
ACCSE 2023

The Eighth International Conference on Advances in Computation,

Communications and Services

ISBN: 978-1-68558-076-6

June 26 - 30, 2023

Nice, France

ACCSE 2023 Editors

José Miguel Jimenez, Universitat Politecnica de Valencia, Spain

 1 / 23

ACCSE 2023

Forward

The Eighth International Conference on Advances in Computation, Communications and Services
(ACCSE 2023), held between June 26th and June 30th, 2023, continued a series of events a series of
events targeting the progress made in computation, communication, and services on various areas in
terms of theory, practices, novelty, and impact. Current achievements, potential drawbacks, and
possible solutions are aspects intended to bring together academia and industry players.

The rapid increase in computation power and affordable memory/storage led to advances in almost
all the technology and services domains. The outcome made it possible advances in other emerging
areas, like Internet of Things, Cloud Computing, Data Analytics, Smart Cities, Mobility and Cyber-
Systems, to enumerate just a few of them.

We take here the opportunity to warmly thank all the members of the ACCSE 2023 technical
program committee, as well as all the reviewers. The creation of such a high-quality conference program
would not have been possible without their involvement. We also kindly thank all the authors who
dedicated much of their time and effort to contribute to ACCSE 2023. We truly believe that, thanks to all
these efforts, the final conference program consisted of top-quality contributions. We also thank the
members of the ACCSE 2023 organizing committee for their help in handling the logistics of this event.

We hope that ACCSE 2023 was a successful international forum for the exchange of ideas and results
between academia and industry and for the promotion of progress in the field of computation,
communications, and services.

ACCSE 2023 Chairs

ACCSE 2023 Publicity Chairs

Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain
José Miguel Jiménez, Universitat Politecnica de Valencia, Spain

 2 / 23

ACCSE 2023
Committee

ACCSE 2023 Publicity Chairs

Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain
José Miguel Jiménez, Universitat Politecnica de Valencia, Spain

ACCSE 2023 Technical Program Committee

Kishwar Ahmed, University of South Carolina Beaufort, USA
Muhamad Erza Aminanto, University of Indonesia, Indonesia / NICT, Japan
Chloe Aronoff, University of Michigan, USA
Maxim Bakaev, Novosibirsk State Technical University, Russia
Abdul Basit, State Bank of Pakistan (Central Bank of Pakistan), Pakistan
Carlos Becker Westphall, Federal University of Santa Catarina, Brazil
Ali Behfarnia, University of Tennessee at Martin, USA
Freimut Bodendorf, Institute of Information Systems - University of Erlangen-Nuremberg, Germany
An Braeken, Vrije Universiteit Brussel, Belgium
Erik Buchmann, Leipzig University, Germany
Arun Das, Visa Inc., USA
Erdogan Dogdu, Angelo State University, USA
Mounîm A. El Yacoubi, Telecom SudParis / Institut Polytechnique de Paris, France
Alessandro Farasin, Istituto Superiore Mario Boella (ISMB), Turin, Italy
Barbara Gili Fivela, University of Salento, Italy
Aviel Glam, Technion - Israel Institue of Technology | RAFAEL - Advanced Defence System Ltd., Israel
Josefa Gómez, University of Alcalá, Spain
Robert C. Green II, Bowling Green State University, USA
António Guilherme Correia, INESC TEC / University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
Béat Hirsbrunner, University of Fribourg, Switzerland
Tzung-Pei Hong, National University of Kaohsiung, Taiwan
Mehdi Hosseinzadeh, Washington University in St. Louis, USA
Fu-Hau Hsu, National Central University, Taiwan
Xin Huang, University of Maryland, Baltimore County, USA
Michael Huebner, BTU Cottbus-Senftenberg, Germany
Sergio Ilarri, University of Zaragoza, Spain
Ilias Iliadis, IBM Research - Zurich Laboratory, Switzerland
Kazi Ashik Islam, University of Virginia, USA
Tomayess Issa, Curtin University, Australia
Ajin Joseph, IIT Tirupati, India
Keiichi Kaneko, Tokyo University of Agriculture and Technology, Japan
Yasuko Kawahata, Rikkyo University, Japan
Abbas Khosravi, Deakin University, Australia
Carsten Kleiner, University of Applied Sciences & Arts Hannover, Germany
Yulia Kumar, Kean University, Union, USA
Ratan Lal, Northwest Missouri State University, USA
Yiu-Wing Leung, Hong Kong Baptist University, Kowloon Tong, Hong Kong

 3 / 23

Shigang Li, Hiroshima City University, Japan
Yongbo Li, Facebook Inc., USA
Saïd Mahmoudi, University of Mons, Belgium
Christopher Mansour, Mercyhurst University, Erie, USA
Alfonso Mateos Caballero, Universidad Politécnica de Madrid, Spain
Muhammad Mohsin, Università degli Studi di Genova, Italy
Kaushik Mondal, Indian Institute of Technology Ropar, India
Vinod Muthusamy, IBM T.J. Watson Research Center, USA
Hidemoto Nakada, AIST, Japan
Isabela Neves Ferraz, Universidade de Brasília, Brazil
Isabel Novo Corti, University of A Coruña, Spain
Jong Hyeon Park, Hanyang University, Seoul, Korea
Petra Perner, Institute of Computer Vision and applied Computer Sciences IbaI, Germany
Xose Picatoste, University of A Coruña, Spain
Krzysztof Pietroszek, Institute for IDEAS / American University, USA
Jim Prentzas, Democritus University of Thrace - School of Education Sciences, Greece
Ittipon Rassameeroj, Mahidol University, Thailand
Yenumula B Reddy, Grambling State University, USA
Claudio Rossi, Istituto Superiore Mario Boella (ISMB), Turin, Italy
Maya Sappelli, HAN University of Applied Sciences, Netherlands
Xiaozhe Shao, University of Massachusetts, Amherst, USA
Mukesh Singhal, University of California, Merced, USA
Dinkar Sitaram, Cloud Computing Innovation Council of India, India
Dimitrios Skoutas, University of the Aegean, Greece
Young-Joo Suh, POSTECH, Korea
Abdelhamid Tayebi, University of Alcalá, Spain
David Tormey, Institute of Technology Sligo, Ireland
Emma Wang, North Carolina State University, USA
Yuehua Wang, Texas A&M University-Commerce, USA
John Woodward, Queen Mary University of London, UK
Kesheng Wu, Lawrence Berkeley National Laboratory University of California, USA
Ning Wu, School of Computer Science and Engineering - Beihang University, China
Wen-Chi Yang, NeuHelium Co. Ltd., Shanghai, China
Shibo Yao, New Jersey Institute of Technology, USA
Aleš Zamuda, University of Maribor, Slovenia
Shuai Zhao, Linkedin Company, USA
Ye Zhu, Cleveland State University, USA
Jason Zurawski, Lawrence Berkeley National Laboratory / Energy Sciences Network, USA

 4 / 23

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 5 / 23

Table of Contents

Performance and Scalability of Datastore Technologies for Software Analysis Models
Kanishqk Singh and Robert J. Walker

1

A Color Preserving Down-sampling Approach for 8K to 4K HDR Images
Hamid Reza Tohidypour, Yixiao Wang, Mahsa T. Pourazad, Panos Nasiopoulos, Alan Tong, Mohammadreza
Saed, Mengya Zeng, and Ruixue Luo

11

Review of Basic Research on Factors Media and Word Formation Typologies that Cause Bursts Between Online
Social Networks
Yasuko Kawahata

15

Powered by TCPDF (www.tcpdf.org)

 1 / 1 6 / 23

Performance and Scalability of Datastore Technologies for Software Analysis Models

Kanishqk Singh and Robert J. Walker
Laboratory for Software Modification Research, Department of Computer Science, University of Calgary

Calgary, Canada
e-mail: kanishqk.singh@lsmr.org, walker@lsmr.org

Abstract—Software Development and Analysis Tools (SDATs)
typically contain complex models (software analysis models) that
are expensive to compute, and whose expense grows rapidly
as the size of the software system under analysis increases.
When these models are not stored in a manner that allows
them to be restored after program restart, that expense is not
amortized; re-computation results in undesirable downtime in
the developer’s daily workflow. We investigate options for storing
and restoring software analysis models relative to a realistic set of
use cases for SDATs. Existing work to study and identify optimal
storage technology has been evaluated using datasets either that
consist of random graphs—not simulating the nature of real
world software—or that derive from excessively small software
systems for which recomputing would be feasible. We perform
an experimental study on the performance and scalability of
datastore technologies exemplifying different approaches (flat
files, relational databases, graph databases). We find that SDATs
that are heavily focused on storing/retrieving models would find
PostgreSQL (a relational database approach) to be the better fit.
SDATs that are inclined towards analyzing a limited quantity
of software at a given time but involving high maintenance of
the models in the database would find Neo4j (a graph database
approach) to be the most suitable option.

