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Abstract—Task scheduling is one of the key subsystems of
an operating system. Generally, by providing fairness in terms
of processor time allocated to tasks, the task scheduler can
guarantee low latency and high responsiveness to applications.
In this paper, we demonstrate that specific problems can occur
in virtualized environments, where virtual core scheduling on the
host can negatively affect process scheduling in the guest. More
precisely, there is a need to implement a communication channel
between the host and guest task scheduler, particularly when full-
virtualization techniques are used, in order to avoid latency issues
and loss of responsiveness in virtual machines, especially when
processors execute excessive workloads. After having analyzed
the potential problems in virtual machines, experiments were
performed with real world and benchmarking applications. In
this work we detail possible solutions to solve the issue previously
highlighted, and describe the proposed implementation, which is
based on a coordinated scheduling mechanism between the host
and guest systems. For testing, an embedded ARMv7 Linux-
based platform and two different task schedulers were used,
with a benchmark suite specifically designed for virtualized
environments, with which application responsiveness and latency
are measured and compared.

Keywords—KVM/ARM; embedded virtualization; coordinated
scheduling; embedded systems; task scheduling; CFS; BFS; para-
virtualization

I. INTRODUCTION

Virtualization technology offers a way to increase effi-
ciency and adaptability both in general purpose and embedded
systems, but to get an efficient virtualization solution, latency
of virtual machines and responsiveness of applications should
be guaranteed at a reasonable level. For instance, an interactive
application launched in a virtual machine should not have
much worse performance in terms of responsiveness and
latency than one executed in a host machine in the same
conditions.

In previous work, we showed that latency issues can occur
with task schedulers under some conditions [1]. We have
already experimented with this objective in mind, for storage-
I/O, which led us to the implementation of Virtual-BFQ [2][3],
a Linux I/O scheduler based on the Budget Fair Queuing
(BFQ) scheduler [4]. The work described in this paper, instead
targets process scheduling, so that it could be used as a
complementary approach. The solution described in this paper
is based on a coordinated scheduling mechanism. This type of
solution has already been implemented specifically to make
real-time hypervisors [5][6], while in this work we extend
coordinated scheduling also to non real-time tasks.

In this paper, we provide the following contributions:

A. Contributions of this paper

We highlight that in virtualized environments there are
latency problems with task scheduling, where a missing link
between the guest and the host scheduler can affect perfor-
mance negatively. In fact, there is a need to implement a
coordinated communication channel between schedulers in vir-
tual machines and the host task scheduler. As a consequence,
latency of a guest operating system can be higher, especially in
a system with many CPU-bound tasks. This results in degraded
responsiveness of applications in virtual machines, compared
to similar conditions for non-virtualized systems. To show this
problem, through experimentation, we use two different Linux
task schedulers.

Then, experimental results are reported; these results con-
firm that, in virtualized environments, when a process requires
a high portion of the processor’s time in both the guest and
host system, the latency and the responsiveness of the guest
application is not guaranteed.

A solution, described in this paper, based on a coordinated
mechanism, solves the problem highlighted previously, it is
based on the default Linux scheduler, CFS, which stands for
Completely Fair Scheduler, the implementation is described
in detail. Experimental results are reported for this extended
version of CFS, which includes the coordinated scheduling
mechanism.

An ARM-based embedded system was used to run the
experiments, it aims to be representative of modern embedded
systems and consumer devices, which have relatively small
amount of CPU resources. Finally, the virtualization plat-
form selected for this implementation is Kernel-based Virtual
Machine (KVM) of Linux together with Quick EMUlator
(QEMU), which are among the most popular solutions in
embedded virtualization.

B. Organization of this paper

The paper is organized as follows. In Section II, a de-
scription of the two task schedulers used is provided. Then,
in Section III latency problems and the lack of responsiveness
is highlighted. After describing the benchmark suite and the
experimentation methods in Section IV, the results are reported
in Section V. In Section VI, possible solutions are detailed in
order to solve the issue highlighted. Then, in Section VII the
description of a solution based on a coordinated scheduling
mechanism for the CFS scheduler is provided. Finally, in
Section VIII we report our results for the same experiments,
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but with the coordinated scheduling mechanism developed for
CFS.

