interface designs that enhance both visual appeal and
overall user experience. While the framework is initially designed
for Android app development, its applicability extends to web
development and can be used by tools focused on minimizing
code complexity while supporting multiplatform compatibility,
including web applications.

Keywords-Software design and architecture; app development;
design pattern; software engineering; software reuse; Android; Web
development

I. INTRODUCTION

The user interface (UI) holds significant importance in
interactive apps and application development, particularly in
mobile apps. An attractive and user-friendly visual interface
becomes increasingly crucial and plays an essential role in
determining their success [1]–[3]. Extensive research in soft-
ware engineering [4]–[8], design patterns [9]–[13], software
architecture [14]–[16], human interaction [17]–[19], and re-
lated fields have been dedicated to the proper UI design for
interactive apps and applications. Leading APIs [20] offer a
range of components and classes to facilitate this goal [21]–
[23]. For instance, the Android API provides the Fragment
component [24], which enhances modular app development
and UI flexibility. The Fragment is a reusable, self-contained
portion of an activity’s or UI screen that can be added, re-
moved, or replaced dynamically, allowing for a more modular
approach to app design. By utilizing the Android Fragment
component, developers can design and develop each page
or view of the app separately, promoting efficient reuse and
customization. This is because Fragments allow developers
to break down the UI into smaller, independent sections that
can be reused across different parts of the app. For example,
a Fragment developed for one screen (e.g., a login form)
can be reused in multiple screens that require similar func-
tionality, reducing redundancy and speeding up development.

Additionally, Fragments can be customized to display different
content or behavior based on the context, such as device
orientation or user interaction, providing greater flexibility.
Fragments achieve this modularity by serving as containers
that can have UI elements and logic, which can be embedded
into different parts of the app’s layout. They allow developers
to partition the app screen into multiple independent areas,
each capable of hosting its own content or functionality. These
Fragments can be attached to an activity’s view and positioned
to occupy one or more sections of the screen. By reusing these
Fragments across multiple views, developers can maintain
flexibility while reducing redundancy in the UI design, which
leads to more efficient development and maintenance. This
modular design also makes it easier to update or change
individual parts of the UI without affecting the entire screen,
further streamlining the development process.

While Fragment work focuses on designing a portion of
the page or view to be reused, this work takes a broader
approach by focusing on reusing the whole or important
components of the page as the user navigates between different
screens of an app. In other words, this work develops an
architectural framework that enables persistent UI across app
screens, ensuring a cohesive user experience as users move
from one screen to another. This framework can be utilized
throughout the app development process, allowing developers
to create a consistent and dynamic interface that adapts to
various contexts and navigation flows.

The suggested architecture does not serve as a replacement
for the use of Fragment in Android app development, as Frag-
ments offer more functionality beyond screen reuse. However,
our proposed architecture surpasses Fragments when it comes
to screen reuse. Here, the focus isn’t solely on creating a
sizeable component for reusing across app pages. Instead,
we describe a framework for reusing as many components as
needed across app pages and enable each component to func-
tion differently on various pages. This will be accomplished by
developing a generic and abstract component containing the
components to be reused and operating differently across app
pages. The framework will accelerate the app development
process and facilitate the creation of persistent UI creation,
thereby improving the overall appearance and user experience
of the apps. Moreover, the framework’s applicability is not
confined to Android-enabled devices. Although initially de-
signed for Android app development, it can also be adapted
for web development and tools aimed at reducing code com-
plexity while ensuring compatibility across multiple platforms,

11Copyright (c) IARIA, 2025. ISBN: 978-1-68558-243-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

WEB 2025 : The Thirteenth International Conference on Building and Exploring Web Based Environments

including both mobile and web applications. Additionally,
the knowledge and principles derived from this framework
are transferable to a wide range of application development
contexts, thereby contributing to the broader advancement of
software engineering practices.

The paper is organized as follows. Section II provides an
overview of the proposed architecture. Section III includes
implementation examples for all components of the archi-
tecture. In Section IV, we present an app developed using
this architecture and discuss the testing conducted to validate
its effectiveness. Finally, Section V concludes the paper and
highlights potential directions for future research.

II. OVERVIEW OF THE PROPOSED ARCHITECTURE

In this section, we describe the building blocks of the
proposed architecture and their main responsibilities.