Keywords—Software analysis models; persistence; datastore;
performance; scalability.

I. INTRODUCTION

Real-world software systems tend to be large; they are
developed over time with changing business and technical
environments by changing groups of people [1]. While in
principle a developer can make all needed changes with
nothing more sophisticated than a text editor, this would place
an excessive burden on them [2][3]. Instead, developers make
use of semi-automated software development and analysis
tools (SDATs) to analyze potential changes, to make changes,
and to catch errors [4][5].

Most SDATs build atop one or more analysis-oriented
models of the software (Software Analysis Models, SAMs).
The space and time costs of building SAMs depend upon the
depth of analysis, the nature of the analysis approach applied,
and the software being analyzed. The larger and more complex
the software, the more costly it is to build the SAM [6], and
even optimized versions of SDATs can require long building
times and large amounts of memory.

Often, the same piece of software needs to be analyzed
anew by the same or different developers because its SAMs
are no longer present in memory. While rebuilding may be
straightforward and a minor inconvenience for small systems,
that is not the case for large and critical ones. Traditional
rebuild mechanisms simply recompute a SAM in its entirety,

which is as costly as building it from scratch. The rebuild cost
can be amortized if there is some means of storing all or part
of the SAMs out of volatile core memory and restoring them
to core memory when needed again, assuming that the cost
of rebuilding would be greater than the cost of storing and
retrieving the models. The validity of this assumption and the
degree of the savings involved will depend on (a) the details of
the analysis model, (b) the size of the analysis model, and (c)
the mechanism of storing and retrieving the models to/from
external memory.

Prior work on such storage mechanisms provides us little
evidence to leverage in deciding the best approach to take.
Typical datasets used to evaluate and compare relational
databases and graph databases are random graphs which do
not accurately represent the nature of real world software.
The comparison of storage mechanism libraries has been
performed on small software systems, where rebuilding SAMs
for them is already feasible; the research results must scale up
to industrial applications for them to be useful [7].

We investigate the performance and scalability of different
technologies of potential use for storing and restoring software
analysis models. Our initial investigations (not described for
lack of space) into technology options pointed us to: (a) flat
files, including simple text files, Comma-Separated Value
(CSV) files [8], and JavaScript Object Notation (JSON) files
[9]; (b) relational database management systems, such as
MySQL, IBM DB2, and PostgreSQL all of which use Struc-
tured Query Language (SQL) for interactions; and (c) non-
relational databases (NoSQL [10]) including graph databases
which store data as graphs, such as Neo4j [11]; and (d) cloud
storage techniques permitting remote storage of data, such as
the Google Cloud Datastore: a cloud-based NoSQL database
which allows the user to interact with the data on the cloud
by SQL-like queries [12].

To reduce the scope of this issue to a more manageable
level, we consider the problem of change propagation, a
technique used to re-establish consistency to a system after
a change has been made within the source code [13], as
supported by the tool ModCP [14]. To investigate the growth
behaviour as well as scalability of dependence graphs used
for change propagation, we generate Barabási–Albert graphs,
which are random, scale-free, and follow the preferential at-
tachment model [15]. Dependency graphs, which lie at the core
of the change propagation model, are a representation of data-
or control-flow between the entities of a software program. We
identify a set of use cases derived from the functionality of
ModCP, a tool for change propagation, requiring the storage

1Copyright (c) IARIA, 2023. ISBN: 978-1-68558-076-6

ACCSE 2023 : The Eighth International Conference on Advances in Computation, Communications and Services

 7 / 23

and/or manipulation of these simulated graphs, and perform
them on a CSV approach implemented in Python (“Python-
CSV”), two relational databases (MySQL and PostgreSQL),
and a graph database (Neo4j).

The remainder of the paper is organized as follows. In
Section II, we describe the design of our experimental study. In
Section III, we provide and analyze the results. In Section IV,
we discuss the remaining issues.

II. EXPERIMENTAL STUDY

We compare the database technologies we have identified as
pertinent for their potential to reduce re-computation costs in
SDATs. The purpose of this study is to address the following
research question:

RQ1: How do different database technologies perform on
realistic operations over realistic software analysis models?

We describe the measures of performance that we utilize
in Section II-A. Section II-B describes the graphs that we
generate as the experimental data for this study. The study
setup is explained in Section II-C.

A. Performance measures

We utilize objective measures to evaluate in this study,
including the complexity of the model graphs (number of
nodes and of edges), the time taken to process a query, and
the space required to store the model data on the candidate
database technology. Subjective measures are also pertinent,
but we do not include them in this paper for lack of space.

B. Experimental dataset

1) Mathematical preliminaries: A graph G is a pair (V,E),
where V is a set of vertices and E is a set of edges, such that
E ⊂ V × V and ∀e ∈ E, e = (vi, vj) ⇒ vi ̸= vj ; we concern
ourselves with only undirected graphs in this study, without
self-loops, and where any pair of nodes possess at most one
edge between them. For convenience, we define n = |V | and
m = |E| relative to the graph in context.

An edge e = (vi, vj) is said to be adjacent to vi and to vj ;
the set of edges adjacent to vertex v is the set of all edges
e ∈ E, e = (vi, vj) such that v = vi or v = vj ; the degree
of vertex v — represented as deg(v) — is the cardinality
of the set of edges adjacent to it. The minimum degree of
a graph G — represented as degmin(G) — is the smallest
degree of all vertices in V ; the maximum degree of a graph
G — represented as degmax(G) — is the largest degree of all
vertices in V . The average degree of a graph G is given by
deg(G) = 1

n

∑n
i=1 deg(vi). The maximum number of edges

in a graph G is given by mmax(G) = 1
2n(n− 1). The density

of a graph G is given by d(G) = m/mmax.
2) Generated graphs: We generated a total of nine graphs

G1–G9, as detailed in Table I. These are scale-free graphs,
generated via the Barabási–Albert model [16] following the
linear preferential attachment rule — also known as “the rich
become richer”; the implementation used to generate them
(in Python) utilizes the NetworX library that supports such

generation [17]. This model represents a random dynamic
graph grown from a small “seed” graph by an indefinitely
repeated addition of a new vertex with m edges. The free
ends of the edges of each vertex are preferentially connected
to vertices that are already rich in connections. The probability
pi of connecting an edge with the vertex vi is proportional
to the local degree of connectivity ki of vi [18][19]: pi =
ki/(

∑n
j=1 kj).

As per Diestel [20], sparse graphs are those whose number
of edges is about linear in their vertices. Similarly, dense
graphs are those in which the number of edges is close to
the maximal number of edges [21]. As shown in Table I, the
column groups 2% Density, 10% Density, and 25% Density
represent the three categories we used based on the density
of the graph. The columns G1 through G9 refer to the
individually generated graphs, where G1 to G3 fall under 2%
density, G4 to G6 fall under 10% density, and G7 to G9 fall
under 25% density. The rows n and m provide the number
of nodes and edges in the graphs, respectively; mmax(G) is
the maximum number of edges that could be present in this
graph; d(G) provides the actual density of the graph to three
decimal points (this can vary from the exact target density
of the category because of randomness in the generation
algorithm); degmin(G) is the minimum node degree in the
graph; degmax(G) is the maximum node degree in the graph;
and deg(G) provides the average of all the nodes’ degree
in the graph. The rows nodes.csv and edges.csv specify the
size of the files recording the graphs, in bytes. One common
characteristic among the nine graphs is that none of them is a
complete graph, which closely represents real-world scale-free
graphs exhibiting a “long tail” [22].

We store graphs as adjacency lists because of better space
complexity, better growth characteristics with sparse graphs,
faster access, and size limitations in various database tech-
nologies, as compared to adjacency matrices.

C. Setup for evaluation

In this section, we explain in detail the setup for our
evaluation.

1) Graph creation: In our experiment, we simulate the
creation of the models for an SDAT by preparing a scale-
free graph using the Barabási–Albert model. The creation of
the benchmark model datasets and the underlying graphs is
done by using the NetworkX library in Python [23]. Once all
the graphs were generated they were then stored in two files:
nodes.csv and edges.csv (not shown).

