
UI Delegation: The 3rd Dimension for Cross-Platform User Interfaces

Dagmawi Lemma Gobena
Addis Ababa University

IT Doctoral Program
Addis Ababa, Ethiopia

dagmawi.Lemma@gmail.com

Abel Gomes
University of Beira Interior

Covilhã, Portugal
agomes@di.ubi.pt

Dejene Ejigu
Addis Ababa University

IT Doctoral Program
Addis Ababa, Ethiopia

ejigud@yahoo.com

Abstract—Two of the prominent dimensions behind the
development of cross-platform UIs are the UI distribution and
UI migration. In UI distribution, since UI elements of a given
application has to be distributed across more than one device,
some UI elements can be even duplicated. In UI migration, the
description and construction of UI elements are centralized
using a client-server model of computing over a computer
network. Thus, we end up having limitations with respect to
scalability and maintainability of the computing environment.
Also, UI distribution and migration mostly support explicit
HCI for interactive systems. However, in ubiquitous
computing, implicit HCI is the most desired interaction
approach. In this paper, we present the theoretical concept of
UI delegation as the third dimension that ideally supports
implicit HCI and trans-modality by assuring autonomy of the
platforms using a peer-to-peer model.

Keywords – cross-platform UI; multi-platform UI; user
interface design; ubiquitous computing.

I. INTRODUCTION

The amalgamation of various technologies to support the
needs of new computing models has become prevalent in
computing environments like ubiquitous computing. For
example, in the ranking system shown in Figure 1, which we
developed to rank and produce outcomes for athletes, we
have the following: (1) results are redisplayed using a web
application; (2) setting to radio frequency identification
(RFID) system is made using a GUI application; (3) every
athlete wears RFID tag that is uniquely encoded, hence it is
possible to create a sort of implicit interaction between the
athlete and the system; (4) the RFID reader box is configured
using a monochrome display; (5) athletes can receive their
results on their mobile phones, or on any other personal
device they may use. Such amalgamation of various
technologies results in heterogeneous environment.

Nowadays, heterogeneity of personal devices is
inescapable. Heterogeneity is one of the characteristics of
ubiquitous computing [1], and it is caused by the coexistence
of various devices in the same computing environment.
Furthermore, the heterogeneity is a result from the diversity
of software, users, interaction modalities, and environments.

Nevertheless, Weiser’s vision of ubiquitous computing,
which demands that computer is an invisible servant [2] [3],
has not been achieved yet [4]. With regards to the human-
computer interaction (HCI), invisibility of computers can be
achieved, partly through implicit HCI (i-HCI) [5] and
context aware systems. On the other hand, the explicit HCI

(e-HCI) development for interactive systems requires
consideration of capabilities and constraints of diverse
platforms and users, in addition to provide interaction
modalities in a human fashion (e.g., speech, gesture, etc.)

The platform heterogeneity, together with additional
needs of interaction modalities, as well as the proliferation of
new technologies, poses unique challenges to designers and
developers of user interfaces (UIs). Analyzing user profiles
and platform capabilities and constraints in the usability
engineering lifecycle [6] is certainly challenging due to the
heterogeneity of platforms (devices and software) and users.
Therefore, UIs are expected to be cross-platform. That is, a
UI that runs on a certain platform (e.g., desktop screen) shall
be able to appear on another platform (e.g., small handheld
device) without losing its usability.

Figure 1. Heterogeneous race system for athletics.

1

2

3
4

5

1Copyright (c) IARIA, 2015. ISBN: 978-1-61208-382-7

ACHI 2015 : The Eighth International Conference on Advances in Computer-Human Interactions

To overcome the challenges of heterogeneity, there are
models and theoretical frameworks suggested and developed
in the HCI community, in order to sustain the notion of
cross-platform UIs. In this paper, by cross-platform UI
(respectively, cross-platform interaction), we mean UIs
(respectively, interaction modality), no matter whether it is
implicit or explicit, through which computers and users
interact across various platforms in conformity with
capabilities and constraints of users (user profiles) and
platforms, without compromising the usability. Thus, cross-
platform UIs should consider the context of the systems (e.g.,
applications, tools, interaction modalities, etc.), devices and
users.

Two of the prominent dimensions behind the
development of a cross-platform UI are those concerning UI
distribution and migration. In the literature, we found that
both approaches focus on a particular aspect of the
heterogeneity – mostly the device [7]. However, generating
UIs in a heterogeneous environment based on a specific
context (e.g., device, user, task, interaction modalities, etc.)
most likely reduces the usability of the system, which entails
several usability issues [8]. Thus, we propose the concept of
UI delegation as the third dimension to help in the
development of cross-platform UIs.