II. LINUX TASK SCHEDULERS

The task scheduler, also named process or CPU scheduler,
is the part of an operating system that decides which task runs
when, and on which core. The job of a scheduler is to share
the CPU time between processes that require CPU resources,
to pick a suitable task to run next if required, and to balance
processes between the different CPUs in a multi-core system.

Two Linux task schedulers were used, CFS [7], which
stands for Completely Fair Scheduler and is the default sched-
uler of the Linux kernel, and BFS [8] (see the acronym in [8]),
which is a popular alternative.

By default, Linux can handle real-time and non real-time
policies, which are implemented by the selected scheduler.
Both CFS and BFS schedulers implement their own non real-
time and share the same real-time policies. By extension, with
the term CFS or BFS we refer to both the included scheduling
policies of these schedulers, as well as the entirety of their
implementation.

BFS, which is not part of the Linux mainline kernel [9],
could be considered as an alternative, it is designed for desktop
interactivity on machines with few cores [8], and its source
code has a smaller footprint and is by design simpler. For these
reasons, BFS was also selected in the experimental results
as a comparison to CFS, in case where different behavior is
observed.

A. The Completely Fair Scheduler

The default Linux kernel scheduler, named Completely Fair
Scheduler [7], is modular and permits to use different policies
for different tasks. Linux has two main types of scheduling
policies: a real-time one for real-time task and a normal one
named fair policy for all other tasks.

Among the real time scheduling, Linux distinguishes
three policies: SCHED FIFO, a first-in, first-out policy;
SCHED RR, a round robin policy; and SCHED DEADLINE,
a policy implementing the earliest deadline first algorithm
(since kernel v3.14). Additionally within the fair scheduling
policies: SCHED NORMAL, the default Linux time-sharing
policy, and SCHED BATCH, a policy for “batch” processes.

Linux defines the static priority of a task by a value, which
ranges from 0 to 99, while the real-time scheduling class
uses values from 1 (lowest priority) to 99 (highest priority).
Processes using the fair scheduling class have necessarily a
static priority of 0. In order to determine which thread (or
process) should be run next, the Linux scheduler maintains
a list of runnable processes for each possible static priority,
and it selects the head of the list with the highest static
priority. In other words, a thread, with a higher static priority
than the current running thread which becomes runnable, will
necessarily preempt the current process. For the fair scheduling
class, the kernel uses a priority called dynamic priority, which
from a user’s point of view is also better known as the nice
value, and it ranges from -20 (highest priority) to +19.

CFS is used as the default Linux scheduler since kernel
version v2.6.23, it replaced the old scheduler: O(1). And

implements a completely fair algorithm (hence the name). The
algorithm is based on the concept of an ideal multi-tasking
processor. With such a processor, each runnable task would
run at the same time, sharing the processor power. Of course,
this behavior is not possible, but an equivalent behavior, would
be to run each runnable task for an infinitesimal amount of time
with full processing power. Due to task switching cost, CFS
only approximates this behavior.

For that purpose, CFS stores the runtime value of each task
in a variable called vruntime (stands for virtual runtime) and
tries to keep all vruntime values the closer to each other. So
the runnable task that has the lower vruntime value is chosen
to be the next task to run. The priority of a task (the dynamic
priority, i.e., the nice value) influences the way vruntime is
increased.

To handle interactive tasks, CFS does not use complex
heuristics. In fact, the concept of fair scheduling is enough
to maximize interface performance. For example, consider a
processor-bound task (e.g., an encryption calculation, a video
encoder, etc.) and a I/O-bound task (e.g., a terminal, a text
editor, etc.), which will be the interactive task. In that situation,
the scheduler should give to the interactive task a larger share
of the processor time to enhance the user experience. In fact,
this is what CFS will do: CFS wants to be fair, so each time
the interactive task become runnable, CFS will see that this
task consumed significantly less processor time than the CPU-
bound task. So, the interactive task will preempt the other,
and will be executed until its runtime reaches the value of the
processor-bound task or be blocked from an I/O request.