2) Database technologies used in the experiment: We sup-
port semi-structured databases by using the NetworkX library
in Python 3.6.2 and Comma-Separated Value (CSV) files. For
relational database technology, we use MySQL Workbench
(Version 8.0.22, Community Edition) and pgAdmin4 (v5.3)
as a development platform for PostgreSQL which is a well
known advanced object relational database technology. For
non-relational database technology, we use Neo4j (v4.2) which
is a graph database platform. The rest of this section describes
the setup of the database technologies used.

2Copyright (c) IARIA, 2023. ISBN: 978-1-68558-076-6

ACCSE 2023 : The Eighth International Conference on Advances in Computation, Communications and Services

 8 / 23

TABLE I. UTILIZED SCALE-FREE GRAPHS GENERATED VIA THE BARABÁSI–ALBERT MODEL.

2% Density 10% Density 25% Density

G1 G2 G3 G4 G5 G6 G7 G8 G9

n 100 1,000 10,000 100 1,000 10,000 100 1,000 10,000
m 99 9,900 999,799 475 49,296 4,992,271 1,204 124,684 12,496,704
mmax(G) 4,950 499,500 49,995,000 4,950 499,500 49,995,000 4,950 499,500 49,995,000
d(G) 0.020 0.020 0.020 0.096 0.099 0.099 0.243 0.250 0.250
degmin(G) 1 10 101 3 52 527 14 146 1,464
degmax(G) 14 156 1,651 42 391 3,706 64 621 6,120
deg(G) 1.98 19.80 199.96 9.50 98.59 998.45 24.08 249.36 2,499.34
nodes.csv 291 3,891 48,891 291 3,891 48,891 291 3,891 48,891
edges.csv 634 82,465 10,330,489 3,119 420,815 52,603,962 8,209 1,096,976 134,950,863

a) Python-CSV: We used the NetworkX library to create
artificial datasets and the csv library to maintain the datasets
with the changes implemented. We iterated a set of statements
to implement each use case and restored the dataset again
back to the initial state within the loop once the use case
was complete. The execution time was captured for only those
statements which were responsible to implement the use case.

b) MySQL Workbench: To import our database, we used
the load data infile method which reads from text files at a
very fast speed. For the dataset containing nodes, we set the
node id as the primary key to avoid duplicate entries of the
same node again. The datasets were stored locally on the
system and “-secure-file-private” option was disabled during
the experiment to provide access to documents from the whole
file system. MySQL workbench uses SQL language to define
and manipulate data.

c) Neo4j: For small datasets, the direct import function
available on the user interface of Neo4j can be used to import
data into the database. For medium sized datasets, up to import
to the database. For huge datasets, batch import command is
used. Since our datasets fall in the range of medium-sized
datasets, we used the load csv method to import the artificial
datasets into the system. We chose to commit periodically after
every 10,000 entries in order to avoid memory overflow. For
optimization, we increased the page cache size and kept the
maximum memory heap size to fifty percent of the total RAM
minus the heap size. We constructed the dependency graph in
a similar manner as the social media friendship graph, since
both graphs exhibit long tail behaviour. We utilized the node
name as an index in the database to aid fast search. We also
opted for “merge” rather than “create” to avoid redundancy in
the node list. Neo4j uses the Cypher query language to define
and manipulate graph and data.

d) pgAdmin 4: We set the node id as the primary key and
the connection’s source and target ids as foreign keys. We also
made use of the update cascade and delete cascade methods
in the edges table in order to automate a few processes, such
as renaming a node in the node; subsequently, the database
would alter the entries in the edges database without manual
intervention. This has also helped us to prevent adding new
connections for the nodes that did not exist. To import the
dataset to the database, we used the copy method.

create table nodes(
id INTEGER PRIMARY KEY

);

CREATE TABLE edges(
a INTEGER NOT NULL references nodes(id)

ON update cascade on delete cascade,
b INTEGER NOT NULL references nodes(id)

ON update cascade on delete cascade,
PRIMARY KEY(a,b)

);

create index a_idx on edges(a);
create index b_idx on edges(b);

Figure 1. Defining schemas and creating tables in PostgreSQL and
MySQL.

CREATE TABLE nodes (
id INTEGER PRIMARY KEY,
name VARCHAR(10) NOT NULL

);

CREATE TABLE edges (
a INTEGER NOT NULL REFERENCES nodes(id)

ON UPDATE CASCADE ON DELETE CASCADE,
b INTEGER NOT NULL REFERENCES nodes(id)

ON UPDATE CASCADE ON DELETE CASCADE,
PRIMARY KEY (a, b)

);

CREATE INDEX a_idx ON edges (a);
CREATE INDEX b_idx ON edges (b);

Figure 2. Creating tables to store the graphs in PostgreSQL.

3) Defining schemas for MySQL and PostgreSQL: Figure 1
shows the setup required for the relational database technolo-
gies before we store the data in it. The command create table
was used to create the table nodes, where id is the primary
key. Similarly, we created the to and from columns for the
table edges, referencing the primary key of the nodes table.
Lastly, we used create index to add indices on the to and from
columns of table edges.

4) Use cases realized via datastore technologies: We de-
scribe the use cases on which we evaluate the technologies.

UC1: Create or store a graph. We used SQL to store the

3Copyright (c) IARIA, 2023. ISBN: 978-1-68558-076-6

ACCSE 2023 : The Eighth International Conference on Advances in Computation, Communications and Services

 9 / 23

COPY edges (a, b)
FROM '/Applications/friendship.csv' DELIMITER ','

CSV header;

Figure 3. UC1 via PostgreSQL.

load data infile "/Applications/edges_100.csv"
into table edges fields terminated by ',' lines
terminated by '\n' IGNORE 1 LINES;

Figure 4. UC1 via MySQL.

graphs in MySQL and PostgreSQL, and we used Cypher to
store them in Neo4j (they were already in the appropriate
format for Python-CSV, so no explicit store operation was
needed). We implemented all the use cases using Python to
represent semi structured database creation and manipulation.
For relational database technology, we first defined the schema,
e.g., nodes and edges. Figure 2 contains the SQL query to
define the schema of the database in PostgreSQL. As shown
in Figure 3, once the relations were defined, we loaded our
graphs into them, via COPY in PostgreSQL. For MySQL,
Figure 4 shows how we used load data infile to store the graphs.
Similarly for Neo4j, Figure 5 shows the loading of graphs
using CREATE to create the nodes. Unlike with relational
databases, in graph databases like Neo4j, the schema of a
graph (or relation) does not need to be explicitly defined prior
to storing the data. The relationships (edges) are created along
the way while loading data from .csv files.

UC2: Read/access a graph. Once the database was created,
we retrieved the entries to simulate the process of a data
request from an SDAT to perform a user-requested analysis.
For Python-CSV, we loaded the dataset from a CSV file to a
data structure in memory as shown in Figure 6. For MySQL
and Neo4j, all the rows of the nodes and edges tables were
loaded into memory. Figure 7 shows how the nodes and
relationships were typically loaded in Neo4j by only using
the Match clause (the data loaded in the memory was not
returned/displayed on the Neo4j browser, i.e., the “return”
clause was not used).

UC3–UC6: Use cases UC3–UC6 simulate the modification
of the model graph: adding a new node (UC3), as shown in
Figure 8 for MySQL/PostgreSQL and in Figure 9 for Neo4j;
adding a new edge (UC4), as shown in Figure 10 for MySQL/
PostgreSQL and in Figure 11 for Neo4j; renaming a node
(UC5), as shown in Figure 12 for MySQL/PostgreSQL and in
Figure 13 for Neo4j; and modifying an edge (UC6), as shown
in Figure 14 (MySQL/PostgreSQL) and in Figure 15 (Neo4j).

LOAD CSV WITH HEADERS FROM 'file:///people.csv' AS line
WITH line

CREATE (:Person {id:line.id, name:line.name})
CREATE INDEX ON :Person(name);
USING PERIODIC COMMIT

Figure 5. UC1 via Neo4j.

with open('nodes.csv', 'r', newline='') as csvfile:
node_data = csv.reader(csvfile, delimiter='\n', quotechar='|',

quoting=csv.QUOTE_MINIMAL)
nodes=list(node_data)

with open('edges.csv', 'r', newline='') as csvfile:
edge_data = csv.reader(csvfile, delimiter=',', quotechar='|',

quoting=csv.QUOTE_MINIMAL)
edges=edge_data

Figure 6. UC2 via Python-CSV.