Our motivation is based on three main points. Firstly, in
order to automatically (or at design time) generate a cross-
platform UI, we have to consider the merger of diversified
contexts from the system (i.e., including interaction
modalities, web services, etc.), device and user aspects, so as
to meet usability requirements [6] [9]. Therefore, we found it
important to introduce a different approach that compels the
consideration of ternary views (the system, device, and user)
in cross-platform UIs, but not in partiality of any of the
views. In fact, though it is common practice to consider these
three views in UI development, most works and techniques
related to cross-platform UIs only focus on one of the views
(user, device or system) at the time of automatically
generating a specific UI. For example, the pattern based-
approach proposed by Lei et al. [10] as well as responsive
web development (RWD) focus on screen size adaptation,
while Nichols et al. [11] focus on the functionality of the
appliances, and Sauter et al. [12] only consider the device
type.

Secondly, both distributed and migratory UI concepts are
often implemented using the client-server model. While the
final UI runs on the client side, the appropriate UI for a
specific platform is generated at the server side [13]. Thus,
the server is responsible to maintain the UI description [11]
[14], to update and preserve the UI state [7], to store a
duplicate version of the UI [12], and so forth. But,
centralizing the description of capabilities of each platform
often imposes limitations to the scalability and
maintainability of the environment. Furthermore, in a
ubiquitous environment, the peers are desirably autonomous,
so that each peer shall be able to generate a UI as per its
capabilities and its own autonomy.

Finally, heterogeneity may also be a result of the
presence of various sorts of interaction modalities (including
i-HCI). Nevertheless, most works we found in the literature

are about e-HCI. Otherwise, despite the fact that the
ubiquitous computing aims at invisible UIs [15], interaction
modalities in the arena of i-HCI are not well covered. It has
to be noted that i-HCI can be also achieved by using various
technologies (i.e., sensors, motion capturing tools, etc.); and
this in turn leads to another aspect of heterogeneity.
Therefore, we need a new approach to the development of
cross-platform UIs.

The purpose of this paper is to provide a new theoretical
concept that complements the efforts made so far to support
UI development for heterogeneous environments. We
consider the problem of heterogeneity as a result from the
need of collaboration between platforms (i.e., device-and-
system units) that are owned or controlled by a human user.
Hence, we focus on the concept of delegation as it is applied
in [16] for supporting collaboration between agents in an
agent-based environment. Accordingly, we propose the
concept of UI delegation with autonomy.

Autonomy of nodes that collaborates in environments
like ubiquitous computing can be more effective if peer-to-
peer approach is followed instead of client-server. Thus,
considering the benefits of peer-to-peer model, we present
the concept of UI delegation. Furthermore, the UI-related
data, which are exchanged between the peers, shall be based
on a protocol elaborated on a common interface language
(CIL).

In the context of the present work, the UI delegation:
 insures autonomy of peers to render UI according to

its own capabilities, having also into consideration
the user capabilities listed in his/her profile;

 takes into account the heterogeneity of interaction
modalities, including i-HCI;

 includes a protocol that facilitates collaboration as in
the peer-to-peer model;

 contributes to the usability of the system in the sense
that it provides a comprehensive understanding of
the usability concerns related to human, system, and
platform views;

 advocates decentralization to attain autonomy, and
intends to resolve scalability and maintainability
issues that may prevail as a result of centralization.

Our approach is different from other works in three ways.
Firstly, it attempts to simultaneously take onboard the
system, device and user aspects in the process of generating
UI at run time, instead of relying only on one of those
aspects. Secondly, it is proposed in the context of a peer-to-
peer model, where multicasting is used and collaboration is
maintained using a CIL protocol between peers. Thus, it is
possible to achieve autonomy of peers and resolve scalability
and maintainability issues. Finally, it is different since our
concept uses the system view to include various interaction
modalities, as well as i-HCI, instead of limiting the system
view to describe software capabilities and constraints.

The rest of this paper is structured as follows. In Section
2, we discuss works related with cross-platform UI
development, as well as UI distribution and UI migration. In
Section 3, we discuss the concept of UI delegation, including
the requirements deemed to satisfy this concept. Finally, in

2Copyright (c) IARIA, 2015. ISBN: 978-1-61208-382-7

ACHI 2015 : The Eighth International Conference on Advances in Computer-Human Interactions

Section 4, we draw relevant conclusions about the concept of
UI delegation, discussing what more should be done to
materialize it across ubiquitous environments.

