
Applying Mixed Reality Techniques for the Visualization of Programs and

Algorithms in a Programming Learning Environment

Santiago Sánchez, María Ángeles García, María del Carmen Lacave, Ana Isabel Molina,

Carlos González, David Vallejo, Miguel Ángel Redondo

Universidad de Castilla-La Mancha

Paseo de la Universidad, 4, 13071 Ciudad Real (Spain)

Email: {Santiago.Sanchez, MariaAngeles.GMarin, Carmen.Lacave, AnaIsabel.Molina,

Carlos.Gonzalez, David.Vallejo, Miguel.Redondo}@uclm.es

Abstract—Program and algorithm visualization has been a

research topic for more than 25 years. Correct graphical

representations have a demonstrated impact on how students

understand programming concepts. Previous works on

visualization tools based on trees and graphs representations

tend to be too difficult for teachers to use them in their

classrooms and for students to understand how they work.

Moreover, new mixed reality learning environments can

improve this learning experience thanks to the latest

technology on the market. This paper discusses a whole new set

of graphical representations used to visualize programs and

algorithms through augmented reality devices. It also presents

these visualizations integrated into the architecture of a newly

mixed reality programming learning feature for the

COLLECE 2.0 Eclipse plugin, a collaborative and distributed

environment for programming learning. This new approach is

expected to improve students’ learning experience in

introductory programming courses.

Keywords-Program visualization; algorithm visualization;

augmented reality; programming learning; eclipse.

I. INTRODUCTION

Programming learning through graphical representations
is a field in which researchers have been working for more
than 25 years. The main purpose of these works is to reduce
the level of abstraction that programming requires to
facilitate its understanding [1], fulfilling the objectives of
level 2 of Bloom’s taxonomy [2]. Researchers have proven
that the cognitive capacities of the human being are
optimized to process information in a multimodal way (i.e.,
visual, tactile, and aural). Nevertheless, computer programs
are usually presented in a textual way (one dimension),
wasting all the power of our brain [3].

On the other hand, teachers’ difficulties to create these
graphic representations prevent the results of these works
from becoming popular in classrooms [4].
However, in recent years, this work has been intensified and
redirected, due to the rise of hardware devices and
technological advances that allow much more expressive
representations. In this sense, the integration of immersive
technologies into programming learning tools can contribute
to improve learning results.

The use of these emerging technologies enables a
multimodal interaction-based process, which facilitate active

learning. Among the different devices that offer this kind of
interaction, it is worth highlighting those that integrate mixed
reality capabilities. These provide a natural learning
environment where the student’s actions in the physical
world influence the virtual one. Mixed reality glasses
Microsoft HoloLens hold a dominant position on the market
as a device capable of mixing the physical and virtual
worlds, covering most of the continuum of virtuality defined
by Milgram and Kishino from augmented reality to
augmented virtuality [5], but especially focused on the first
one. Thus, it is possible to expand the capabilities of
traditional programming learning systems. To do that, new
graphic representation techniques and new architectures that
enable their manipulation need to be defined.

In this context, the work discussed in this article emerges,
encompassed within a more ambitious scenario whose final
objective consists in building a new generation of
programming learning tools based on interactive
technologies [6].

The contribution described in this article represents an
approximation for the graphical representation of programs
and algorithms through mixed reality, as well as a potential
architecture to support it. As a practical application, this
approach is integrated into COLLECE 2.0, a collaborative
and distributed environment for programming learning
through problem solving, which is based on the Eclipse
platform [7], currently available for download at
http://blog.uclm.es/grupochico/proyecto-iapro/collece-2-0/.

This article shows the proposed architecture as a
complete environment oriented to programming learning,
highlighting the new visualization capabilities of programs
and algorithms. The rest of the paper is organized as follows.
In Section 2, some similar solutions are presented, as well as
previous works on which this work is based. Then, Section 3
focuses on the proposal of this work and the system
architecture. Section 4 discusses the different tests performed
to obtain the set of final visualizations. Finally, Section 5
draws some final conclusions and suggests possible lines of
future work.