Match (n)−[r]−>(m)

Figure 7. UC2 via Neo4j.

INSERT INTO nodes (id, name)
VALUES (1, '1');

Figure 8. UC3 via MySQL and PostgreSQL.

MERGE (:GRAPH { id: '23',name: '23' })

Figure 9. UC3 via Neo4j.

INSERT INTO edges (a,b)
VALUES (2, 7);

Figure 10. UC4 via MySQL and PostgreSQL.

MATCH (to:GRAPH {name: '23'})
MATCH (from:GRAPH {name: '14'})
MERGE (to)−[:connects]−>(from)

Figure 11. UC4 via Neo4j.

UPDATE nodes SET id=6060 WHERE id=2;
UPDATE edges SET source=6060 WHERE source=2
UPDATE edges SET target=6060 WHERE target=2

Figure 12. UC5 via MySQL and PostgreSQL.

MATCH (n:GRAPH {id: "1"}) SET n.name="new_name"

Figure 13. UC5 via Neo4j.

DELETE FROM edges
WHERE source = 2 and target = 3;
INSERT INTO edges (source, target)
VALUES (2, 42);

Figure 14. UC6 via MySQL and PostgreSQL.

MATCH (s:GRAPH { name: '13' })−[r:connects]−>(t:GRAPH{
name: '19'})

DELETE r
MATCH (source:GRAPH {name: '23'})
MATCH (target:GRAPH {name: '14'})
MERGE (source)−[:connects]−>(target)

Figure 15. UC6 via Neo4j.

4Copyright (c) IARIA, 2023. ISBN: 978-1-68558-076-6

ACCSE 2023 : The Eighth International Conference on Advances in Computation, Communications and Services

 10 / 23

MATCH (n:GRAPH) where n.name='3'
OPTIONAL MATCH (n)−[r]−()
DELETE n,r

Figure 16. UC7 via MySQL and PostgreSQL.

MATCH (n:GRAPH) where n.name='3'
OPTIONAL MATCH (n)−[r]−()
DELETE n,r

Figure 17. UC7 via Neo4j.

UC7–UC8: The remaining use cases simulate the deletion
process for the model graph and its elements: deleting a
node (UC7), as shown in Figures 16, for MySQL/PostgreSQL,
and 17 for Neo4j; and deleting an edge (UC8), as shown in
Figure 18 for MySQL/PostgeSQL and in Figure 19 for Neo4j.

5) Time measurement: The ModCP prototype tool is a
Windows Forms application and thus, it uses a single-threaded
apartment model [24]. We specified a single processor to run
the threads of this process to improve the performance by
reducing the number of times the processor cache is reloaded
[25]. As shown in Figure 20, ProcessorAffinity was used to
associate the threads of the process to a single processor. Then,
we set the overall priority of the above associated process to
high by using ProcessPriorityClass.High.

Each of the use cases were implemented on the candidate
database technologies ten times, and the time taken to process
the query were recorded from the user interface. The average
of query processing time to implement a use-case taken by
the each database was recorded to evaluate the database
technologies. Similarly, the space measurement was noted
from the user interface of the database technology.

6) System information: The system used for performing
the experiment runs Microsoft Windows 10 Enterprise. It
possesses an Intel Core i7-7700 CPU @ 3.60 GHz, 3600 MHz,
4 cores, 8 logical processors, and 8 GB of RAM. During the
experiment, no user programs other than the test programs
were running. A basic internet connection was on but not used

DELETE FROM edges
WHERE source = 2 and target = 3;

Figure 18. UC8 via MySQL and PostgreSQL.

MATCH (n:GRAPH {name: '13'})−[r:connects]−>(n:GRAPH{
name: '19'})

DELETE r

Figure 19. UC8 via Neo4j.

var testProcess = Process.GetCurrentProcess();
testProcess.ProcessorAffinity = (System.IntPtr)1;
testProcess.PriorityClass = ProcessPriorityClass.High;

Figure 20. Setting the processor priority and affinity for running the
experiment.

during the experiment.

III. RESULTS AND ANALYSIS

We describe and analyze the results from our objective and
subjective evaluation for the databases. Results are provided
in terms of the measures used for each of the evaluations.

The complete results of the study are shown in Table II.
Log–log plots of the results are available online [26]; we
provide one sample in Figure 21, for UC2. We examine the
results for individual use cases in subsequent subsections.

In all the plots we present for this comparative study:
1) we sort the data according to the number of edges in

the graphs, resulting in the following sequence: G1, G4,
G7, G2, G5, G8, G3, G6, and G9;

2) we plot edge count on the x-axis and time taken in
milliseconds on the y-axis;

3) we plot the data on log–log scales because the core
results grow rapidly, otherwise obscuring their trends;
and,

4) we prioritize the number of edges over the number of
nodes to compare the database technologies, as number
of edges tends towards being quadratic in the number
of nodes, hence dominating.

Furthermore, we attempt to fit a linear model log y =
p log x+ k (base e) to the log–log data, sorted by edge count,
for each technology/use case combination. Because the lower
ends of this data involve numbers of edges that are linear in
the number of nodes, we consider only the uppermost six data
points for each in fitting the linear model. We note that such a
procedure has potential statistical imprecision, but suffices for
the trend comparison between technologies in which we are
interested. We report values for the coefficient of determination
R2 ∈ [0, 1] (the proportion of the variance in the dependent
variable that is predictable from the independent variable), but
we acknowledge that this gives only some information about
the goodness of fit of the model: low values can occur for
well-fitting models (e.g., when the fitted line is nearly parallel
with the x-axis) and high values can occur even when the fit
is not obviously good. We also consider the visual fit in cases
where our analyses depend on the evaluation of the model.

1) Examination of the use cases: We examine the results
on the basis of the use cases.

UC1: Create or store a graph. UC1.png [26] shows the
time taken by the individual database technologies to store
the artificially generated graph; Python-CSV does not require
any time to store the model as the dataset is already in CSV
format, so its data does not appear on the plot (the logarithm
of 0 is undefined). UC1regression.png [26] shows the linear
regressions on the larger graphs.

We see that MySQL and PostgreSQL are roughly collinear
(their linear regressions place their slopes at 0.95 and 0.93
with constant -3.66 and -3.50, respectively). Neo4j clearly has
higher overhead (linear regression constant is 1.65) but its
computation time appears to grow slightly more slowly than
for the SQL variants (linear regression slope is only 0.72):

5Copyright (c) IARIA, 2023. ISBN: 978-1-68558-076-6

ACCSE 2023 : The Eighth International Conference on Advances in Computation, Communications and Services

 11 / 23

TABLE II. TIME TAKEN TO PROCESS THE USE CASES (IN MILLISECONDS).

Dens. Gr. Technology UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8

2%

G1

Python-CSV 0 1 1 1 2 2 3 2
MySQL 5 2 153 156 155 155 156 154

Neo4j 665 18 3 3 6 7 11 2
PostgreSQL 187 30 61 66 63 63 66 65

G2

Python-CSV 0 11 3 8 41 13 39 12
MySQL 188 13 151 154 152 158 155 155

Neo4j 6,852 223 3 3 11 6 13 3
PostgreSQL 236 157 63 67 62 63 64 66

G3

Python-CSV 0 1,923 325 19 2,459 1,694 2,281 1,659
MySQL 14,763 965 152 153 152 156 155 157

Neo4j 47,970 1,753 4 3 14 7 12 3
PostgreSQL 12,989 1,586 63 66 65 67 65 66

10%

G4

Python-CSV 0 2 2 4 3 3 4 3
MySQL 27 2 157 153 152 156 155 156

Neo4j 2,172 157 3 3 8 7 13 2
PostgreSQL 214 138 62 65 62 65 64 65

G5

Python-CSV 0 86 3 153 103 68 70 72
MySQL 694 57 155 154 158 157 157 159

Neo4j 8,936 480 4 4 9 7 13 3
PostgreSQL 519 387 61 66 64 67 66 66

G6

Python-CSV 0 9,327 358 3,093 7,231 7,295 8,640 7,411
MySQL 74,971 4,294 158 153 152 157 154 159

Neo4j 357,118 2,935 3 4 13 6 15 4
PostgreSQL 64,322 1,822 63 66 66 64 63 66

25%

G7

Python-CSV 0 4 2 3 3 4 3 3
MySQL 481 11 153 155 157 156 156 155

Neo4j 2,328 396 3 4 8 7 12 3
PostgreSQL 498 284 60 65 63 65 64 65

G8

Python-CSV 0 163 7 83 281 170 174 89
MySQL 1,572 52 153 155 157 156 155 157

Neo4j 25,739 1,067 3 4 12 8 14 3
PostgreSQL 1,325 819 59 66 64 65 66 64

G9

Python-CSV 0 14,216 363 8,954 26,227 22,683 19,593 20,279
MySQL 130,136 21,980 154 155 161 157 155 158

Neo4j 1,262,200 8,139 4 4 15 7 13 4
PostgreSQL 121,820 5,128 64 65 65 66 64 67

extrapolating the fitted models, we would expect the time for
Neo4j and PostgreSQL to be equal when the edge count be
in the vicinity of 4.5×1010. Obviously, this assumes that the
growth characteristics can be extrapolated in this manner; but,
aside from the dubiousness of this extrapolation (the fitted
model for Neo4j has an R2 of only 0.73 and visually is not
a great fit), this intersection point would only occur for truly
enormous graphs, far beyond any we have encountered or that
are likely in practice, even in extreme situations. Python-CSV
outperforms all other competition, but this is a local anomaly
as we will see examining the results for the other use cases.