A. Base View

The first step is to create a base class (also called a
superclass) in Object-Oriented Programming (OOP) that acts
as the foundational template for the app’s screens. This base
class provides a structure that defines the common components
and functionality that all the screens in the app will share.
However, the base class itself is abstract, meaning that it is not
intended to be directly used or displayed. Instead, it serves as a
container for shared elements, providing a common foundation
upon which all individual screens will be built.

Each screen in the app extends this base class, meaning
that the screen inherits the structure and components from the
base class. However, each screen can customize or define the
inherited components to suit the specific needs of that screen.
This allows for consistency across screens (through shared
components), while still allowing flexibility and customization
in terms of design and functionality.

To define the generic view and shared behavior for all
screens, the base class includes two key methods:

1) An abstract method: This method has no implementation
in the base class itself, but must be implemented by each
subclass (screen). It acts as a placeholder for screen-
specific functionality.

2) A regular method with an empty body: This method is
defined in the base class, but does not perform any actions
initially. Subclasses can choose to override this method
or leave it as is, depending on their needs.

Additionally, the base class defines a layout that includes
UI components (such as buttons, text fields, or navigation
elements) that need to appear across all the app’s screens.
By placing these components in the base class, every screen
that extends it will automatically inherit these shared elements.
This ensures that there is a consistent look and feel throughout
the app while still allowing each screen to define its own
unique content.

By using this approach, developers can create custom
screens (subclasses) that fit their specific needs, while main-
taining a persistent look (consistent UI elements) and shared
functionality (common methods and components) across the

app. This promotes reusability, reduces redundancy, and sim-
plifies the overall app development process.

B. Derived Views

Derived views are concrete implementations or materialized
views that extend the abstract base view. In other words, these
views represent actual screens or pages in the app, whereas
the base view acts as a template or blueprint. To create a
new screen (view) for the app, a new page needs to be
designed. This new page inherits components, methods, and
basic layout properties from the base view, but it also adds
custom components and functionality to create a unique screen
tailored to its specific needs. The process of implementing a
derived view involves the following steps:

1) Reusing the base layout container: The first step is to
reuse the layout container defined in the base view. This
container holds only the components that are common
and need to exist on every page. These are shared
elements, such as headers, footers, or navigation bars, that
appear across multiple screens. By reusing this container,
you ensure that these consistent elements are present on
every screen, helping to maintain a uniform look and feel
across the app.

2) Creating a new layout for the derived view: Next, you
create a custom layout for the derived view. This layout
will contain the specific components and content for this
screen. You then place this new layout into the space
inherited from the base layout container. The inherited
space ensures that your derived layout fits into the struc-
ture and design already established by the base view,
preserving the overall app’s consistency while allowing
for unique content on each screen.

3) Implementing abstract methods: The base view has ab-
stract methods—these are methods that have no imple-
mentation in the base view itself but must be implemented
in the derived view. These methods act as placeholders,
requiring the derived view to define specific behavior. For
example, an abstract method in the base class returns the
content view, and the derived view provides the logic for
how that should be done for its specific screen.

4) Completing empty methods inherited from the base view:
In addition to abstract methods, the base view has regular
methods with an empty body. These methods are already
given a structure but do not perform any actions in
the base view. The derived view must complete the
implementation of these empty methods by adding the
necessary logic. For example, the base class might define
a method to initialize UI elements, and the derived view
would add specific code to populate those elements with
data or behavior relevant to the screen it represents.

C. Customizing Views Behaviour

While every page of an app serves distinct purposes and
boasts unique features, reusing components from the base view
ensures a consistent appearance and functionality. A decision
must be made regarding reusable components, as each page’s

12Copyright (c) IARIA, 2025. ISBN: 978-1-68558-243-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

WEB 2025 : The Thirteenth International Conference on Building and Exploring Web Based Environments

requirements must be developed accordingly. For instance,
a toolbar component can be placed in the base view and
inherited across all app pages, yet the action functionalities
of each toolbar item may vary from one page to another. In
other words, when the toolbar items are clicked, the actions
executed on page one will differ from those performed on
pages two, three, and beyond.

Figure 1 illustrates the proposed architecture, including
an example of a component intended for reuse. The figure
displays the following components:

Figure 1. Class diagram for the proposed framework.