B. BFS - The Alternative

BFS is an alternative to CFS, it was written by Con Kolivas.
It is not in the mainline kernel and is available as source code
patches [9].

BFS focuses on a simplistic design (about 2.5 times fewer
lines of code than CFS) and aims for excellent desktop
interactivity and responsiveness on personal computers with
a reasonable amount of cores [8]. It uses a single work-queue,
O(n) look-up for all cores unlike CFS, and implements the
earliest eligible virtual deadline first algorithm for non real-
time policies.

BFS, like CFS, provides real-time task policies:
SCHED FIFO and SCHED RR, and also two others policies
for normal tasks: SCHED ISO and SCHED IDLEPRIO. The
first, SCHED ISO (for isochronous) is designed to provide
”near real-time” performance to unprivileged users. And
SCHED IDLEPRIO scheduling policy can be used to run
tasks only when the CPU would be idle otherwise.

The design of BFS makes it efficient when the number of
running processes is small (inferior than the number of CPUs),
which is normally, according to its author [8], a common use
case for a desktop computer.

III. POTENTIAL PROBLEMS IN VIRTUALIZED
ENVIRONMENTS

In a virtualized environment a guest system is seen, from
the host scheduler, as just one, or more additional jobs to
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Figure 1. Latency results

schedule, without any awareness from the host of the fine-
grained requirements of the corresponding guest scheduler.
For example, a new spawned task in the guest system could
be scheduled in a different way by the guest scheduler, but
this information is not visible on the host side. Under certain
conditions, this could lead to undesired behavior.

To highlight the problem we can consider a system, with
two physical CPUs and a guest with one virtual CPU. Two
CPU-bound workloads are launched in the host (one per CPU)
and one in the guest (one per virtual-CPU). In this situation, the
task scheduler will share fairly the processor time between the
vCPU thread (which runs a workload) and the two workloads
in the host, since these three tasks are quite similar in terms
of CPU time demand.

When an interactive task is started in the guest system,
the guest scheduler will detect this new task and assign a
substantial amount of the vCPU time compared to the work-
load running in the same guest. On the host side though, the
scheduler sees only three processes that request a large amount
of CPU time for only two CPUs. So, the host scheduler has
absolutely no reasons to privilege the vCPU thread compared
to other processes (workloads). Additionally, the latency of this
interactive task will probably be higher than in a host system
with the same number of workloads (aside from the constant
overhead of KVM/QEMU). This problem persists for whatever
value the priority of the interactive task in the guest is set to
(could be a real-time one), since the priorities and policies are
not made aware to the host system.

IV. EXPERIMENT METHOD AND BENCHMARK SUITE

To highlight the problem described above, we set up
a benchmark suite in order to measure, in particular, the
latency of the system. We used the tool, cyclictest, which is
usually used to measure latency on a Real Time Linux (i.e,
patched with rt patches) [10]. Generally, cyclictest is used

to measure the latency of real-time thread/process (schedule
with SCHED FIFO or SCHED RR), but it can also be used
with normal (SCHED NORMAL) threads. For each latency
measurement cyclictest is run twice, each one with a 100000
loop, which means that the latency provided by the benchmark
is the average of 200 thousands measurements. The following
command line is used “cyclictest -q -n -l 100000 -h 5000” to
generate the results, and the latency histogram is also retrieved
(-h option) in order to analyze in more detail.

The second kind of benchmark measures the start-up time
of an application. We simply measured how long it takes from
when an application is launched to when an application is
ready. This benchmark gives an idea of the responsiveness of
an application. The start-up time is measured with hot caches,
to avoid any I/O perturbations. For each configuration (i.e.,
number of workload in the host and guest), 100 measurement
iterations are performed, and the average, as well as the
standard deviation are retrieved.