UC2: Read/access a graph. UC2.png [26] (also shown in
Figure 21) shows the time taken to retrieve the graphs from the
database into memory. Both MySQL and Python-CSV were
inexpensive to retrieve the model for graphs with relatively
few edges when compared to PostgreSQL and Neo4j; however,
the costs for all the technologies remained low (≤1,067 ms
for Neo4j) even in the worst case.

From UC2regression.png [26] we can see that the steeper
slopes of MySQL and Python-CSV lead to a crossover point at
around 106 edges when these two technologies become more

expensive to use than Neo4j and PostgreSQL. We found that
MySQL and Python-CSV have approximately the same cost
(their slopes are 1.02 and 1.03 with constant -6.78 and -7.34,
respectively). Similarly, Neo4j and PostgreSQL exhibit similar
growth patterns (their slopes are 0.45 and 0.43 with constant
1.31 and 1.29, respectively). Based on these observations, the
best database technology for smaller graphs is either MySQL
or Python-CSV, with PostgreSQL or Neo4j being preferable
for larger graphs (above 106 edges), for UC2.

UC3: Update a graph; Create a node with no edges.
UC3.png [26] shows the performance comparison of the candi-
date database technologies to create a new node in an existing
graph. UC3regression.png [26] shows the linear regressions on
the larger graphs.

We see that Python-CSV and Neo4j have the lowest costs
cost for G2, but Python-CSV then scales poorly, leading to
the highest cost for G9 (Python-CSV shows a high linear
regression slope of 1.38). We also found that MySQL, Neo4j,
and PostgreSQL take essentially constant time to realize the
use case (their linear regressions place their slopes at 0.01,
0.02, and 0.01, respectively).

6Copyright (c) IARIA, 2023. ISBN: 978-1-68558-076-6

ACCSE 2023 : The Eighth International Conference on Advances in Computation, Communications and Services

 12 / 23

Figure 21. Edge count versus computation time for UC2.

Neo4j is the best option for UC3 as the base cost to create
a node is the cheapest and remains constant for larger graphs.
The slightly higher but constant cost for PostgreSQL makes a
viable alternative as well, relative to UC3.

UC4: Update a graph; Create an edge between existing
nodes. UC4.png [26] shows the time taken by the individual
database technologies to create edges in the edge relations (for
relational databases) as well as in the link database (for non-
relational databases). UC4regression.png [26] shows the linear
regressions on the larger graphs. We see that Python-CSV has
near linear growth with respect to edge count (slope is 0.81)
and so it is not competitive with the alternatives. MySQL and
PostgreSQL take roughly the same time (slopes are 0.01 and
0.01, with constants 5.04 and 4.23, respectively). Neo4j also
shows essentially constant performance (slope is 0.02) with
lower fixed cost (constant is 1.02). Relative to UC4, MySQL,
PostgreSQL, and Neo4j are all viable candidates.

UC5: Update a graph; Rename a node. UC5.png [26] shows
the time taken by database technologies to rename the nodes
in the node and edge relations (for relational databases) as
well as in the link database (for non-relational databases).
UC5regression.png [26] shows the linear regressions on the
larger graphs.

We see that Python-CSV involves the highest query pro-
cessing times (slope is 0.91 with constant -4.95). In contrast,
MySQL, Neo4j and PostgreSQL show essentially constant
performance (slopes are 0.01, 0.05, and 0.01, respectively)
although the fixed cost is somewhat higher for MySQL (con-
stants are 5.02, 1.82, and 4.1, respectively).

UC6: Update a graph; Change source and target nodes of
an edge. UC6.png [26] shows the time taken by the individual
database technologies to update a graph stored therein by
modifying an existing edge. This involves changing the source
and target node of an edge in the database. UC6regression.png
[26] visualizes the linear regressions.

Python-CSV shows linear growth (slope is 1.04) making it
unsuitable for larger graphs. We observe that both MySQL and
PostgreSQL require constant processing time (slope is 0.01 for
both). Neo4j has lower fixed cost than PostgreSQL (constants
are 1.91 and 4.15, respectively).

TABLE III. SPACE REQUIREMENTS (IN BYTES) FOR
DATABASE TECHNOLOGIES, RELATIVE TO G9.

Technology Space

MySQL 514,234,210
PostgreSQL 534,520,112
Neo4j 583,381,354

UC7: Delete a graph; Delete a node and its corresponding
edges. UC7.png [26] shows the time taken by the individual
database technologies to delete a node. We performed the
operation by first deleting the node and then deleting the edges
related to it. UC7regression.png [26] visualizes the linear
regressions.

The performance of Python-CSV is competitive only for
the smaller graphs; its linear growth (slope is 0.94) excludes
it from further consideration with respect to UC7. MySQL,
Neo4j and PostgreSQL provide essentially constant perfor-
mance (slopes are 0.01, 0.02 and 0.01, respectively). However,
the fixed cost for Neo4j is better than for PostgreSQL or
MySQL (constants are 5.06, 2.29, and 4.21, respectively).

UC8: Delete a graph; Delete a specific edge. UC8.png [26]
shows the time taken by the individual database technologies
to delete a specific edge. This involved changing the source
and target node of an edge in the database. UC8regression.png
[26] visualizes the linear regressions.

Python-CSV displays near-linear growth in performance
(slope is 1.05) and is competitive only for the smallest graphs.
MySQL, Neo4j, and PostgreSQL display essentially constant
performance (slopes are 0.01, 0.04, and 0.01, respectively),
although the fixed cost of Neo4j is lower (constants are 5.03,
0.62 and 4.16, respectively).

IV. DISCUSSION

We discuss remaining issues relative to this study.

A. Space and Energy

We did not include the space taken by the graph in the
database technology as an evaluation measure because the
difference between them was trivial, as illustrated in Table III
when measured for G9. For Python-CSV, the size of the dataset
is identical to the size of the database. For PostgreSQL and
MySQL, the database size was almost identical. For Neo4j,
the size of the database was slightly higher than for MySQL
and PostgreSQL, but it was not significant enough to be used
as an indicator of definite better performance.

Furthermore, energy consumption of alternative approaches
is another factor that we have not studied here, of growing
concern in the field [e.g., 27].

TRUNCATE TABLE edges;

Figure 22. Deleting the graph via MySQL and PostgreSQL.

7Copyright (c) IARIA, 2023. ISBN: 978-1-68558-076-6

ACCSE 2023 : The Eighth International Conference on Advances in Computation, Communications and Services

 13 / 23

B. Deleting the graph

As shown in Figure 22, Truncate was used for clearing
the graph data while maintaining the relation schema for
future storage of the graphs. Figure 23 shows the process
of deleting all the nodes and relationships from the database
while maintaining the labels used, such as “GRAPH”.

C. Other datastore technologies

When we were selecting the candidate datastore technolo-
gies for our study, we focused on picking one technology from
relational databases and one from non-relational databases.
As for relational databases, we picked MySQL as being the
most popular free RDBMS. We also included PostgreSQL, an
object-based RDBMS, in our study as it is widely known as
“the world’s most advanced RDBMS database,” and on the
fact that not many comparative studies have been conducted
to compare it with MySQL. The existing studies focus on the
difference between the features they offer instead of on their
actual performance differences [28]. We picked up Neo4j as it
is a graph database and made specifically to deal with graphs.