1) An abstract superclass featuring two properties: baseLay-
out, of type Layout, and toolbar, of type Toolbar. This
class also encompasses four methods: onCreate(), on-
ViewReady(), getView(), and onOptionMenuSelected().

2) Derived classes override the onViewReady(), getView(),
and onOptionMenuSelection() methods, each providing
its own implementation. Additionally, each derived class
boasts a distinctive layout property, using getView() to
access and initialize the local layout properties.

III. THE IMPLEMENTATION OF THE PROPOSED
ARCHITECTURE

In this section, we will list the architecture components,
explain their roles and usage in the overall design in more
detail, and provide sample code to demonstrate how they can
be implemented.

A. The Base View Implementation

As previously mentioned, a key element of this architecture
is the base view. In Android development, this base view
can be represented by an abstract class like BaseViewActiv-
ity, which extends AppCompatActivity. AppCompatActivity
serves as a foundational class in the Android API, providing
various built-in features utilized by screens. Consequently, it
is extended and reused when new app screens are created.

The BaseViewActivity class is abstract and defines essential
properties that are common to all apps, such as the layout
and necessary components. The list 1 provides a template for
defining the BaseViewActivity class. Additional details about
other crucial methods and the app’s layout are discussed in the
following subsections. The ellipses (...) in Listing 1 represent

the parts of the code that need to be implemented, which will
depend on the specific requirements of the app.
public abstract class BaseViewActivity extends

AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_base);
...
onViewReady(savedInstanceState, getIntent());

}
// To be used by child activities.
protected void onViewReady(Bundle savedInstanceState,

Intent intent) {}
protected abstract int getContentView ();
@Override
public boolean onOptionsItemSelected(MenuItem menuItem) {
...

}
}

Listing 1. Base class template

More details and an overview of the base implementation
are provided in the following.

1) OnViewReady Method: Within the BaseViewActivity
class, we’ve established a method named onViewReady(),
which is invoked within the onCreate() method subsequent
to calling setContentView(). The method currently contains
no code, leaving its implementation to be completed by the
derived class. This enables derived classes or screens to append
new widgets or modify the layout of the base class. The
complete implementation of this method will be demonstrated
when we define the derived classes in part B, item 2 of this
section.

2) getContentView Method: We have defined another
method called getContentView(). This method is an abstract
method that needs to be implemented by the Derived classes.
This method is a helper method and it will be used by the
onViewReady() method to update or make changes to the
layout of the base class.

3) Base Layout or Base Content: A layout for the Base-
ViewActvity class or its content is created and is shown in
Listing 2. The layout is an XML file that will be transformed
into the programming code and integrated with the rest of the
app code at run time. The code statement below inside the
onCreate method of the BaseViewActvity class will take care
of this step, i.e., setting the layout for the base view by calling
this method. setContentView(R.layout.activity base);

The layout has two mandatory parts. A component(s) that
will be reused across all the screens of the app, in this case,
is a toolbar, and an inner layout. The inner layout is empty
and, in this case of type linear layout. In other words, no
widgets or components are attached to the inner layout and
when items are attached to this layout, they will be arranged
sequentially from left to right top down and take the whole
screen of the base view. These properties allow the derived
screen, the classes that inherit this layout, to update its content
and attach widgets to it. The layout is shown in Listing 2 where
the toolbar and inner layouts are shown.

13Copyright (c) IARIA, 2025. ISBN: 978-1-68558-243-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

WEB 2025 : The Thirteenth International Conference on Building and Exploring Web Based Environments

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/

android"
xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
tools:context=".BaseViewActvity ">

<androidx.appcompat.widget.Toolbar
android:id="@+id/in_base_my_toolbar"
android:layout_width="match_parent"
android:layout_height="?attr/actionBarSize" />

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/

android"
xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
android:id="@+id/toolbarIDInbase">

</LinearLayout>
</LinearLayout>

Listing 2. The layout for the Base class

4) Reused Components: An important part of this archi-
tecture which aims to enable persistent looks and feel is
component reuse. One or more components can be included in
the base view and be reused in various screens of the app. To
demonstrate this concept one component, a toolbar, is added
to the base view layout and the statement below will add
or set its corresponding object code to the definition of the
BaseViewActvity class.

setSupportActionBar(toolbar);