II. LITERATURE REVIEW

Model-based UI development (MBUID) is one of the
principal approaches that strive in developing UIs that can
run on multiple or across heterogeneous platforms. In
MBUID, users, data, tasks and functions can be modeled in
order to turn them into interaction concepts [11] [17] [18].
The models are then used to guide the UI development, as
well as to automatically generate the end UI [10] [11].The
Cameleon Reference Framework abstracts models to
describe the UI at different levels of abstraction, namely:
abstract UI, concrete UI, and final UI [13]. The abstraction in
a model signals the list of candidate widgets for the
interaction. For example the “choice” concept can be an
abstraction of combo box, list box, check box, and radio
group [16].

Vanderdonckt [19] classifies the UI design for
heterogeneous platforms as per the situation that causes the
diversity. Therefore, the UI design may focus on the
presence of multiple users or, alternatively, on the usage of
multiple monitors, devices, platforms, and displays [20]. In
this regard, the UI distribution and migration are followed as
general UI development approaches [4] [7] [21] [22] [8]. UI
distribution is the concept of spreading UI components
“across one or more of the dimensions of input, output,
platform, space, and time” [21].

In [8], distributed and migratory UIs are discussed as two
independent concepts. Migratory UIs can be in the form of
distributed UIs, but they shall enable the user to continue the
interaction without losing the state (content) of the UI [7]
[8]. In UI distribution, UI elements are distributed across
platforms, and, in some cases, this may create duplication of
UI elements [8]. For example, in [12], a multi-client (multi-
platform) UI is presented using the model-view-controller
(MVC) architecture that stores different versions of a
webpage (UI) on the server for each predefined platform, and
where the controller selects one of the UI versions that most
fits a particular platform. But, this approach is prone to
maintainability and scalability issues. For example, if a UI
element has to be modified or added, such an operation has
to be done for each version of the respective UI.

Elmqvist [21] pointed out in that distributed UIs can have
multi-device environment and/or interaction modalities
aspects, including application and content redirection in
addition to UI migration. In due case, usability is a concern
when adapting the application interface to another device
with different capabilities and constraints. The notion of
plasticity of UI is thus presented as another concept to refer
the ability of UI to withstand variations across platforms,
while preserving its usability [23].

If usability is a concern, then both the platform and user
capabilities have to be addressed while generating an UI [6]
[9] to be distributed or migrated. However, most works put a
focus on the capabilities of one sort of participating entities,
mostly the user or platform. For example, Nichols et al.
described the interface and function of appliances using a UI

description language, which is applied to create
“specifications for 33 appliances, including several with
more than 100 functional elements” [11]. Thus, only the
platform (appliance and application) capabilities are the main
consideration for generating the UI. Also, Lei et al.
considered that the device context is to adapt UIs across
devices with various screen sizes [10]. MARIA [14] was also
proposed as a description language to support migratory UIs
and to design and develop multi-device UIs by using Web
services following the form of e-HCI. But, it has to be noted
that UIs are regarded as a means of communication between
the user and the computing environment, and this should
include invisible UIs (or i-HCI), in which interaction ideally
takes place with no perceived mediation, and in a more real-
world interaction style [15]; and such modality is the one that
most fits the notion of ubiquitous computing. Some works
[24] [25]have attempted to address the personalization of
users by automatically generating interfaces that are
customized to an individual user profile.

Paternò et al. [8] pointed out that in UI distribution, at
least two devices are involved when rendering UI. Despite
the main focus could be elsewhere (i.e., user, task,
environment, modality, etc.), it is vital to consider the device
context in any case. Therefore, we formally consider both the
platform (device and system) and user capabilities in our
conceptual approach.

Four concerns are discussed in [11][21] focusing on the
multiplicity of displays, platforms, operating systems, and
users, before proposing their toolkit developed in the peer-to-
peer model. The user aspect in [20] considers distributing UI
for multiple users, but not on the heterogeneity of users. This
differs from our concept of user view, since we consider the
user capabilities and constraints as part of the user view, in
addition to the number of users to which the UI is migrated.
Similarly, Elmqvist [26] introduced a peer-to-peer
middleware, which is “tailored for high-performance
visualization” [26] within an environment with diversified
display sizes, such as tabletop display, wall-mounted display,
and mobile devices, but without the user view.

In [6], during the usability engineering lifecycle of UI
development for interactive system, the user profile is
mainly about characterizing the user, not only naturally
(physically), but also with respect to the cognition model and
the psychological makeup of the user. It is important to note
that supported human capabilities (what we are proposing to
be included in generic terms) is different from the user
profile studies that focus on classifying the behavior of
specific user groups by culture, experience, knowledge, etc.
Such constraints are contextual, but our concept lays on the
physical and technical capabilities and constraints of users
coexisting in the same environment, or those participating in
the UI distribution or migration. For example, if an UI is
shared between users who have visual impairment and those
who have not, then the process of UI delegation shall
consider this situation by creating the UI on the delegatee
side as per the user profile, which can be different from the
user profile on the delegator side.