While we carefully designed the study plan, we recognize
that other datastore options could have been valid. For non-
relational databases, MongoDB, a popular document-based
NoSQL database, could also have been a better alternative
based on its ability to support huge volumes of both data and
traffic. For relational databases, Oracle could have been a good
alternative choice. In the end, it was not feasible to try all
alternatives and so a selection was needed.

D. Threats to validity

In this section we discuss the threats to validity of our work.
1) Internal Validity: Changes in the variable under ob-

servation could very well be caused by additional variables
or variations in such variables, which may be related to the
manipulated variable but not explicitly modelled [29].

a) Selection Bias: We had to choose a graph generation
model. We selected the Barabási–Albert model as a repre-
sentation of random scale-free graphs. Other variations of
growth network model can be found in Buckley and Osthus
[30], which presents a directed preferential attachment model.
Dorogovtsev et al. [31] and Drinea et al. [32] introduce
a variation on the Barabási–Albert model. There also exist
other models, such as the “copying model” [33]; Erdős and
Rényi [34] present a random graph model which is much
smaller than many real-world applications. We concluded that
due to having been extensively studied from heuristic and
experimental points of view made Barabási–Albert model a
reliable choice to generate the datasets.

2) External Validity: Threats to external validity are condi-
tions that limit the ability to generalize the study results and
we explain these threats in this section.

MATCH (n)
DETACH DELETE n

Figure 23. Deleting the graph via Neo4j.

a) Selection of Subjects: There are four major kinds of
non-relational database: key–value store [35], wide-column
store [36], documents store [37], and graph store [38]. How-
ever, we did not evaluate all four kinds in our work. Our goal
was to evaluate database technologies to find if any would be
a good fit to implement offline storage mechanism in SDATs.
We evaluated relational and non-relational databases and the
study plan was inline with other existing work and therefore
we can be confident in applying the results of our study to
other SDATs without loss of generality [39]–[41].

b) Settings: Threats to external validity may also arise
from the environment in which the experiments are conducted.
The extent to which the results of an experiment can be
generalized from the set of environmental conditions created
by the researcher to other environmental conditions can greatly
impact the generalizability of the results. The details of the
windows machine used to conduct this study has been provided
in Section II-C6. We evaluated this study, as well as the latter
studies, on the same Windows machine.

3) Conclusion Validity: Every empirical study establishes
relationships between the treatment, represented by the in-
dependent variables, and the outcomes, represented by the
dependent variables [42]. Conclusion validity refers to the
belief in the ability to derive conclusions from the relationships
between the independent variables and the dependent variable.

a) Reliability of Measures: Reliability depends on a
variety of factors, including, but not limited to, poor ques-
tion wording, bad instrumentation, and subjective measures.
Threats to conclusion validity may be caused by these factors.
In our work, we used objective as well as subjective measures
to evaluate the storage mechanisms. However, subjective mea-
sures may be considered to be unreliable as it requires the
judgment of the researcher [43].

The objective measures consist of time and space taken to
process a use case. Our results for this study uses average
of all the runs; the actual processing time may be lower or
higher than the average run time. The subjective measures
used to evaluate the storage mechanisms may not accurately
represent the measures being used universally in industrial
practice [44]. However, factors such as software productivity,
development technology, and interaction with the customer
may vary substantially across different teams of developers
even if they were working on building the same product.
In fact, making software engineering processes, projects, and
products reproducible is a challenge [45]. Therefore, when
using a technology that may or may not be new to the people
who have to work with it, it is important to consider the
human factor and not just the objective data. Therefore, we
believe that the subjective measures that we used enhance the
reliability of our results more than any concerns about validity
that may arise because of these measures.

V. CONCLUSION AND FUTURE WORK

As our results indicate, we do not see any of the technolo-
gies coming out on top for all the use cases. Instead, we must
focus on the results from individual use cases in combination

8Copyright (c) IARIA, 2023. ISBN: 978-1-68558-076-6

ACCSE 2023 : The Eighth International Conference on Advances in Computation, Communications and Services

 14 / 23

with the results from our subjective evaluation to judge each
candidate database technology.

Python-CSV is clearly the best technology for UC1 in all
respects because it will necessarily always require zero time
to perform. For UC2–UC8, we see that Python-CSV has poor
scalability both in terms of nodes and edges, as compared to
its best competitors. We therefore abandon Python-CSV from
further consideration.

MySQL and PostgreSQL have comparable performance;
however, PostgreSQL clearly outperforms MySQL in main-
taining the graphs. MySQL is best in storing smaller graphs;
PostgreSQL scales better in storing graphs and outperforms
MySQL for larger datasets.

As for Neo4j, it performed poorly in retrieving the model
and had the worst performance of all technologies in storing
the model. Nonetheless, we did find that both Neo4j and
PostgreSQL exhibit near constant performance and excellent
scalability for UC3–UC8. The base processing time of Neo4j
tends to be less than PostgreSQL, which is more desirable for
any use case. Thus, Neo4j is the better database technology
to maintain existing data in the database. It is also the newest
technology among the considered candidate database technolo-
gies which offers greater flexibility but weaker security and
less level of support.

Based on our study, SDATs which have a higher demand
to store/retrieve new models would find PostgreSQL to be
the better fit. Whereas SDATs which are inclined towards
analyzing a limited quantity of software at a given time and
involving high maintenance of the models in the database
would find Neo4j as the most suitable option.

We thus conclude that PostgreSQL and Neo4j are the most
likely candidates for an SDAT for which scalability and the
full slate of our use cases are desirable. However, it remains to
be seen whether this conclusion is maintained when the costs
accruing from a database connector are factored in.

We note that, to utilize any of these database technologies, it
is necessary to also use a database connector that provides pro-
grammatic access to the core-memory representations. While it
is easy to assume that the cost of this access be negligible, the
reality is likely different. It is also possible that a far simpler
approach, such as object serialization, could suffice to provide
reliable persistence for an SDAT. Both these points require
further investigation to address.

ACKNOWLEDGMENT

This work was supported in part by a Collaborative Re-
search and Development Grant from the Natural Sciences and
Engineering Research Council of Canada in collaboration with
Find it EZ Software Corporation.

REFERENCES

[1] A. M. Davis, E. H. Bersoff, and E. R. Comer, “A strategy for
comparing alternative software development life cycle models,”
IEEE Transactions on Software Engineering, vol. 14, no. 10,
pp. 1453–1461, 1988.

[2] S. Horwitz, “Identifying the semantic and textual differences
between two versions of a program,” in Proceedings of the ACM

SIGPLAN Conference on Programming Language Design and
Implementation, 1990, pp. 234–245.

[3] W. E. Riddle and R. E. Fairley, Software Development Tools.
Berlin: Springer, 2012.

[4] N. E. Fenton and M. Neil, “Software metrics: A roadmap,” in
Proceedings of the Future of Software Engineering, 2000, pp.
357–370.

[5] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why
don’t software developers use static analysis tools to find bugs?”
in Proceedings of the International Conference on Software
Engineering, 2013, pp. 672–681.

[6] R. Dyer, “Bringing ultra-large-scale software repository mining
to the masses with Boa,” Ph.D. dissertation, Iowa State Uni-
versity, 2013.

[7] J. A. McDermid and K. H. Bennett, “Software engineering
research: A critical appraisal,” IEE Proceedings—Software, vol.
146, no. 4, pp. 179–186, 1999.

[8] Y. Shafranovich, Common format and MIME type for Comma-
Separated Values (CSV) files, RFC 4180, 2005.

[9] D. Crockford, The application/json media type for JavaScript
Object Notation (JSON), RFC 4627, 2006.

[10] J. Han, E. Haihong, G. Le, and J. Du, “Survey on NoSQL
database,” in Proceedings of the International Conference on
Pervasive Computing and Applications. IEEE, 2011, pp. 363–
366.

[11] Neo4j, Inc., “Neo4j support.” [Online]. Available from: https:
//neo4j.com/docs/. [retrieved: May 2023].

[12] Google, Inc., “Datastore.” [Online]. Available from: https://cl
oud.google.com/datastore. [retrieved: May 2023].

[13] J. Han, “Supporting impact analysis and change propagation
in software engineering environments,” in Proceedings of the
IEEE International Workshop on Software Technology and
Engineering Practice Incorporating Computer Aided Software
Engineering, 1997, pp. 172–182.

[14] H. Men, “Fast and scalable change propagation through
context-insensitive slicing,” Ph.D. dissertation, University of
Calgary, 2018.