In addition to reusing components, a crucial concept in
this architecture is the ability to redefine the behavior of
objects defined in the base view. An example of object
behaviour definition for the toolbar is shown in Listing 3.
This implementation serves as a default behaivour and it will
be overridden in the derived class to behave differently and
to become more relevant to the new context while using the
same toolbar buttons and menu items defined in the base view.
public boolean onOptionsItemSelected(MenuItem menuItem) {
int id = menuItem.getItemId();
switch (id) {
case R.id.action_one:

Intent intent = new Intent(BaseViewActvity.this,
ChildActivity.class);

startActivity(intent);
break;

case R.id.action_two:
snackbar.setText("You are at home").show();
break;

case R.id.action_three:
Uri webpage = Uri.parse("https://www.canada.ca/");
intent = new Intent(Intent.ACTION_VIEW, webpage);
if (intent.resolveActivity(getPackageManager()) !=

null) {
startActivity(intent);

}
break;

case R.id.action_about:
Toast

.makeText(this,
"Version 1.0,"

+ "developer_information",
Toast.LENGTH_LONG).show();

}
Return true;

}

Listing 3. A behaviour implementation of a component in the base view that
will be overridden in the derived classes

5) A Complete code for Base View: Combining all the code
snippets provided above creates a comprehensive template for
the base view class, featuring a single component, the toolbar,
intended for reuse across the app’s screens. Listing 4 illustrates
this template.

public abstract class BaseViewActvity extends
AppCompatActivity {

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_base);
Toolbar myToolbar = findViewById(R.id.

in_base_my_toolbar);
setSupportActionBar(myToolbar);
onViewReady(savedInstanceState, getIntent());

}
protected void onViewReady(Bundle savedInstanceState,

Intent intent) {
// To be used by child activities.

}
protected abstract int getContentView();
@Override
public boolean onCreateOptionsMenu(Menu menu) {
// invoked automatically by activity
MenuInflater inflater = getMenuInflater();
inflater.inflate(R.menu.main_activity_actions, menu);
return true;

}
public boolean onOptionsItemSelected(MenuItem menuItem) {
int id = enuItem.getItemId();
switch (id) {

case R.id.action_one:
Intent intent = new Intent(BaseViewActvity.this,

ChildActivity.class);
startActivity(intent);
break;

case R.id.action_two:
snackbar.setText("You are at home").show();
break;

case R.id.action_three:
Uri webpage = Uri.parse("a_url");
intent = new Intent(Intent.ACTION_VIEW, webpage);
if (intent.resolveActivity(getPackageManager()) !=

null) {
startActivity(intent);

}
break;

case R.id.action_about:
Toast

.makeText(this,
"Version 1.0,"

+ "developer_name",
Toast.LENGTH_LONG)

.show();
}
return true;

}\\ end of the method
}\\ end of the class

Listing 4. A template for the Base View

B. Implementations of The Derived Views

Every useful app is made of more than one screen. Follow-
ing the proposed architecture, as many screens as needed can
be created with similar feels and looks by extending the base
view and thus reusing the inherited components. To create new
screens using the existing base view the following need to be
done.

• Defining a new class(s) by extending the base class.
• Define layout(s) for the derived classes or screens to

replace the empty inner layout from the base view.
• Complete the definition of the inherited methods.
• Define new behaviors for the inherited component.

14Copyright (c) IARIA, 2025. ISBN: 978-1-68558-243-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

WEB 2025 : The Thirteenth International Conference on Building and Exploring Web Based Environments

These steps are described in the following subsection along
with sample codes on how to implement them

1) Defining New Classes: To develop a complete app,
you’ll need to define one or more classes that utilize the base
view, BaseViewActivity, as their superclass. The number of
classes depends on the required screens. An example of such
a derived class, DerivedClass1, is provided in listing 5.

DerivedClass1 inherits the onCreate() method from the base
class instead of implementing it directly. This inheritance
allows DerivedClass1 to replace the base view layout with
its own. This substitution occurs because the onViewReady()
method is invoked within the onCreate() method, which is
triggered when the screen is being loaded. Refer to the
BaseViewActivity class for the definition of the onCreate()
method and the location of where onViewReady() is called.

It’s worth emphasizing that loading the screen entails calling
the inherited and hidden onCreate() method within the derived
class, followed by invoking the onViewReady() method. This
process ultimately leads to displaying a personalized layout
for the newly created screen.
public class DerivedClass1 extends BaseViewActvity {
LinearLayout linearLayout;
...