After considering the various solutions, concepts, and
theories in the literature, we noted the following gaps:

3Copyright (c) IARIA, 2015. ISBN: 978-1-61208-382-7

ACHI 2015 : The Eighth International Conference on Advances in Computer-Human Interactions

 The works we found in the literature focus on e-HCI
and solutions that are most related with interactive
systems; however, ubiquitous computing can be
smart as well. Thus, it requires i-HCI [5].

 Distributed and migratory UIs are generated by
considering a particular view, mostly the device
capabilities (e.g., screen size), but rarely the user and
interaction modalities. Furthermore, the migration or
distribution is often between similar modalities [7].
Thus, a generic approach that focuses on the
merging of user, device and system is important, so
as to support heterogeneity of users and the
interaction modalities.

 In the general setting of ubiquitous environments,
with which computing and interaction with
heterogeneous platforms is carried out on the fly,
scrutinizing the platform capabilities and constraints
would be endless and impractical due to the
numerous options of interaction modalities and
technologies, not to mention those that are expected
to emerge in the future. Hence, scalability should be
one of the prominent considerations to be taken in
the new concept of UI delegation.

III. USER INTERFACE DELEGATION

The rationale for the emergence of the UI distribution
and migration concepts result from the need for enabling
users to continue performing their tasks on the go and
pervasively. We consider the concept of UI delegation as
the third dimension (in addition to UI distribution and UI
migration) that sustains the development of cross-platform
interfaces, so that interaction can be extended and usability
can be improved by sharing capabilities of delegatee
platform. For example, a list box widget can be used “on
behalf of” radio button for implementing “choice” concept
in the interaction. Similarly, instead of visually reading a text
from the screen, it can be converted to audio and played if
the capability exists. Thus, audio listening can be used “on
behalf of” of visual reading across platforms, so that trans-
modality can be achieved after all.

The notion of “on behalf of” is driven by the cooperation
and collaboration between the delegator (i.e., the one that
requires the UI to be rendered on a remote platform) and
delegatee (i.e., the one that renders a UI on behalf of other
peer), and this should happen when the delegator desires to
perform the task but knows there is a better capability on the
delegatee side. For example, while composing a message the
user can type using a keyboard on desktop/laptop more
easily and efficiently than using keypad of a smartphone. On
the other hand, smartphone may possess the connection and
SMS service. Therefore, the notion of “on behalf of” exists if
the desktop/laptop is delegated only for the purpose of
delivering the input modality as per its capability.
Considering this example, the idea could be similar to the
concept of UI granularity (or, in our case, granularity of the
interaction modality) that is manipulated during distribution
or migration of the UI (or part of it) as discussed in [27].
However, in UI delegation, the UI element is not distributed

but created at runtime as per the capability of the platform
that renders the UI element – the delegatee.

UI delegation, in addition to supporting cross-platform
UIs as distribution and migration approaches do, it is also
useful to create a merger of capabilities in a certain
computing environment. As discussed above, the
heterogeneity may occur as the result of the diversity of
capabilities owned by systems (application and interaction
modalities), devices, and users. The merger of the
capabilities can be thus used to extend the capability domain.

ଵܥ ൌ ሼܽ, ܾ, ܿ, ݀ሽ

ଶܥ ൌ ሼܽ, ܾ, ,ݔ ሽݕ

Therefore

ௗܥ ൌ ଵܥ ଶܥ

Figure 2. Representation of capabilities domain

For instance, as shown in Figure 2, let C1 and C2 be sets
of capabilities (interaction modalities) of platforms P1 and
P2, respectively, (i.e., those coexisting in the same
computing environment). Then, Cd is the capability domain
we can benefit from using such computing environment. It is
apparent that both platforms have shared common
capabilities ሼܽ , ܾሽ, but each of them also has exclusive
capabilities, {c , d} for P1 and {x , y} for P2. Therefore, UI
delegation can be applied to enable one platform to use one
or more capabilities of another platform. In due process, if
the modalities between the two platforms are the same, then
it is said that we have mono-modality; otherwise it is trans-
modality. Thus, if P1delegates P2, then P2 is running the
desired interaction modality “on behalf of” the delegator.
We call P1 the delegator and P2 the delegatee.

A. Theory of Delegation

Castelfranchi et al. relate delegation to agents since it is
related with the notion of “task” of “on behalf” in addition to
the need of autonomy and collaboration [15]. Thus, “task” of
“on behalf”, autonomy, and collaboration are the three
prominent reasons leading to the theory of delegation [15].
Similarly, we use the theory of delegation, but applied to the
cross-platform context of HCI.