[15] I. J. Farkas, I. Derényi, A.-L. Barabási, and T. Vicsek, “Spectra
of “real-world” graphs: Beyond the semicircle law,” Physical
Review E, vol. 64, no. 2, pp. 026 704–1–026 704–12, 2001.

[16] A.-L. Barabási and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[17] P. Wan, T. Wang, R. A. Davis, and S. I. Resnick, “Fitting
the linear preferential attachment model,” Electronic Journal
of Statistics, vol. 11, no. 2, pp. 3738–3780, 2017.

[18] A. Hagberg, P. Swart, and D. Schult, “Exploring network struc-
ture, dynamics, and function using NetworkX,” Los Alamos
National Laboratory, Tech. Rep., 2008.

[19] D. A. Schult and P. Swart, “Exploring network structure,
dynamics, and function using NetworkX,” in Proceedings of
the Python in Science Conference, vol. 2008, 2008, pp. 11–15.
[Online]. Available from: http://conference.scipy.org/proceedin
gs/scipy2008/paper_2/.

[20] R. Diestel, Graph Theory. Berlin: Springer, 2017.
[21] P. E. Black, Dictionary of algorithms and data structures,

National Institute of Standards and Technology, 1998. [Online].
Available from: https://xlinux.nist.gov/dads/.

[22] P. Louridas, D. Spinellis, and V. Vlachos, “Power laws in
software,” ACM Transactions on Software Engineering and
Methodology, vol. 18, no. 1, pp. 2:1–2:26, Oct. 2008.

[23] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring

9Copyright (c) IARIA, 2023. ISBN: 978-1-68558-076-6

ACCSE 2023 : The Eighth International Conference on Advances in Computation, Communications and Services

 15 / 23

network structure, dynamics, and function using NetworkX,”
in Proceedings of the Python in Science Conference, G. Varo-
quaux, T. Vaught, and J. Millman, Eds., 2008, pp. 11–15,
https://networkx.org/ [retrieved: May 2023].

[24] Microsoft, Inc., “COM threading model.” [Online]. Available
from: https://docs.microsoft.com/en-us/previous-versions/dotn
et/netframework-3.0/ms182351(v=vs.80)?redirectedfrom=MS
DN [retrieved: April 2023].

[25] ——, “Processor affinity.” [Online]. Available from: https://do
cs.microsoft.com/en-us/dotnet/api/system.diagnostics.process.
processoraffinity?view=net-5.0 [retrieved: May 2023].

[26] K. Singh and R. J. Walker, “Log–log plots pf the results.”
[Online]. Available from: https://doi.org/10.6084/m9.figsh
are.22561564 [retrieved: May 2023].

[27] E. Jagroep, J. Broekman, J. M. E. M. van der Werf,
S. Brinkkemper, P. Lago, L. Blom, and R. van Vliet,
“Awakening awareness on energy consumption in software
engineering,” in Proceedings of the International Conference
on Software Engineering, 2017, pp. 76–85. [Online]. Available
from: https://doi.org/10.1109/ICSE-SEIS.2017.10.

[28] R. Poljak, P. Poščić, and D. Jakšić, “Comparative analysis of
the selected relational database management systems,” in Pro-
ceedings of the International Convention on Information and
Communication Technology, Electronics and Microelectronics.
IEEE, 2017, pp. 1496–1500.

[29] H. K. Wright, M. Kim, and D. E. Perry, “Validity concerns in
software engineering research,” in Proceedings of the FSE/SDP
Workshop on the Future of Software Engineering Research,
2010, pp. 411–414.

[30] P. G. Buckley and D. Osthus, “Popularity based random graph
models leading to a scale-free degree sequence,” Discrete
Mathematics, vol. 282, no. 1-3, pp. 53–68, 2004.

[31] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin,
“Structure of growing networks with preferential linking,”
Physical Review Letters, vol. 85, no. 21, pp. 4633–4636, 2000.

[32] E. Drinea, M. Enachescu, and M. Mitzenmacher, “Variations on
random graph models for the web,” Computer Science Group,
Harvard University, Tech. Rep. TR-06-01, 2001.

[33] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar,
A. Tomkins, and E. Upfal, “Stochastic models for the web
graph,” in Proceedings of the Symposium on Foundations of
Computer Science, 2000, pp. 57–65.

[34] P. Erdős and A. Rényi, “On the evolution of random graphs,”
Publications of the Mathematical Institute of the Hungarian
Academy of Sciences, vol. 5, no. 1, pp. 17–60, 1960.

[35] J. Kepner, V. Gadepally, D. Hutchison, H. Jananthan, T. Matt-
son, S. Samsi, and A. Reuther, “Associative array model of
SQL, NoSQL, and NewSQL databases,” in Proceedings of the
IEEE High Performance Extreme Computing Conference, 2016,
pp. 1–9.

[36] V. Sharma and M. Dave, “SQL and NoSQL databases,”
International Journal of Advanced Research in Computer
Science and Software Engineering, vol. 2, no. 8, pp. 20–27,
2012. [Online]. Available from: https://www.researchgate.net/p
ublication/303856633_SQL_and_NoSQL_Databases/link/5758
557f08ae9a9c954a7573/download.

[37] V. Guimaraes, F. Hondo, R. Almeida, H. Vera, M. Holanda,
A. Araujo, M. E. Walter, and S. Lifschitz, “A study of ge-
nomic data provenance in NoSQL document-oriented database
systems,” in Proceedings of the IEEE International Conference
on Bioinformatics and Biomedicine, 2015, pp. 1525–1531.

[38] J. J. Miller, “Graph database applications and concepts with
Neo4j,” in Proceedings of the Southern Association for
Information Systems Conference, 2013, pp. 141–147. [Online].
Available from: https://aisel.aisnet.org/sais2013/24.

[39] G. Petri, “A comparison of Oracle and MySQL,” SELECT
Journal, vol. 12, no. 1, article 6, Independent Oracle Users
Group, 2005.

[40] S. Batra and C. Tyagi, “Comparative analysis of relational and
graph databases,” International Journal of Soft Computing and
Engineering, vol. 2, no. 2, pp. 509–512, 2012.

[41] S. Rautmare and D. M. Bhalerao, “MySQL and NoSQL
database comparison for IoT application,” in Proceedings of
the IEEE International Conference on Advances in Computer
Applications, 2016, pp. 235–238.

[42] X. Zhou, Y. Jin, H. Zhang, S. Li, and X. Huang, “A map of
threats to validity of systematic literature reviews in software
engineering,” in Proceedings of the Asia–Pacific Software En-
gineering Conference. IEEE, 2016, pp. 153–160.

[43] A. Ampatzoglou, S. Bibi, P. Avgeriou, M. Verbeek, and
A. Chatzigeorgiou, “Identifying, categorizing and mitigating
threats to validity in software engineering secondary studies,”
Information and Software Technology, vol. 106, pp. 201–230,
2019.

[44] J. D. Herbsleb and A. Mockus, “An empirical study of speed
and communication in globally distributed software develop-
ment,” IEEE Transactions on Software Engineering, vol. 29,
no. 6, pp. 481–494, 2003.

[45] B. C. D. Anda, D. I. K. Sjøberg, and A. Mockus, “Variability
and reproducibility in software engineering: A study of four
companies that developed the same system,” IEEE Transactions
on Software Engineering, vol. 35, no. 3, pp. 407–429, 2008.

10Copyright (c) IARIA, 2023. ISBN: 978-1-68558-076-6

ACCSE 2023 : The Eighth International Conference on Advances in Computation, Communications and Services

 16 / 23

A Color Preserving Down-sampling Approach for 8K to 4K HDR Images

Hamid Reza Tohidypour, Yixiao Wang, Mahsa T. Pourazad, Panos Nasiopoulos, Alan Tong, Mohammadreza
Saed, Mengya Zeng, and Ruixue Luo

Dept. of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
e-mail: {htohidyp, yixiaow, pourazad, panos}@ece.ubc.ca, {tongkaitai, mohammadrezasaed, echomaria98123}@gmail.com,

{luorx1202}@outlook.com

Abstract— 8K High Dynamic Range (HDR) cameras have
recently become available in the consumer market, capturing
more accurate spatial and color information. Despite
advancements in display technology, 4K displays continue to
maintain their dominance in the market. In this paper, we
propose an efficient approach for down-sampling 8K HDR
content to 4K HDR content that maintains the spatial and color
information of the former, to the maximum extent possible. In
this regard, we converted the 8K HDR images into different
commonly used color spaces, namely L*a*b*, YCbCr, and
ICtCp. Then, we evaluated the performance of the Bilinear,
Bicubic, Biquintic, and Lanczos down-sampling approaches on
these color spaces. In addition, we investigated the effect of
Gaussian and Bilateral filters. Our subjective evaluations
showed that the combination of gaussian filtered RGB images
and Biquintic down-sampling method resulted in the best
performance.