II. RELATED WORK

Works on visualization of programs and algorithms are
very varied and provide results both for and against the
effectiveness of their use in the educational context. Within
the first group, in [8], it was made an evaluation of the

84Copyright (c) IARIA, 2018. ISBN: 978-1-61208-619-4

eLmL 2018 : The Tenth International Conference on Mobile, Hybrid, and On-line Learning

extrinsic and intrinsic motivation of the students, resulting
that these motivations increase when using visualizations of
programs and algorithms in the classroom. In [9], it was
proposed the resolution of the problem of the knapsack
through a textual animation, in which the students had to
identify the problem that was finally implemented, obtaining
very satisfactory results. In another work [10], the Alice tool
was used to teach how to solve recursive problems through
3D visualizations that represent lines of code. Although the
students did not successfully solve the problems, they
demonstrated certain facilities to deal with them. Similar
results were obtained in [11], where the use of the Jeliot tool
improved the students' understanding of control structures
and loops. In [12], some experiences were made trying to
discover why it is so difficult for students to understand
recursive programming; they concluded that using
visualization tools to display the trace of the program helps
them understand how the programs work and how to solve
the exercises better.

Among the works that reflect their skepticism about the
effectiveness of visualizations in programming learning, the
following are noticeable. In [1], it was shown that the
algorithm visualization technology is educationally effective
depending on how it is used, rather than on the quality of the
visualizations. In [13], it was studied the effectiveness of
teaching from the teacher’s point of view and learning from
the student's point of view. In the first case, it was concluded
that the teacher must put too much effort in contrast to what
these visualizations actually provide, while in the second
case no substantial benefits were achieved. In this work it is
concluded that for the visualizations to be pedagogically
useful, they must support students’ interaction and promote
active learning, as stated in [4] and [14]. In this sense, the
works of [15] and [16] come together through the idea that
the teaching community is quite reluctant to incorporate
visualization tools, due to the costs of installation, learning,
creation, and maintenance that they imply, as well as the fear
of losing control of the classes while the applications are
used.

However, there are several tools that try to alleviate these
disadvantages, which have been analyzed considering the
taxonomy defined by Myers [3], which classifies the
visualization of programs according to the information to be
rendered (i.e., code, data, or algorithm) and to its nature:
dynamic or static. SRec [17] is able to dynamically visualize
the trace of recursive algorithms; those studied in [15], for
functional programming (Kiel and WinHIPE) and object-
oriented programming (BlueJ and Jeliot); JAVENGA [18],
used in the visualization of network and graph algorithms;
Visual LinProg [19], to visualize algorithms of linear
problems; VISBACK [20], for dynamic visualization of
recursive backtracking algorithms using trees; ALGOLIPSE
[21], to visually represent the execution of algorithms on
data structures and recursive algorithms; among others.

All the analyzed applications are framed in traditional
interaction systems. Regarding the use of mixed reality
techniques for teaching in the classroom, several experiments
have been conducted, and, although they are not directly
related to the visualization of programs and algorithms, it

demonstrates the advantages they offer. Thus, in [22], a
mixed reality environment, SMALLab, was created, aimed at
primary and secondary school students, which allowed
students to express themselves using their own bodies and
improving the learning process. In [23], objects of the
physical world replicated in a virtual world (i.e., cross-reality
objects [24]) were used so that students could remotely work
in a digital laboratory; the evaluation performed with the
students positively demonstrated the use of this technology
[25]. On the other hand, in [26], a system of cameras,
projectors, and Cuisenaire rods (wooden sticks with different
measures) was used to satisfactorily teach mathematical
concepts to children. Some more related experiments with
programming were conducted in [27], where a set of
augmented reality physical markers were used to answer
different programming questions, visualizing different 3D
models related to the questions. The students enjoyed the
activities and the work concluded that there was an increase
in their motivation to learn programming concepts, but not
so much to understand them, since more tests had to be done.
Finally, a systematic literature review on the topic is
conducted in [28], where the authors draw some conclusions
related to the advantages of using augmented reality in
education, such as learning gains, motivation, interaction and
collaboration, and its main purpose, related to explain a topic
of interest as well as providing additional information.

As a final remark in this section, it is important to
highlight that the work described in this article is based on
COLLECE [29], a groupware tool where multiple users can
work collaboratively, thanks to a turn-based approach, in a
shared source file written in Java. A series of improvements
were made on this tool that resulted in COLLECE 2.0 [7], a
complete programming learning environment, based on
Eclipse, with collaboration capabilities oriented to real-time
project editing, version control, communication, and other
awareness-related elements. This environment has been
extended with techniques of mixed reality, although without
including techniques of improved visualization of programs
and algorithms.