The notion of “task” of “on behalf” is discussed above. In
HCI, the autonomy is satisfied by letting platforms (peers) to
run delegated UI (i.e., the complete or partial version of the
UI) in their own capabilities, instead of generating the UI
from server side. Finally, the collaboration is met using the
communication protocol between peers.

In the literature, we found that the theory of delegation is
well presented in works related to agent-based systems.
Haddadi develops the theory by taking “an internal
perspective to model how individual agents may reason
about their actions” [26]. This is further developed in [15],
where it is stated that “in delegation an agent A needs or
likes an action of another agent B and includes it in its own
plan, thus, A is trying to achieve some of its goals through

4Copyright (c) IARIA, 2015. ISBN: 978-1-61208-382-7

ACHI 2015 : The Eighth International Conference on Advances in Computer-Human Interactions

B’s action”. According to Castelfranchi et al., A is said to be
the “client”, while B is the contractor [15]. In our context, A
decides to whom to delegate as an autonomous peer,
although B may reasonably agree or not to be delegated. We
call to A and B the “delegator” and “delegatee”, respectively.

In spite of not being defined as a theory in [27], the
concept of delegation is used with the intent of compensating
the low computational performance of small handheld
devices by delegating in high performing computers the
execution of tasks requiring higher performance
computation.

We draw the theory to support cross-platform UIs within
peer-to-peer model, such that interaction modalities include
the practice of i-HCI, as well as the notion of invisible UI.
Furthermore, the capabilities used to generate a UI
component shall be defined from the human, device and
system views. Thus, in UI delegation, we have the following:

 a peer (delegator) shall demand a capability of
another peer in the same computing environment;

 all peers are responsible to register and maintain
their own capabilities locally, and advertise them
when required;

 a peer looking for a capability shall advertise it, and
only peers that own such a capability shall respond;

 a delegator is in control only before transferring the
UI-related information to the delegatee; and

 a delegatee is in control only while delivering the
UI, loosing such control when the UI state is
changed as a result of interaction.

In order to maintain the collaboration between peers, and
to standardize how capabilities are represented, the peers
shall use the CIL that serves as a protocol between peers.

B. The Protocol (CIL)

The UI delegation concept we propose in this paper is
meant to fit in a peer-to-peer model that requires
decentralizing UI-related information, as well an enabling
peer that is intended to serve as delegatee. Hence, as in [15],
where the agent has to select the task to be run for another
agent, the delegatee has to invoke some of its own
capabilities (i.e., locally stored) that are adequate to deliver
the required UI (or part of it) on behalf of the delegator. To
achieve this requirement, we propose a set of rules governing
the UI-related information exchange between peers. In
addition, how each peer registers its capabilities locally has
to be standardized. Therefore, CIL is conceptualized as the
protocol that serves these needs.

In order to apply CIL as a protocol between the peers, it
shall play three basic functions as: syntax and semantics,
description language, and communication rules.

1) Syntax and semantics
The peers taking advantage of the concept of UI

delegation shall use a standardized and common way of
describing the UI-related information. This includes
standardizing the syntax and semantics of the language to be
used between peers. Also, it requires a decision about which
aspect of UI-related information to be represented using the
protocol. As discussed above, one of our main goals is to
consider and use the merger of the system, device, and user

contexts during the cross-platform UI development, provided
that are deemed important for the UI generation (i.e., at
runtime or design time). Therefore, at this stage of our work,
we consider the human, system, and device as views to be
integrated in the CIL-definition. The human and device
views can be taken into account for identifying physical and
technical capabilities supported and available on each peer.
Hence, a delegator can use the information to select the
delegatee that optimally meets the desired capabilities.

On the other hand, the system view is required to define
available capabilities related to interaction modalities,
available support for i-HCI, tools useful to support
conversion between modalities (e.g., text-to-speech), and so
forth. In particular, the system view covers three broad
aspects of the interaction:

 How interaction is presented: the presentation of UI
can be in the form that the user shall react to (e.g.,
web form), or implicitly (e.g., ambient display) in
which users can be passive in respect to the
presentation.

 How interaction is triggered: interaction can be
triggered as a result of the occurrence of a specific
event, command, periodic instance, etc.

 The type of modality-state: peer might have the
capability to use mono-modality or trans-modality.
In trans-modality, peers are capable of converting
one modality into a different type of modality (e.g.,
text-to-speech)

As shown in Figure 3, the CIL-definition is the
foundation on which UI related-information and messaging
are described during the process of UI delegation. The CIL-
definition constructs the syntax and semantics of the CIL in
general, which has to be followed by each peer. Also, since
the definition can be improved from time to time, it has to be
associated with version identifier.

2) Description protocol
Once each peer knows how and what to specify, the

protocol can be used to describe the capabilities of each peer,
as well as the presentational information of the current UI
desired to run on the delegatee side.