As workload, we used a simple program that does an
infinite loop and, therefore has a very low memory footprint.

V. EXPERIMENTAL RESULTS

We executed our experiments on a Samsung Chromebook
equipped with an ARMv7-A Cortex-A15 processor (dual-core,
1.7 GHz) and 2 GB of RAM. Both the host and the guest
run upstream Linux v3.17 with the PREEMPT configuration
option enabled.

A. Latency

In order to measure latency, we used the cyclictest tool and
the number of workloads is kept the same as in the start-up
time test. The result of this experiment is shown in Figure 1,
where latency is measured in microseconds and represented in
a logarithmic scale on axis Y.
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For the host and guest system we employed up to 8 and
2 workloads, respectively. Axis X corresponds to the total
number of workloads, i.e., host plus guest workloads. The
output of the results are four different curves:

no guest: No virtual machine, serves as reference, the appli-
cation is launched in the host

N guest wl: With N workloads in the guest, the application
is launched in the guest. With N ranging from 0 to 2.

We can notice that, with the CFS scheduler (Figure 1a),
as soon as there are more workloads than physical cores (total
of two cores in the system, latency increases significantly for
the critical curves, which are 1 guest wl and 2 guest wl)
and with at least one workload in the guest. By adding more
workloads, this behavior persists until values are not suitable
for interactive usage. This kind of result confirms the issue
highlighted in Section III, where an interactive application in
a virtualized system can have an extremely high latency.

Also, it worth noting that the latency is better with 2 guest
workloads than with 1 guest workload when the total number
of workloads is high. This behavior is perfectly explainable
due to the difference in the number of workloads in the host.
For instance, in the specific case of 4 total workloads, when
we have 1 guest workload the host system sees four main
processes requesting a high amount of CPU time for only two
CPUs, but when we have 2 guest workloads, there are only
three processes that still share two CPUs. In the latter case, the
process corresponding to the vCPU has more CPU time: this
could lead, depending on the efficiency of the guest scheduler,
to a better latency compared to the former case.

With BFS (Figure 1b), the results are less obvious, but
we can still notice the difference between virtualized and
normal environments, and between the curves of 1 or 2 guest
workloads and the curve of 0 guest workloads.

Although our objective is not to purely compare the two
schedulers, which has already been done [11], we can remark
that even with no virtual machines (curve no guest), latency
with BFS increases steadily, contrary to CFS. This is probably
due to the fact that BFS is not designed to be efficient when the
number of running tasks is higher than the number of physical
cores [8].

We can also analyze the histogram provided by the
cyclictest results to compare the distribution of latency. Fig-
ure 2 shows the two latency histograms on a virtual machine
without any workload. We can notice that even if the average
value is slightly lower with CFS, the BFS case exposes more
converged values with a lower maximum.

In Figure 3, two cases are compared for CFS latency
measured in a virtual machine. Both test cases have the same
amount of CPU-bound workloads, but distributed in a different
manner. In the first case all workloads reside in the host, while
in the second, one of the workloads is reserved for the guest.
Although the distribution of samples for low latency is quite
similar for both cases, in the case where one of the workloads
is in the guest, we still observe a significant amount of samples
in the range of 200 to 5000 µs. This is different from the first
case, where almost all samples are around the 100 µs mark.
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B. Start-up Time

Next, we measure the start-up time of an application. We
choose the xterm application because its start-up time can be
easily measured. In addition, this application was also selected
to measure performance of the BFQ and Virtual-BFQ I/O
scheduler [2] [3] [4].