III. ARCHITECTURE

The architecture of the proposal presented in this paper is
based on the Eclipse development environment. This
platform is used by most of the students who learn
programming, mainly because of the facilities it offers. It
features native support for the Java programming language,
syntax autocompletion, project management, program
compilation and execution tools, and extensibility
capabilities through plugins. This system of plugins enables
us to build complete applications that directly benefit from
the possibilities offered by Eclipse. Thanks to this feature,
and taking advantage of the familiarity of the students with
Eclipse, the COLLECE 2.0 programming learning
environment was built as a modular Eclipse plugin [30].

COLLECE 2.0 is proposed as a development
environment that serves first-year undergraduate students in
Computer Science to learn the basics of programming by
solving problems, such as those studied in introductory
programming courses (e.g., CS101). For this, the

85Copyright (c) IARIA, 2018. ISBN: 978-1-61208-619-4

eLmL 2018 : The Tenth International Conference on Mobile, Hybrid, and On-line Learning

environment offers different mechanisms that facilitate
learning and collaborative work among students,
highlighting project-oriented work sessions, multi-user
editing of source code in real time, tele-pointers, blocking of
code regions, communication through chat, and statement of
the problem to be solved, among others. Regarding the
implementation, as stated before, it is based on Eclipse
plugin, whose architecture relies on a set of modules that are
responsible for different tasks, such as synchronization
between users, which follows a client-server network model
where a central server takes control and maintains session
synchronization among the rest of the clients that connect to
it. A server can manage different work sessions at the same
time. These work sessions maintain the global context
between the connected clients and the server, that is, the data
of the users, the status of the associated projects, and the
information related to the server itself. All this information
and the related interactions are presented to the user through
different views developed using the set of Eclipse SWT
widgets.

One of the features implemented in COLLECE 2.0 is the
capability to visualize programs and algorithms through an
external augmented reality device that facilitates the
interaction with the system. The device, introduced in
Section 1, facilitates the reconstruction of the physical space,
identifying typical elements of the environment, such as the
floor, walls, tables, and chairs. Thanks to this, we can
precisely indicate the position of the physical world where
the program or algorithm is required to be visualized, in
addition to sharing the visualization with another user who
also uses the device simultaneously, or interacting with the
visualization through gestures and voice recognition. This
interaction allows the user to perform tasks, such as
examining the value of the variables, advancing backward or
forward in the execution of the algorithm, as if it were a
debugger, or discovering certain characteristics of the
program when the user physically approaches the
visualization, among others.

The integration of the augmented reality device with the
environment is done through a new Eclipse plugin that works
together with COLLECE 2.0. This new plugin is responsible
for performing an analysis of the program to be viewed to
extract the relevant information, in addition to establishing
and maintaining a network connection between the device
and the system to exchange information related to the user's
own visualization and physical context.

IV. DEFINITION OF VISUAL REPRESENTATIONS

The methodology used to provide COLLECE 2.0 with
the representations used during the visualization of
algorithms and programs has gone through an exhaustive
process of refinement, thanks to the collaboration of several
experts, teachers, and students, who have contributed
different ideas by conducting surveys. The participants
answered several questions, which are now listed:

• How would you graphically represent a condition
statement: IF … THEN … ELSE …?

• How would you graphically represent a selection
statement: SWITCH … CASE …?

• How would you graphically represent the execution
of a loop?

• How would you graphically represent the definition
of a function?

• How would you graphically represent the return
value of a function?

• How would you graphically represent the evaluation
of an expression?

The results obtained were very varied, although most of
the participants agreed on the use of flow diagrams to make
the representations. Those that did not, contributed certain
designs related to boxes (expressions), spirals (loops),
telephones (function definitions), and branches (control
sentences). From the study of these designs, a representation
based on roads was extracted (see Figure 1), sufficiently
abstract and scalable to represent any type of program.

This set of roads and traffic signs enables the
visualization of the program execution flow in a natural way
for the user, since he/she is familiar with them in his/her
daily life. The fact that students are familiar with roads and
signs facilitates the use of these metaphors to help them
understand programs and algorithms through their static
representation.

Using this metaphor, a modular set of blocks have been
designed to construct the visual representations. These
representations are explained below by referencing them
numerically according to Figure 1.