Each peer shall describe locally the capabilities it
supports in accordance to the CIL-definition with the human,
device, and system views. Thus, when the delegator decides
to delegate a peer, the selected peer (delegatee) shall present
the UI in its own capability as described locally.

Figure 3. Structure of CIL

5Copyright (c) IARIA, 2015. ISBN: 978-1-61208-382-7

ACHI 2015 : The Eighth International Conference on Advances in Computer-Human Interactions

Description is also required to communicate and use
presentational UI information (i.e., the structure of UI
element, the entire UI or interaction modality) useful to
create the UI presentation on the delegatee side.

The presentation is created using the CIL-definition in
two stages. In the first stage, the delegator has to create the
CIL version of the UI intended to run on the delegatee side.
Then in the second stage, the delegatee shall map the
presentation (CIL-description) in accordance to its
capabilities, and generate the new presentation of the
delegated UI. More discussion about mapping capabilities is
given further ahead.

3) Communication rule
The exchange of UI-related information shall follow a

standard that can be understood and interpreted by each peer.
Therefore, in addition to creating the CIL-definition as rule
upon which the CIL-description of capabilities and
presentation is made, we found it valid to consider a third
role within CIL through which peers collaborate: CIL-
Messaging. CIL-messaging is the third role that must be
played in three situations:

 when the delegator sends a delegation request to
peers;

 when peers respond to a delegation request;
 after the delegator selects one of the peers as

delegatee and, when the described UI or interaction
modality is transmitted; and

 when the delegatee decides to transmit the UI with
its new state back to the delegator.

C. UI Delegation Process

The delegation process can be started on-demand or
automatically, and there are five important requirements to
be fulfilled:

 Describing capabilities
 Creating delegation request
 Responding to a delegation request
 Selecting and appointing delegatee and
 Mapping UI/interaction modality

The CIL-description and/or CIL-messaging are used to

fulfill each of these requirements, while the CIL-definition
serves as a standard for maintaining consistency and
interoperability across peers in the process of messaging, as
well as to describe the capabilities and presentation.

1) Describing Capabilities
Local capabilities of each peer can be described by the

UI designer, and verified as per the CIL-definition (the XML
schema).

2) Creating Delegation Request
Delegation request has to be created first by translating

the current UI deemed to be delegated into CIL-description.
During delegation request, the CIL-description is in a more
abstract form only to depict the desired capabilities from
user, device, and system points of view.

Figure 4. Delegation request

In addition, the required user profile shall be used to
create the human-being view description. Once the
description is done, it is used to define the delegation request
message using the CIL-messaging format, being then the
message sent to the prospective CIL-enabled peer, as shown
in Figure 4.

3) Responding to delegation request
Each peer receiving the delegation request shall compute

the degree-of-matching between the requested capability
coming in the CIL message and its own capabilities. The
degree-of-matching M can be computed using the algorithm
(pseudo code) shown in Figure 5. Basically, each element e
in the CIL-message is searched within the local list of
capabilities of the prospective delegatee. Three situations
may occur:

 if e is identical to a capability of the delegatee (first
condition), the prospective delegatee is probably
similar to the delegator. Hence, the value of M is
incremented by two;

 if e is found to be similar to one of the capabilities of
the delegatee (second condition), the prospective
delegatee has similar capability but may not be in
the same way as in the delegator (e.g., browser of
different type). Hence, the value of M is incremented
by one;

 if e is not found at all, the value of M is decremented
by one.

Figure 5. Simplified algorithm for calculating degree of matching (M).

4) Selecting and appointing delegatee
Once the value for degree-of-matching M is received

from each prospective delegatee, the delegator will select the
delegatee that responds with the largest M value. In due

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-382-7

ACHI 2015 : The Eighth International Conference on Advances in Computer-Human Interactions

process, the presentational CIL-description will be sent to the
selected delegatee.

5) Mapping UI/interaction modality
Once a peer is appointed and receives the presentational

CIL-description, the delegatee will replace the CIL-
description with its local capability. For example, the
description of an HTML tags for single line text input tag of
a web interface in Figure 6 (a) can be mapped to Figure 6 (b)
that of an a multiline text box or vice versa. In the mapping
process, either part of the description is depicted to fit the
local capability, or it could be expanded. However, the major
structure descriptor and the state of the widget are
maintained as-is (see the bold and underlined part).

Figure 6. Description of UI concept using different capability

Nevertheless, UI elements that should not change the
original structure should not pass through the delegation
process. For example, some text inputs (e.g., username)
might be required to be just one line.