}

Listing 5. A derived view class definition header

2) Define new layouts for derived classes: The code snippet
presented in Listing 6 depicts the layout for a derived class.
This layout constitutes the content of the newly created screen
and differs from the layout defined in the base view. It’s
important to note that this serves as merely an example of a
newly created screen, and the actual screen will vary depend-
ing on the specific requirements of the app. The provision
of a placeholder for the layout in the main or base view
allows each newly created screen to utilize this space and
construct its desired screen while also benefiting from the
reusable components at the same time.
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/
android"

xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
android:layout_marginTop="40dp">

<ImageView
android:layout_width="match_parent"
android:layout_height="match_parent"
android:src="@drawable/ic_favorite_border_black_24dp"/>

</LinearLayout>
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout

Listing 6. A layout example for a derived class

3) Overriding The onViewReady Method: The onCreate
method isn’t explicitly defined in derived classes; however,
it’s inherited from the base class and is automatically invoked
upon opening the derived screens, i.e., executing the derived
class code. As the onViewReady method is invoked within
the inherited onCreate method, this provides an opportunity to
override it in a manner that allows for setting a distinct layout

for the derived screens. In other words, the onViewReady
method takes on the responsibility of the onCreate method
inside the derived classes. This explains why the onViewReady
method definition is empty in the base class, and code which
typically placed inside the onCreate method is now placed
inside the onViewReady method.

An implementation of onViewReady is illustrated in Listing
7, where a new layout is loaded by onViewReady to create a
custom view for a derived screen.
@Override
protected void onViewReady(Bundle savedInstanceState,

Intent intent) {
setTitle("First Screen");
super.onViewReady(savedInstanceState, intent);
linearLayout = findViewById(R.id.baseLayout);
LayoutInflater layoutInflater = LayoutInflater.from(

DerivedClass1.this);
layoutInflater.inflate(getContentView(), linearLayout,

true);
}

Listing 7. onViewReady implementation by a derived class

The code in the Listing 7. Does the following:
a. Get the container, the linear layout container, that has been

defined in the layout for the base class. It is an empty
container, and we can add views to it. This is achieved
using this code statement:
findViewById(R.id.baseLayout);

b. The retrieved base linear layout is used to initialize a local
liner layout instance variable of the derived classes. This
is achieved using this code statement:
linearLayout = findViewById(R.id.baseLayout);

c. The retrieved layout from the previous step is put inside
the empty linear layout container from the base class. This
is achieved using the following lines of code:
LayoutInflater layoutInflater =
LayoutInflater.from(DerivedClass1.this);
layoutInflater.inflate(getContentView(),

linearLayout, true);

4) Overriding the getView Method: The getContentVeiw
is an accessor method used by the onViewReady method to
retrieve the locally defined layout for a derived class. The
method definition is presented in Listing 8 and its usage is
shown in Listing 7.
@Override
protected int getContentView() {
// layout for a derived class
return R.layout.activity_main;
}

Listing 8. getContentView implementation

5) Override the behavior of shared components: In the
example under consideration here, we opted to utilize the
toolbar consistently across the derived views while altering
its functionality by overriding the onOptionItemSelected()
method. Essentially, this means that when the toolbar items
are clicked, the actions performed on each derived screen can
be different from the default behavior and each other. The code
snippet in Listing 9 illustrates such an implementation, where
the code contained within each switch case is different from

15Copyright (c) IARIA, 2025. ISBN: 978-1-68558-243-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

WEB 2025 : The Thirteenth International Conference on Building and Exploring Web Based Environments

what has been included within the switch statement for the
base classes and each derived class. It’s important to mention
that the onOptionItemSelected method can be implemented
within the base view. This implementation will act as a default
behavior inherited by derived classes. Alternatively, it can be
left empty, like the layout in the base view. In either scenario,
the method can be overridden in the derived classes to offer
customized functionality. In this example, we’ve chosen to
provide a default implementation in the base view class.
public boolean onOptionsItemSelected
(MenuItem menuItem) {
int id =menuItem.getItemId();
String phoneNumber = "613 000 0000";
switch (id) {
case R.id.action_one:

Intent intent = new Intent(Intent.ACTION_DIAL);
intent.setData(Uri.parse("tel:" + phoneNumber));
if (intent.resolveActivity(getPackageManager()) !=

null) {
startActivity(intent);

}
break;

case R.id.action_two:
intent = new Intent(ChildActivity.this,

NewMainActivity.class);
startActivity(intent);
break;

case R.id.action_three:
Uri webpage = Uri.parse("a_url");
Intent i = new Intent(Intent.ACTION_VIEW);
i.setData(webpage);
startActivity(i);
break;

case R.id.action_about:
Toast.makeText(this,
"Version 1.0," + " Developeer_information",
Toast.LENGTH_LONG).show();

}
return true;

}

Listing 9. Toolbar behaviour implementation for a derived class

6) An Example of a Derived Class Implementation: The
code provided in Listing 10 serves as an instance of a fully
developed derived class, encompassing the steps described
from 1 to 5.

IV. RUNNING AND TESTING THE PROPOSED
ARCHITECTURE

To evaluate the proposed architecture, we developed an app
that can be downloaded at [25]. The app was created in Java
using Android Studio. Using this app, two sets of tests were
conducted.

In the first set, multiple screens were created. Consistent
with the proposed architecture, none of these screens directly
utilized the ’onCreate()’ method, which serves a role similar to
the constructor method in object-oriented programming and is
essential for object instantiation. Instead, all screens inherited
the ’onCreate()’ method from an abstract base view and im-
plemented the ’onViewReady()’ method locally to instantiate
three distinct screens. These screens are depicted in Figs. 2-4,
and the concept of attaching a customized page to the base
page is illustrated in Figure 5.

public class ChildActivity extends BaseViewActvity {
LinearLayout linearLayout;

@Override
protected int getContentView() {

return R.layout.activity_child;
}

@Override
protected void onViewReady(Bundle savedInstanceState,

Intent intent) {
super.onViewReady(savedInstanceState, intent);
linearLayout = findViewById(R.id.baseLayout);
LayoutInflater layoutInflater = LayoutInflater.from

(ChildActivity.this);
layoutInflater.inflate(getContentView(),

linearLayout, true);
}

public boolean onOptionsItemSelected(MenuItem menuItem)
{

int id = menuItem.getItemId();
String phoneNumber = "613 000 0000";
switch (id) {
case R.id.action_one:

Uri webpage = Uri.parse("a_url");
Intent intent = new Intent(Intent.ACTION_VIEW,

webpage);
if (intent.resolveActivity(getPackageManager())

!= null) {
startActivity(intent);

}
break;

case R.id.action_two:
intent = new Intent(ChildActivity.this,

NewMainActivity.class);
startActivity(intent);
break;

case R.id.action_three:
intent = new Intent(Intent.ACTION_DIAL);
intent.setData(Uri.parse("tel:" + phoneNumber))

;
if (intent.resolveActivity(getPackageManager())

!= null) {
startActivity(intent);

}
break;

case R.id.action_about:
Toast.makeText(this, "Version 1.0," + "

Developer_information", Toast.LENGTH_LONG).
show();

}
return true;

}
}

Listing 10. An instance of a fully developed derived class

Second, following the approach used for screen creation,
the proposed architecture was employed to develop a reusable
component. This component can be inherited and integrated
across all screens, ensuring a consistent and persistent user
interface throughout the application. As demonstrated in the
app screens, each screen features a uniform toolbar, depicted
in Figure 6.

Although the toolbars appear identical across screens, their
functionality varies significantly, adapting to the specific re-
quirements of each page. For example, on the first screen,
selecting toolbar items 1, 2, 3, and 4 (as shown in Figure 6)
triggers the following actions:

1. Opens a second page, illustrated in Figure 4.
2. Displays a message indicating that you are on the home

page.

16Copyright (c) IARIA, 2025. ISBN: 978-1-68558-243-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

WEB 2025 : The Thirteenth International Conference on Building and Exploring Web Based Environments

Figure 2. and 3, examples of two pages created using base page

Figure 4. Another example of custom page using the base page

3. Launches a web page on the internet; an example is shown
in Figure 7.

4. Opens an ”About” window, providing information such as
details about the app’s author.
On the second and third screens, the functionality of these

toolbar items differs. For instance, on the second page, click-
ing:
1. Opens a new app page. This demonstrates the consistent

use of the first toolbar item to open a new app page.
2. Navigates back to the home page or the previous page.
3. Launches a phone-dialing interface, as shown in Figure 8,

displaying how the same toolbar item can trigger different
functionalities depending on the page.