The representation associated with the condition
statements, IF ... THEN ... ELSE (1), shows a fork with two
branches in which the left branch supposes the execution
when the condition to be evaluated is fulfilled (THEN),
while the right branch involves the execution when this
condition is not (ELSE).

As in the previous representation, the selection sentences,
SWITCH ... CASE ... (2), use a fork, but this time with three
branches. However, in this case, the central branch which
represents the selected case during the evaluation of the
expression is exclusively used, leaving the other two as
merely symbolic branches. This has been decided in order to

Figure 1. Set of visual representations: (1) condition statement IF …

THEN … ELSE …, (2) selection statement SWITCH … CASE …, (3)
loop execution, (4) function definition, (5) function return value, (6)

expression evaluation.

86Copyright (c) IARIA, 2018. ISBN: 978-1-61208-619-4

eLmL 2018 : The Tenth International Conference on Mobile, Hybrid, and On-line Learning

improve the scalability of the visualization process if the
number of cases of the sentence increases disproportionately.

The proposed representations for the loops (3) are based
on the metaphor of roundabouts, where a vehicle can travel
indefinitely and cyclically. However, the concept has
undergone certain modifications to improve scalability (e.g.,
to support nested sentences), making exhaustive use of the
different lanes of the road. Conceptually, the visualization is
interpreted through a vehicle (which would represent the
step-by-step execution of the program) that would reach the
roundabout in the north where the condition of the loop
would be evaluated. If this condition is fulfilled, the vehicle
would execute the iteration of the loop taking the second exit
of the roundabout. Once the iteration has been completed,
the vehicle would reach the roundabout in the south, where
the condition would be evaluated again. In case this time the
condition was not fulfilled, the vehicle would leave the loop
taking the third exit of the roundabout.

Regarding function definitions (4), their representation is
conceptually based on the traffic signal of exit to city from
highway, indicating the beginning of a function, which will
be followed by another set of representations indicating the
body of the function and, finally, its return sentence. This
representation shows information about the type of data that
the function returns, the input arguments, and the name of
the function itself.

Function returns (5) are represented as a traffic signal
that mimics the one existing in real life and that denotes end
of city. This representation shows the name of the function
from which it is returning and the variable whose value is
returned.

Finally, the evaluation of expressions (6), such as, for
example, the assignments to variables or the invocations to
functions, are represented as a box that contains the
expression that will be executed. These boxes are located on
the roads, representing the position where they would be in
the program.

The representations discussed here are used to display the
program statically in order to provide an overview of its
structure. The system makes a direct association between
certain sentences of the language and their corresponding
representation. The set of sentences to be visualized is rich
enough to represent any program with them. However, no
distinction is made between the types of loops, such as the
classics "for", "while" and "do ... while", and their different
variants, but all of them are encompassed in a single
representation, thus abstracting the user from the language
implementation details.

These representations have been evaluated through a
pilot test with a small sample of student. Two questions have
been presented for the students after they have worked with
the representations:

• Q1: I think the proposed notation can be motivating
for those who are learning to program.

• Q2: I like the proposed representation to model
algorithms.

These preliminary obtained results showed a positive
feedback from the students, who found the representations

useful and easy to understand. However, in depth evaluations
have to be conducted in order to better analysis of the results.

V. EXAMPLE OF APPLYING REPRESENTATIONS

To test the set of representations, a visualization of a
function was made. The code for that function is showed in
Figure 2, which checks whether the numbers in a list are
even, and in that case, increases them by one unit; otherwise,
it decrements them. This function is visualized through a
graphical representation in Figure 3.

Thanks to the rendered visualization, a user can quickly
identify the elements of the program. In this case, the
visualization includes the definition of a function
("changeNums") that includes a loop with a condition
statement and its two possible branches. Finally, it shows

public static int [] changeNums(int [] nums) {
 for (int i = 0; i < nums.length; i++) {
 if (nums[i] % 2 == 0) {
 nums[i]++;
 }
 else {
 nums[i]--;
 }
 }
 return nums;
}

Figure 2. Sample code listing for further program visualization.

Figure 3. Visual representation of a function definition.

87Copyright (c) IARIA, 2018. ISBN: 978-1-61208-619-4

eLmL 2018 : The Tenth International Conference on Mobile, Hybrid, and On-line Learning

how the definition of the function ends and the variable that
returns ("nums").