As we can see in this Figure 4a, which represents the
startup time measured with the CFS scheduler, the curve
corresponding to a measurement in the host (no guest) has a
slightly positive constant slope. This increase is not unexpected
because CFS tries to guarantee only fairness: an increase in
the number of CPU-bound can negatively affect the start-up
time of a new application. Curve 0 guest wl corresponds to
the case in which there is no workload in the guest, but only
in the host. We can see that this curve almost follows curve
no guest, where a constant overhead is observed.
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Figure 4. Start-up time results

In view of the problem highlighted above, the critical
scenarios are the ones corresponding to the curves 1 guest
wl and 2 guest wl, more particularly when the number of
workloads in the host is equal or greater than number of
physical cores (in our case 2). In fact, when vCPU threads are
allowed to use all available cores, the results are acceptable
as the start-up time remains quite low (case 1 guest wl with
a total workload of 1 and 2, and with 2 guest wl with 2 and
3 total workloads). To summarize our test case results, when
the number of workloads in the host is higher than two, the
start-up time increases significantly.

With the BFS scheduler (Figure 4b), although the ap-
pearance of the curves seems quite different, we have the
same behavior: higher start-up times when there are too many
workloads.

To sum up, our results are coherent both for start-up
times as well as latency. Moreover, they clearly prove that,
in scenarios where a workload is present in both the guest and
host, the responsiveness of an application in the guest can not
be guaranteed.

VI. SOLUTIONS

For the scheduling problem described in the previous
chapters, there are two possible solutions that are proposed
below. First, scheduling via a simple static prioritization policy
and second, a coordinated solution that enables communication
between the schedulers of the host and guest systems.

A. Static prioritizing

A straightforward solution could be a static prioritization
scheme, by simply increasing the priority of the QEMU vCPU
threads, or by changing the scheduling policy to a real-
time one. This solution will allow QEMU/KVM to avoid
interference from other tasks in the host system (if there are
no other real-time threads). This method will result in a better

latency, in particular a reduction of the maximum latency [6].
With this solution though, the guest is always privileged
even when it does not execute an interactive program. This
solution can be useful for simple use cases, i.e., when a guest
system which executes soft real-time applications needs to
be prioritized compared to other guests or applications. But
in more demanding use cases, where efficiency is required,
statically raising the priority of a vCPU is not an option.

B. Coordinated scheduling

Instead of prioritizing QEMU threads statically, another
solution could be to boost these threads only when it is
necessary, i.e., temporary increasing the priority or changing
the scheduler policy, when the guest system requests it. It is
a sort of dynamic prioritizing with a coordinated scheduling
mechanism: the guest kernel detects when it needs higher pri-
ority, and informs the host system about it. This co-scheduling
mechanism was already implemented successfully for Virtual-
BFQ [3], therefore, the communication mechanism could be
equivalent to the one developed for that storage I/O scheduler.

This type of solution has already been implemented and
evaluated, especially to make KVM a real-time hypervi-
sor [5] [12] on the x86 architecture. Such attempts mainly
focused to run a real-time Linux OS as a guest, thus, when
a guest executes a real-time thread it informs the host of its
current scheduling policy and priority, the host system then
has to pass on this policy and priority to the affected QEMU
thread.

In order to extend this coordinated scheduling mechanism
also to non real-time applications, a mechanism to detect
interactive applications in the guest system is needed. Heuristic
algorithms have to be added for this purpose.

The communication mechanism between the host and guest
scheduler, is a crucial part, it needs to be fast or at least not
too frequent. The solution chosen in the Virtual-BFQ [3] I/O
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scheduler is to use, a special ARM instruction, HVC, that
results in a hypervisor trap. Moreover, the cost of calling this
instruction, around 2000 CPU cycles (for an ARM Samsung
Chromebook), is not very expensive and can fit the requirement
of a task scheduling coordinated mechanism.