Figure 5. Attaching a customized page into the base page

Figure 6. Page toolbar and its items

4. Opens an ”About” window, presenting the same content
presented on the first screen. This illustrates the option to
assign a common functionality to a toolbar item across all
screens.

The navigation flow described above is summarized in
Figure 9. The ability to maintain a consistent user interface
across all screens while enabling contextual behavior through
the extension of a generic screen template highlights the
feasibility and flexibility of the proposed architecture for app
and application development.

Figure 7. An example of web page lunched by clicking third item on the
first page

17Copyright (c) IARIA, 2025. ISBN: 978-1-68558-243-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

WEB 2025 : The Thirteenth International Conference on Building and Exploring Web Based Environments

Figure 8. Example of phone-dialing interface

Figure 9. The app structure and component functionalities

V. CONCLUSION AND FUTURE WORKS

Drawing upon techniques from object-oriented program-
ming, we introduced an app architecture aimed at facilitating
persistent UI development in Android apps, thus enhancing
the overall appearance and user experience of apps, an es-
sential factor for their success. Detailed descriptions of the
architecture components, along with an example of how to
implement each component, have been provided. Furthermore,
we tested the effectiveness of the architecture by building an
app, highlighting its advantages and feasibility.

It is important to note that the applicability of the framework
is not limited to devices enabled with Android. Although
initially designed for Android app development, it can also
be adapted for web development and used by tools and
frameworks that aim to reduce code base and support multiple
platform development, including mobile and web applications.
Additionally, the knowledge and principles derived from this
framework are transferable to a wide range of application
development contexts, thereby contributing to the broader

advancement of software engineering practices.
This work can be expanded in various ways. Much like the

way we extended the base view using a single hierarchy, each
derived class can undergo further extension, using multilevel
class inheritance. This approach enables the development of
complex and sophisticated applications with fewer codes and
a persistent user interface.

We chose a toolbar to demonstrate the ability to define a
component once and reuse it across different pages, each page
featuring unique functionalities for the component. In future
iterations, one of the toolbar items could help navigate between
different app pages. Clicking on a toolbar item might activate a
pop-up menu that displays all navigation options. We consider
this to be viable future work, as smooth navigation is crucial
for any app’s success.

We believe that this work lays the groundwork for further
utilization of object-oriented programming features in Android
app development, enabling efficient app design and implemen-
tation. By fostering consistency, scalability, and reusability,
this architecture not only accelerates development, but also
paves the way for innovative advancements in both mobile
and web application development.

REFERENCES

[1] C. Zarmer and J. Johnson, “User interface tools: Past, present, and future
trends,” Hewlett-Packard Laboratories, 1990.

[2] I. Qasim, F. Azam, M. W. Anwar, H. Tufail, and T. Qasim, “Mobile User
Interface Development Techniques: A Systematic Literature Review,”
in 2018 IEEE 9th Annual Information Technology, Electronics and
Mobile Communication Conference (IEMCON), 2018, pp. 1029–1034,
doi: 10.1109/IEMCON.2018.8614764.

[3] H. Hu, et al., “Automated Mapping of Adaptive App GUIs from Phones
to TVs,” ACM Transactions on Software Engineering and Methodology,
vol. 33, no. 2, pp. 1–31, 2024, doi: 10.1145/3459610.

[4] H.-W. Six and J. Voss, “A software engineering perspective to the
design of a user interface framework,” in [1992] Proceedings. The
Sixteenth Annual International Computer Software and Applications
Conference, Chicago, IL, USA, 1992, pp. 128–134, doi: 10.1109/CMP-
SAC.1992.217591.

[5] C. E. Wills, “User interface design for the engineer,” in Proceed-
ings of ELECTRO ’94, Boston, MA, USA, 1994, pp. 415–419, doi:
10.1109/ELECTR.1994.472682.

[6] V. Chernikov, “Approach to Rapid Software Design of Mo-
bile Applications’ User Interface,” in 2018 23rd Conference of
Open Innovations Association (FRUCT), 2018, pp. 1–7, doi:
10.23919/FRUCT.2018.8588030.