Thanks to the representations generated in the physical

space and visualized through the augmented reality device,
Figure 4 graphically shows the Bubblesort algorithm
displayed on a table, as seen by a user of the system. This
visualization includes 3D elements associated to each of the
2D representations that have been introduced in the previous
section. We can identify the definition of a function with two
loops, one of them nested within the other, which also
contains a one-branch condition statement.

VI. CONCLUSION AND FUTURE WORK

The visualizations discussed in this paper are static
representations that need to be rigorously evaluated before
obtaining any conclusion regarding their effectiveness.
However, its flexibility and scalability to represent programs
and algorithms is highlighted as shown in the representation
of the algorithms proposed in this paper, involving an
advance over other algorithm representation tools, such as
those mentioned in Section 2.

The next step will be composing a selection of relevant
algorithms with these representations to evaluate their
effectiveness with undergraduate students in the first courses
of introduction to programming.

In these experiments, the effectiveness of the
representations to visualize programs and algorithms will be
evaluated, both subjectively and objectively (through eye-
tracking techniques).

ACKNOWLEDGMENT

This research has been funded by the Ministry of
Economy, Industry and Competitiveness, and the European
Regional Development Fund through the project TIN2015-
66731-C2-2-R.

REFERENCES

[1] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko, "A meta-
study of algorithm visualization effectiveness," Journal of
Visual Languages & Computing, vol. 13, pp. 259-290, 2002.

[2] B. S. Bloom, "Taxonomy of educational objectives. Vol. 1:
Cognitive domain," New York: McKay, pp. 20-24, 1956.

[3] B. A. Myers, "Taxonomies of visual programming and
program visualization," Journal of Visual Languages &
Computing, vol. 1, pp. 97-123, 1990.

[4] G. Törley, Algorithm visualization in programming education
vol. 4, pp. 68-80, 2009.

[5] P. Milgram and F. Kishino, "A taxonomy of mixed reality
visual displays," IEICE TRANSACTIONS on Information and
Systems, vol. 77, pp. 1321-1329, 1994.

[6] M. Ortega et al., "iProg: development of immersive systems
for the learning of programming," Proceedings of the XVIII
International Conference on Human Computer Interaction,
Cancun, Mexico, 2017, pp. 1-6.

[7] S. Sánchez, M. A. Redondo, D. Vallejo, C. González, and C.
Bravo, "COLLECE 2.0: A distributed real-time collaborative
programming environment for the Eclipse platform,"
Proceedings of the International Conference Interfaces and
Human Computer Interaction 2017, Lisbon, Portugal, 2017,
pp. 136-142.

[8] J. Á. Velázquez-Iturbide, I. Hernán-Losada, and M. Paredes-
Velasco, "Evaluating the Effect of Program Visualization on

Figure 4. 3D visual representation of the Bubblesort algorithm seen through an augmented reality device.

88Copyright (c) IARIA, 2018. ISBN: 978-1-61208-619-4

eLmL 2018 : The Tenth International Conference on Mobile, Hybrid, and On-line Learning

Student Motivation," IEEE Transactions on Education, vol.
60, pp. 238-245, 2017.

[9] C. Kann, R. W. Lindeman, and R. Heller, "Integrating
algorithm animation into a learning environment," Computers
& Education, vol. 28, pp. 223-228, 1997.

[10] W. Dann, S. Cooper, and R. Pausch, "Using visualization to
teach novices recursion," ACM SIGCSE Bulletin, vol. 33, pp.
109-112, 2001.

[11] R. B.-B. Levy, M. Ben-Ari, and P. A. Uronen, "The Jeliot
2000 program animation system," Computers & Education,
vol. 40, pp. 1-15, 2003.

[12] C. Lacave, A. I. Molina, and J. Giralt, "Identificando algunas
causas del fracaso en el aprendizaje de la recursividad:
Análisis experimental en las asignaturas de programación,"
Jornadas de Enseñanza Universitaria de la Informática
(19es: 2013: Castelló de la Plana), Castellón de la Plana,
Spain, 2013, pp. 225-232.

[13] T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer,
C. Hundhausen, et al., "Exploring the role of visualization and
engagement in computer science education," ACM SIGCSE
Bulletin, pp. 131-152, 2002.

[14] L. Fernández and J. Á. Velázquez, "Estudio sobre la
visualización de las técnicas de diseño de algoritmos,"
Proceedings of the VII Congreso Internacional de Interacción
Persona-Ordenador, pp. 315-324, 2007.