Therefore, to correctly perform the mapping, a standard
has to be followed between the delegator and the delegatee
on how to describe the widgets (or other UI-related
information). Hence, the CIL plays important role during the
mapping.

IV. CONCLUSION

UI distribution and UI migration are two prominent
dimensions that are useful to support the development and
usage of cross-platform UIs. These concepts are often
applicable if a client-server model is followed and it is not
desired to have autonomous platforms. Thus, a dedicated
server has to be assigned to orchestrate the distribution or
migration. Furthermore, a server of this sort requires higher
degree of reliability; otherwise, it can be a point of failure
that jeopardizes the entire cross-platform operation. In
addition, most works following these approaches focus
primarily on a specific context (device, user, system, task,
etc.). However, the use of human, system, and device views
should be apparent, and shall not be split, so that the
usability of the system can be improved even in cross-
platform UI development.

Therefore, we draw from the theory of delegation –
which is most applicable in agent-based system – the new

concept of UI delegation as the third dimension in cross-
platform UI development. In our work, we propose the UI
delegation concept to follow peer-to-peer approach, so as to
assure that peers remain autonomous. In due process,
protocol for UI-related information exchange is important.
Accordingly, we have discussed the notion of CIL together
with the process of UI delegation.

Therefore, we claimed that if each peer is able to describe
and maintain its capabilities and constraints, then new peers
can be added easily. In due process, we consider i-HCI as
interaction modality, which can be defined by the
amalgamation of contextual information and intelligent
technology. Thus, it is one dimension to be satisfied by the
use of CIL-messaging, as per the CIL-description, which is
built from the human, device and system points of view.
Furthermore, considering delegation as per the capabilities of
the delegatee peer would help to define autonomous peers,
which are limited by the capabilities and constraints defined
at the server.

In order to materialize the concept of UI delegation, in
the future, more work has to be done to complete
standardization of the CIL. It is also important to define a
framework for CIL-enabled peers. In due course, though the
computational power of small handheld devices is higher
than ever, in the future, it is important to address the
performance aspect of the delegation process since delegatee
peers are responsible for mapping the UI description into
their context.

REFERENCES

[1] K. Byeong-Ho, "Ubiquitous computing environment threats
and defensive measures," International Journal of Multimedia
and Ubiquitous Engineering, vol. 2, no. 1, 2007, pp. 47-60.

[2] A. Greenfield, Everyware: The Dawning Age of Ubiquitous
Computing. Berkeley, USA: New Riders Publishing, 2006.

[3] M. Weiser, "The computer for the 21st century.," Scientific
American, vol. 263, no. 3, 1991, pp. 94-104.

[4] H. Sørensen, D. Raptis, J. Kjeldskov, and M. B. Skov, "The
4C framework: principles of interaction in digital
ecosystems," ACM International Conference on Pervasive
and Ubiquitous Computing (UbiComp 2014), ACM Press,
2014, pp. 87-97, doi: 10.1145/2632048.2636089.

[5] S. Posland, Ubiquitous Computing: Smart Device,
Environment, and Interactions. Chicester, UK: John Wiley&
Sons Ltd, 2009.

[6] D. J. Mayhew, The Usability Engineering Lifecycle: a
Practitioner’s Handbook for User Interface Design. San
Francisco, USA: Morgan Kaufmann Publishers, 1999.

[7] S. Berti, F. Paternò, and C. Santoro, "A taxonomy for
migratory user interfaces," Interactive Systems. Design,
Specifcation, and Verification Lecure Notes in Computer
Science, Springer, 2006, pp. 149-160.

[8] F. Paternò and C. Santoro, "A logical framework for multi-
device user interfaces," The 4th ACM SIGCHI Symposium
on Engineering Interactive Computing Systems (EICS 2012),
ACM, 2012, pp.45-50, doi:10.1145/2305484.2305494.

[9] J. Nielsen, Usability Engineering. Cambridge, MA, USA:
Academic Press, 1993.

7Copyright (c) IARIA, 2015. ISBN: 978-1-61208-382-7

ACHI 2015 : The Eighth International Conference on Advances in Computer-Human Interactions

[10] Z. Lei, G. Bin, and L. Shijun, “Pattern based user interface
generation in pervasive computing,”The 3rd International
Conference on Pervasive Computing and Applications
(ICPCA 2008), IEEE Press, vol. 1, 2008, pp. 48-53, doi:
10.1109/ICPCA.2008.4783636.

[11] J. Nichols and B. A. Myers, "Creating a lightweight user
interface description language: an overview and analysis of
the Personal Universal Controller project," ACM Transactions
on Computer-Human Interaction (TOCHI), vol. 16, no. 4,
2009, article 17.