[7] M. J. Tsai and D. J. Chen, “Generating user interface for mobile
phone devices using template-based approach and generic software
framework,” Journal of Information Science and Engineering, vol. 23,
no. 4, pp. 1189–1211, 2007.

[8] A. Marcus, “User interface design and culture,” in Usability and Inter-
nationalization of Information Technology, vol. 3, pp. 51–78, 2005.

[9] J. Arifin, E. M. Fasha, and M. A. Ayu, “User Interface Design Patterns
for Marketplace Mobile Application,” in IEEE 7th International Confer-
ence on Computing, Engineering and Design (ICCED), 2021, pp. 1–6,
doi: 10.1109/ICCED53389.2021.9664843.

[10] E. G. Nilsson, “Design patterns for user interface for mobile applica-
tions,” Advances in Engineering Software, vol. 40, no. 12, pp. 1318–
1328, 2009.

[11] S. Hoober and E. Berkman, “Designing mobile interfaces: Patterns for
interaction design,” O’Reilly Media, Inc., 2011.

[12] T. Neil, “Mobile design pattern gallery: UI patterns for smartphone
apps,” O’Reilly Media, Inc., 2014.

[13] I. C. Morgado and A. C. Paiva, “The impact tool: Testing UI patterns on
mobile applications,” in 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2015, pp. 876–881.

18Copyright (c) IARIA, 2025. ISBN: 978-1-68558-243-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

WEB 2025 : The Thirteenth International Conference on Building and Exploring Web Based Environments

[14] P.H.J. Chong, P.L. So, P. Shum, X.J. Li and D. Goyal, “Design and
implementation of user interface for mobile devices,” IEEE Transactions
on Consumer Electronics, vol. 50, no. 4, pp. 1156–1161, 2004, doi:
10.1109/TCE.2004.1362513.

[15] M. J. Tsai and D. J. Chen, “Generating user interface for mobile
phone devices using template-based approach and generic software
framework,” Journal of Information Science and Engineering, vol. 23,
no. 4, pp. 1189–1211, 2007.

[16] S. Wendler and D. Streitferdt, “The Impact of User Interface Patterns on
Software Architecture Quality,” in The Ninth International Conference
on Software Engineering Advances (ICSEA 14) IARIA, 2014, pp. 134–
143.

[17] B. Shneiderman and C. Plaisant, “Designing the user interface: Strategies
for effective human-computer interaction,” Pearson Education India,
2010.

[18] T. Mandel, “User/System Interface Design,” Encyclopedia of Informa-
tion Systems, vol. 1, pp. 1–4, 2002.

[19] G. Briones-Villafuerte, A. Naula-Bone, M. Vaca-Cardenas, and L. Vaca-
Cardenas, “User Interfaces Promoting Appropriate HCI: Systematic
Literature Review,” Revista Ibérica de Sistemas e Tecnologias de
Informação, no. E47, pp. 61–76, 2022.

[20] I. O. Suzanti, N. Fitriani, A. Jauhari, and A. Khozaimi, “REST API
implementation on Android-based monitoring application,” in Journal
of Physics: Conference Series, vol. 1569, no. 2, p. 022088, July 2020.

[21] S. Gao, L. Liu, Y. Liu, H. Liu, and Y. Wang, “API recommendation
for the development of Android App features based on the knowledge
mined from App stores,” Science of Computer Programming, vol. 202,
p. 102556, 2021.

[22] Y. Wang, H. Liu, S. Gao, and X. Tang, “Animation2API: API recom-
mendation for the implementation of Android UI animations,” IEEE
Transactions on Software Engineering, vol. 49, no. 9, pp. 4411-4428,
2023.

[23] Google, “User Interface - Android Developers,” retrieved: [February,
2025]. Available: https://developer.android.com/develop/ui.

[24] Google, ”Fragment - Android Developers,” retrieved: [February,
2025]. Available: https://developer.android.com/reference/android/app/
Fragment.

[25] ”Architectural Framework Based App” retrieved: [February,
2025]. Available: http://bohr.wlu.ca/amawloodyunis/framework/
ArchitecturalFramework.zip.

19Copyright (c) IARIA, 2025. ISBN: 978-1-68558-243-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

WEB 2025 : The Thirteenth International Conference on Building and Exploring Web Based Environments