[15] A. Pérez Carrasco, "Sistema Generador de Animaciones
Interactivas para la Docencia de Algoritmos Recursivos,"
Ph.D. Dissertation, Universidad Rey Juan Carlos, Spain,
2011.

[16] J. Urquiza Fuentes, "Generación semiautomática de
animaciones de programas funcionales con fines educativos,"
Ph.D. dissertation, Universidad Rey Juan Carlos, Spain, 2008.

[17] L. Fernández-Muñoz, A. Pérez-Carrasco, J. Á. Velázquez-
Iturbide, and J. Urquiza-Fuentes, "A framework for the
automatic generation of algorithm animations based on design
techniques," Proceedings of the European Conference on
Technology Enhanced Learning, pp. 475-480, 2007.

[18] T. Baloukas, "JAVENGA: JAva‐based Visualization
Environment for Network and Graph Algorithms," Computer
Applications in Engineering Education, vol. 20, pp. 255-268,
2012.

[19] V. Lazaridis, N. Samaras, and A. Sifaleras, "An empirical
study on factors influencing the effectiveness of algorithm
visualization," Computer Applications in Engineering
Education, vol. 21, pp. 410-420, 2013.

[20] J. F. Pérez Mena, "VisBack Herramienta para la visualización
de algoritmos de backtracking," B.S. Thesis, Universidad de
Castilla-La Mancha, Spain, 2015.

[21] L. A. Fava, M. A. Schiavoni, J. Rosso, A. C. Falcone, and L.
Ronconi, "ALGOLIPSE: una herramienta educativa para
mejorar la comprensión de algoritmos y estructuras de datos,"
Proceedings of the XXII Congreso Argentino de Ciencias de
la Computación (CACIC 2016), 2016, pp. 1280-1290.

[22] S. Hatton, D. Birchfield, and M. Colleen, "Learning metaphor
through mixed-reality game design and game play,"
Proceedings of Sandbox 2008: An ACM SIGGRAPH
Videogame Symposium, Sandbox'08, pp. 67-74, 2008.

[23] A. Peña-Ríos, V. Callaghan, M. Gardner, and M. J. Alhaddad,
"Remote mixed reality collaborative laboratory activities:
Learning activities within the InterReality portal,"
Proceedings of the 2012 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent
Technology Workshops, WI-IAT 2012, pp. 362-366, 2012.

[24] J. A. Paradiso and J. A. Landay, "Cross-reality
environments," IEEE Pervasive Computing, vol. 8, pp. 14-15,
2009.

[25] P. Rios, C. Anasol, V. Callaghan, M. Gardner, and M. J.
Alhaddad, "Experiments with collaborative blended-reality
laboratory technology for distance learners," Proceedings of
The Immersive Learning Research Network Conference,
2015.

[26] S. Marichal, A. Rosales, F. G. Perilli, A. C. Pires, E. Bakala,
G. Sansone, et al., "CETA: Designing mixed-reality tangible
interaction to enhance mathematical learning," Proceedings of
the 19th International Conference on Human-Computer
Interaction with Mobile Devices and Services, MobileHCI
2017, 2017, pp. 1-13.

[27] N. Salazar Mesía, G. Gorga, and C. V. Sanz, "EPRA:
Herramienta para la Enseñanza de conceptos básicos de
programación utilizando realidad aumentada," X Congreso
sobre Tecnología en Educación & Educación en Tecnología
(TE & ET), Corrientes, Argentina, 2015, pp. 426-435.

[28] J. Bacca, S. Baldiris, R. Fabregat, S. Graf, and Kinshuk,
"Augmented reality trends in education: A systematic review
of research and applications," Educational Technology and
Society, vol. 17, pp. 133-149, 2014.

[29] C. Bravo, R. Duque, and J. Gallardo, "A groupware system to
support collaborative programming: Design and experiences,"
Journal of Systems and Software, vol. 86, pp. 1759-1771,
2013.

[30] S. Sánchez, M. Á. García, C. Bravo, and M. Á. Redondo,
"Sistema COLLECE mejorado para soportar aprendizaje
colaborativo de la programación en tiempo real sobre
Eclipse," IE Comunicaciones, vol. 26, pp. 73-82, 2017.

89Copyright (c) IARIA, 2018. ISBN: 978-1-61208-619-4

eLmL 2018 : The Tenth International Conference on Mobile, Hybrid, and On-line Learning