[12] P. Sauter, G. Vogler, G. Specht, and T. Flor, "A Model–
View–Controller extension for pervasive multi-client user
interfaces," Personal and Ubiquitous Computing, vol. 9, no. 2,
2005, pp. 100-107.

[13] G. Calvary et al., "The CAMELEON reference framework.
Deliverable 1.1," 2002.

[14] F. Paternò, C. Santoro, and L. D. Spano, "MARIA: A
universal, declarative, multiple abstraction-level language for
service-oriented applications in ubiquitous environments,"
ACM Transactions on Computer-Human Interaction
(TOCHI), vol. 16, no. 4, 2009, article 19.

[15] K. P. Fishkin, T. P. Moran, and B. L. Harrison, "Embodied
user interfaces: towards invisible user interfaces," The IFIP
TC2/TC13 WG2.7/WG13.4 7th Working Conference on
Engineering for Human-Computer Interaction, IFIP, vol. 22,
1999, pp. 1-18, ISBN:0-412-83520-7.

[16] R. Castelfranchi and C. Falcone, "Towards a theory of
delegation for agent-based systems," Robotics and
Autonomous Systems, vol. 24, no. 3, 1998, pp. 141-157.

[17] E. G. Nilsson, J. Floch, S. Hallsteinsen, and E. Stav, “Model-
based user interface adaptation,” Computer and Graphics, vol.
30, no. 5, 2006, pp. 692-701.

[18] M. Welie, “Task-based user interface design,” SIKS
Dissertation Series No. 2001-6, Dutch Graduate School for
Information and Knowledge Systems, Vrije Universiteit,
2001.

[19] J. Vanderdonckt, "Distributed user interfaces: how to
distribute user interfaces elements across users, platforms and
Environments," The 11th Congreso Internacional de
Interacción Persona–Ordenador (Interacción 2010),
Universidad Politécnica de Valencia, Valencia, Spain, Sept.
2010, pp. 3-14.

[20] J. Melchior, D. Grolaux, J. Vanderdonckt, and P. Roy, "A
toolkit for peer-to-peer distributed user interfaces: concepts,
implementaiton and applications," The 1st ACM SIGCHI
Symposium on Engineering Interactive Computing Systems
(EICS 2009), ACM Press, 2009, pp. 69-78.

[21] N. Elmqvist, "Distributed user interfaces: state of the art," J.
A. Gallud, R. Tesoriero, V. M.R. Penichet (eds.), Distributed
User Interfaces: Designing Interfaces for the Distributed
Ecosystem, Human-Computer Interaction Series. London,
UK: Springer-Verlag, 2011, pp. 1-12.

[22] L. Frosini and F. Paternò, "User interface distribution in
multi-device and multi-user environments with dynamically
migrating engines," The 1st ACM SIGCHI Symposium on
Engineering Interactive Computing Systems (EICS 2009),
ACM Press, 2009, pp. 55-64.

[23] D. Thevenin and J. Coutaz, "Plasticity of user interfaces:
framework and research agenda," M. A. Sasse and C.
Johnsson (eds.), The 7thIFIP Conference on Human-
Computer Interaction (INTERACT 1999). IOS Press, 1999,
pp. 110–117, ISBN: 09673355074274903087.

[24] K. Gajos and D. S. Weld, "SUPPLE: automatically generating
user interfaces.," The 9th International Conference on
Intelligent User Interfaces (IUI 2004), Funchal, Madeira,
Portugal. ACM Press, Jan. 2004, pp. 93-100.

[25] D. Grolaux, P. Roy, and J. Vanderdonckt, "Migratable user
interfaces: beyond migratory interfaces," The 1st Annual
International Conference on Mobile and Ubiquitous Systems:
Networking and Services (MOBIQUITOUS 2004).Boston,
Massachusetts, USA: IEEE Press, 2004, pp. 422-430, doi:
10.1109/MOBIQ.2004.1331749.

[26] S. K. Badam, E. Fisher, and N. Elmqvist, "Munin: apeer-to-
peer middleware for ubiquitous analytics and visualization
spaces," IEEE Transactions on Visualization and Computer
Graphics, vol. 21, no. 2, 2015, pp. 215-228.

[27] A. Haddadi, "Communication and cooperation in agent
systems: a pragmatic theory," Lecture Notes in Computer
Science, vol. 1056, 1996.

[28] A. Q. Pham, "Privilege delegation and revocation for
distributed pervasive computing environments," G. Abraham
and B. I. P. Rubinstein (eds.), The 2nd Australian
Undergraduate Students’ Computing Conference, 2004, pp.
136-141, ISBN: 0-975-71730-8.

8Copyright (c) IARIA, 2015. ISBN: 978-1-61208-382-7

ACHI 2015 : The Eighth International Conference on Advances in Computer-Human Interactions