VII. COORDINATED SCHEDULING PROOF OF CONCEPT
FOR CFS

We choose to implement a coordinated mechanism for the
CFS scheduler as a proof of concept for ARM processors.
A similar mechanism has been also developed for the BFS
scheduler, but for the sake of clarity and simplicity only the
CFS implementation and its results are detailed, since they are
very similar to BFS. This implementation is based on the HVC
instruction as a communication mechanism between the guest
and the host. The virtual machine is able to inform the host
when it wants to be prioritized, depending on the real-time
or interactive tasks that are executed, as well as when it does
not need any prioritization anymore, i.e., a “deboost”. This
communication mechanism, using HVC, is wrapped around
the “paravirt”[13] and “hypercall” infrastructure of Linux.
Since this “paravirt” and “hypercall” infrastructure does not
exist, yet, for KVM on ARM, we had to implement it. This
implementation is described in the following sections.

A. Paravirt ops interface for ARM

Linux already provides a way to perform some paravirtual
actions through an infrastructure named paravirt-ops
(pv-ops for short)[13]. This API is used to run para-
virtualized virtual machines on multiple hypervisors with
the same kernel binary. This means that the same kernel
binary can run on bare hardware, or on hypervisors such as
VMWARE VNI or Xen, and it can be para-virtualized or fully
virtualized[14].

This infrastructure exists for multiple architectures and hy-
pervisors, but not for KVM on ARM, the virtualization solution
we use. Therefore, a basic paravirt-ops implementation
was developed. It is based on a patch series that enables
paravirt-ops for Xen on ARM/ARM64[15], thus, only
the KVM related part was developed.

The paravirtual functions require a hypercall implemen-
tation, to be able to send information to the host system.
Therefore, hypercall functions specific to KVM have been im-
plemented into the KVM code base of the Linux kernel. These
functions use the HVC instruction of the ARM architecture,
with the immediate argument of the HVC instruction being a
constant integer used to recognize a paravirt call (from a PSCI
call, for instance, which can also use an HVC instruction[17]).
The parameters of the hypercall are passed through the scratch
registers, r0 contains the identification number of the hypercall
and registers r1 to r3 represent the potential arguments for
this hypercall. Figure 5 details the implementation of the
kvm_hypercall1, which is the hypercall implementation
for hypercalls with one parameter.

Those hypercalls are called from the paravirt-ops
implementation of each paravirtualized subsystem. In our case,
it simply consist of pointers to functions, stored in a structure
that represent the paravirt subsystem. Those functions are

static inline int kvm_hypercall1(u32 num, u32 arg1)
{

register u32 n asm("r0"); /* Hypercall ID */
register u32 r asm("r0"); /* Returned value */
register u32 a1 asm("r1"); /* First argument */

n = num; /* Hypercall ID is stored in r0 */
a1 = arg1; /* The first argument is stored

in r1 */
__asm__ __volatile__(

__HVC(KVM_IMM)
: "=r" (r) : "r" (n), "r" (a1) : "memory"
); /* Inline assembly to call HVC

instruction */

return r;
}

Figure 5. Source code for the hypercall “1” of KVM on ARM

called if the paravirt-ops infrastructure is enabled for the
hypervisor on which the virtual machine is running.

For our needs a paravirt-ops interface named
pv_cosched_ops was added. Along with a new hypercall
named KVM_HC_COSCHED. The pv_cosched_ops
paravirt interface contains three functions:

• New task, new_task()
Called each time a new process is created. We use this
function to implement a heuristic mechanism to detect
which are the tasks that need to be prioritized. This
function is called from wake_up_new_task() in
the Linux kernel code (kernel/sched/core.c)[16].

• Activate task, activate_task()
Called each time a task becomes runnable. That is
to say, each time a task that was waiting voluntary
or due to an I/O wait becomes runnable again. We
also use this function for the detection mechanism
of the task to prioritize. This function is called from
the function activate_task() in the Linux kernel
(kernel/sched/core.c).

• Schedule, schedule()
Called each time a new task is scheduled. It
is in this paravirt function that the hypercall
KVM_HC_COSCHED is performed; to request a
boost or a deboost. This function is called from
__schedule() in the Linux kernel code (ker-
nel/sched/core.c).

On the host side, HVC instructions executed by the guest
are trapped by KVM (in function handle_hvc() in arch/ar-
m/kvm/handle exit.c), and thus, can be handled correctly, the
immediate argument of the HVC instruction is also checked
to be sure that it is a hypercall and not something else. Then,
KVM can perform the corresponding action to this hypercall
according to the value retrieved from r0.

For the hypercall we added, KVM_HC_COSCHED. It takes
only one argument, which is an integer set to 1 if the guest
needs to be prioritized and 0 if it does not need this anymore.
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B. Host side

The modifications done in the host side are located in
the KVM and scheduler code base of Linux. We had to
implement the “backend” of the KVM_HC_COSCHED hy-
percall, which retrieves the argument of the hypercall and
performs the corresponding actions. Thus, according to the
argument, which could be 0 or 1 the hypercall handler will
finally invoke the functions coshed_boost_task() or
coshed_deboost_task() on task current. The task
current is always a vCPU thread in that case.

The added function cosched_boost_task() lives in
the scheduler code base of Linux (kernel/sched/core.c), it
takes a struct task_struct as an argument, which
is the task to prioritize (although in our case this func-
tion is always called with current as an argument). It
boosts the priority of all threads associated to this task,
i.e., the potential other vCPU threads and the I/O threads.
We choose to prioritize those processes with a SHED_RR
policy of priority 1. For this purpose, it invokes the func-
tion sched_setscheduler_nocheck() to change the
scheduling policy of these tasks.

The function cosched_deboost_task() does the re-
verse operation, that is to say it deboosts all the threads related
the virtual machine, so that the policy of the processes is re-set
to SCHED_NORMAL.

C. Guest side

On the guest side the modifications consist of call-
ing the hypercall to request a boost or a deboost at the
right time. Therefore, the schedule() paravirt function of
pv_coshed_ops is called from the core __schedule()
function (in kernel/sched/core.c)[16] equipped with the next
task to schedule as a parameter. A test on this future process
to run is performed to determine if this process needs to be
prioritized or not, according to this information the hypercall
is executed with the correct argument (boost or deboost).

Importantly enough, the time needed to perform a hypercall
is not negligible, especially because of the HVC instruction,
trapped by KVM. We estimate that the guest to host plus
host to guest context switch, is around 2.1K cycles for the
Samsung ARM Chromebook with Linux kernel v3.17. Thus, if
the number of hypercalls is too frequent the performance will
be worse than without the co-scheduling mechanism due to
this overhead. So, in order to solve this problem, the guest
will request a boost for a process, for at least a minimal
period of time, i.e., the guest guarantees that it will not require
a prioritization period inferior of the minimal boost time.
The pseudo-code of this paravirtual schedule() function
is detailed in Figure 6.

Function need_to_be_boosted() determines whether
a task deserves to be prioritized or not. All tasks managed
by a real time policy (i.e., SCHED_FIFO, SCHED_RR and
SCHED_DEADLINE) are qualified for being “boosted”, it
corresponds to all the tasks that have the prio field of
the struct task_struct strictly inferior to 100. For
tasks managed by the fair policies (i.e., SCHED_NORMAL
and SCHED_BATCH), a linked list of all tasks to prioritize
is maintained, this is where the two other paravirt functions
are useful: New task and Activate task.

function pv_cosched_ops.schedule(next_task):
static start_time /* Time on which a task

needed a boost */
static boosted = false /* Static variable that

stored the state of the guest */
if need_to_be_boosted(next_task):

start_time = current_time() /* Time is
updated */

if not boosted:
/* Ask for a boost */
kvm_hypercall1(KVM_HC_COSCHED, 1)
boosted = true

else if boosted:
now = current_time()
/* Check if enough time has been spent

on boost */
if (start_time + MIN_BOOST_TIME) <= now:

/* Ask for a deboost */
kvm_hypercall1(KVM_HC_COSCHED, 0)
boosted = false

Figure 6. Pseudo-code of the paravirtual “schedule” function

Each time a new task is created the paravirt func-
tion new_task() adds this task to the prioritized list of
tasks and each task has a counter associated and initial-
ized to a positive value. This paravirt function is called
form wake_up_new_task() in Linux (kernel/sched/-
core.c). Each time a task of this list is scheduled, its counter
is decremented (in the schedule() paravirt function), and
when it reaches 0 the task is removed from the list. The
counter is incremented each time a task is woke-up from
a voluntary sleep, that is to say, a sleep caused by the
task itself, e.g., a wait for a I/O job or a timer, this is
done in paravirt activate_task(), which is called from
activate_task() in Linux (kernel/sched/core.c).

VIII. EXPERIMENTAL RESULTS WITH COORDINATED
SCHEDULING

We repeated the same experiments as in Section V, but with
the co-scheduling mechanism previously described. We report
the results for the CFS scheduler, including latency and start-
up time tests. The testing platform is once again Samsung’s
ARM Chromebook with version 3.17 of the Linux kernel.

A. Latency

The selected application to measure latency while testing
is cyclictest. The minimal prioritization time (minimal boost
time) selected is 500 µs, which according to our tests cor-
responds to the best compromise between performance and
granularity in the coordination mechanism.

The results are compared to the ones reported in Section V,
Figure 1a. The first four curves are kept the same for reference,
and the results corresponding to co-scheduling are curves: 0
guest wl with co-sched, 1 guest wl with co-sched and 2 guest
wl with co-sched. The same cyclictest command line is used
(two times, 100000 measurements, with a default interval of 1
ms).
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The plot in Figure 7 represents the results in CFS, with
and without co-scheduling. As we can see, the curves with
the co-scheduling mechanism (the last three) are now almost
completely horizontal, and the latency increase of the curves
with one and two guest workloads is significantly improved.

Figure 8 represents the histogram of the distribution of the
latency measured by cyclictest for the case where the system
is loaded with two host workloads and one guest workload.
First, we notice than the average latency with coordinated
scheduling is now close to the average latency of a system
without workloads, given the high value for CFS without
coordinated scheduling (1921 µs). The distribution of latency
is also better since there are less overall values in the high
range.
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Figure 9. CFS start-up time results with and without coordinated scheduling
mechanism

B. Startup Time

The start-up time measurements were also tested with the
coordinated scheduling mechanism, where latency measure-
ments are compared to the initial tests found in Figure 4a.

The plot in Figure 9 shows the start-up time results of
xterm, with and without the coordinated scheduling mechanism
in CFS. The minimal prioritization time used is also kept at
500 µs. We can observe a significant improvement since the
curves with the coordinated scheduling mechanism have, a
lower slope, and the difference with the no guest curve is
almost constant.

IX. CONCLUSION AND FUTURE WORKS

In virtualized environments, we highlighted that the task
scheduler in the host, can fail to preserve low latency for the
guest environment, and thus to maintain responsiveness when
the system is loaded with CPU-bound programs in certain
conditions. The behavior of an interactive application inside
a guest will be masked by other processes requiring a lot of
CPU time in the host, and the attempts of the guest scheduler
to enhance the responsiveness of this application may be
ineffective. This issue mostly occurs when the number of CPU-
bound processes is higher than the number of physical cores
in the system.

Furthermore, from this work, it is shown that a coordinated
scheduling mechanism can be used for process scheduling, as
a way to achieve lower latency and high responsiveness in
an over-committed virtual environment. The target platform
used for the implementation and testing of this mechanism
was based on an ARMv7 embedded system with the KVM
hypervisor. Additionally, a new paravirtual interface for the
scheduler was introduced, which makes easier the implemen-
tation and deployment of a coordinated scheduler.

The presented implementation of coordinated scheduling
is still a proof of concept, and further optimization and
regression testing is needed, especially in the area of task
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detection heuristics. Finally, an extension for tests with more
complex scenarios, including more than one virtual machines
and multiple vCPUs, is under way.
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