Keywords- 8K HDR; 4K HDR; down-sampling; color spaces.

I. INTRODUCTION

Advancement in camera sensor technology has increased
the resolution of captured images. This advancement made the
8K cameras the successor of 4K cameras. 8K camera captures
images and videos with more accurate spatial and color
information from the environment. However, 4K displays are
still dominant the market and it will take several years until
8K displays dominant the consumer market. Therefore, for
backward compatibility purposes the captured 8K content
need to be converted to its 4K version. Although this
conversion will remove some details from the 8K content, it
is expected to be better in terms of quality compared to the
case of capturing the same scene using a 4K camera.

To the best of our knowledge, there is no previous work
on converting 8K to 4K content, while attempting to preserve
the spatial and color details.
This paper addresses this problem for 8K HDR content by
exploring the impact of four commonly used down-sampling
methods on images in four well-known color spaces, and then
decide which one has the best performance. We employed
Bilinear, Bicubic, Biquintic, and Lanczos as the down-
sampling methods and used the RGB, L*a*b*, YCbCr, and
ICtCp color spaces. [1-3]. Two filtering methods, namely
Gaussian and Bilateral, were also examined for our
application [1]. More precisely, we conducted subjective tests
to evaluate the performance of all the combinations in
maintaining spatial details and color. Our results showed that

the combination of Guassian filtered RGB images and
Biquintic down-sampling method achieved the best
performance.

The remainder of this paper is organized as follows. In
Section II, we talk about our methodology. Section III
discussed about our results. Section IV concludes our paper.

II. METHODOLOGY

A. Color spaces

Conducting down-sampling methods directly in RGB
color space may not yield the most satisfying results given that
it doesn’t have a separate luminosity channel. Given that
human vision is more sensitive to luma information than
chroma information, it is important to explore down-sampling
methods in color spaces that have a separate channel for
luminance. The color spaces that we examined in this paper in
addition to RGB include: 1) L*a*b* color space, also known
as CIELAB, 2) YCbCr color space,3) ICtCp color space [2-
3]. All these color spaces have separate luminance channels
[2-3].

The reason to use L*a*b* color space is that unlike RGB
color models, L*a*b* is intended to approximate human
perception of color. L*a*b* color space still lacks perceptual
uniformity, especially in blue hues. But, the L* component
matches human perception of lightness closely, although the
Helmholtz–Kohlrausch effect isn’t taken into account. This
makes it still useful for predicting small differences in color
[2].

YCbCr is not an absolute color space, and it is a scaled and
offset version of YUV. The main difference between YUV
and YCbCr is that the former is for analog TV and the latter is
for digital TV. Although YCbCr is not a perceptual color
space, it is widely used in image and video compression [3].

ICTCP, ICtCp, or ITP is a color representation format
specified in the Rec. ITU-R BT.2100 standard that is used as
a part of the color image pipeline in video and digital
photography systems for HDR and wide color gamut (WCG)
imagery [4], which makes this color space a good candidate
for our application. ICtCp has a near constant luminance, so it
has a better result with chroma subsampling when compared
with YCbCr. Also, ICtCp has an improved hue linearity
compared to YCbCr, which is beneficial to compression
performance and color volume mapping. All of the above
qualities could make ICtCp a good choice for our application
[3].

11Copyright (c) IARIA, 2023. ISBN: 978-1-68558-076-6

ACCSE 2023 : The Eighth International Conference on Advances in Computation, Communications and Services

 17 / 23

B. Filters

In addition to the color spaces, we investigate the impact
of two frequently utilized filters, Gaussian filters and bilateral
filters, on maintaining color accuracy.

Gaussian filters are among the most commonly used low-
pass filters due to their effectiveness in removing high-
frequency signals from input images when configured with
appropriate standard deviation settings.

One of the drawbacks of Gaussian filters is that that they
solely rely on the spatial relations between pixels within the
kernel and do not take into account the image content.
Bilateral filters, on the other hand, were developed based on
Gaussian filters with considerations of the image content. As
a result, bilateral filters have a desirable property of preserving
edges [4].

C. Down-sampling methods

We chose four down-sampling methods including
Bilinear, Bicubic, Biquintic, and Lanczos. Bilinear method
linearly uses four neighbouring pixels to predict the pixels of
down-sampled image. While the Bicubic method uses 16 pixel
values instead of 4 and a third degree polynomial, which result
in smoother images. In the case of Biquintic, a five degree
polynomial function is used to approximate the pixels. This
causes the resulting images to be smoother than bicubic.
Lanczos uses a sinc function as its kernel to approximate the
pixels. As the sinc function consists of positive and negative
values, the negative values sharpen the images and increase
the contrast of the images [1]. Four different color spaces,
mentioned in the previous subsection, will be used to evaluate
all the down-sampling methods.

III. EXPERIMENTS AND RESULTS

A. Visualization on synthethic data

As there is no ground truth 8K and 4K images dataset for
our application, we generate a synthetic dataset to help
visualize the effect of each color space and down-sampling
combination on 8K raw images.

Two different colors are randomly picked in RGB color
space, and each color is assigned to the upper and lower
triangle in the 8K and 4K image separately. The diagonally
split pattern represents an infinitely thin edge, as shown in
Figure 1. This pattern is representative because edges are the

most fundamental components in any image. Understanding
the effects of each of the combinations of color spaces and
down-sampling approaches on a synthetic edge will help to
better analyze the real images.

Once the pair of input (8K image) and ground truth (4K
image) are generated, the 8K image data is fed into the
proposed 8K-to-4K converter approaches to get a set of 4K
outputs for each combination. In order to compare our
approaches, we use delta E as our error metrics, as shown
below [5]:

△ E = ට(L୲-L୭)
ଶ + (a୲-a୭)

ଶ + (b୲-b୭)
ଶ

where Lgt, agt, and bgt represent the L*a*b* values of the
ground truth, while the L0, a0, and b0 show the L*a*b* values
of the down-sampled image.

Figure 2 shows the error matrix △E for each color space
and down-sampling combination. As it can be seen across
each color space, the difference is very minimal, yet the
patterns of the deltaE error matrix within a color space across
four down-sampling methods differ significantly. In general,
Bilinear tends to have the thinnest span of error, but its error
values are much higher than the other 3 (lighter color means
higher error). Bicubic and Lanczos both generate a medium
span of error with medium error values. Biquintic has the
lowest overall error value (close to gray color) and largest
span size (close to Lanczos). In practice, when human eyes
perceive these error patterns, a sharp, clear and high error edge
like the one generated by Bilinear interpolation method has
the most obvious artifact, because the gradient over the error
region is extremely high, catching human eyes’ attention. In
the case of Biquintic, a relatively wider, yet low error value
span can be observed, which means the artifact is less obvious.

We generate a normalized histogram of each error matrix
to investigate the distribution of the errors within each
combination, as shown in Figure 3. As it can be seen, the error
matrices of Bilinear and Lanczos generated error matrices
have high deltaE values in all ranges of errors. In Bicubic and
Biquintic, on the other hand, error values are mostly in the low
range. Since information loss is inevitable due to the nature of
down-sampling, an ideal 8K-to-4K converter shall have most
of the error values in the low range. Therefore, in this
infinitely thin edge case, Bicubic and Biquintic outperform the
other interpolation methods.

B. Subjective results

To further analyze the combinations and find the best set
of combinations of color space and down-sample methods,
subjective tests were conducted. It is worth mentioning that
objective metrics (such as delta E and PSNR) can not be
performed since the reference 4K HDR images do not exist
for this study.

We chose 8K YUV from ITE videos with the resolution of
7680x4320 pixels as our test dataset [6]. The bit depth of the
videos was 10, and the frame rate was 59.940. The color
primary was BT 2020. We randomly chose 3 8K HDR images
from three different videos of ITE dataset. We converted each
frame from the original RGB format to L*a*b*, ICtCp, and
YCbCr respectively. Moreover, to explore the impact that

(a) (b)

Figure 1. a) Left: 8K Synthetic image; b) 4K Synthetic image.

12Copyright (c) IARIA, 2023. ISBN: 978-1-68558-076-6

ACCSE 2023 : The Eighth International Conference on Advances in Computation, Communications and Services

 18 / 23

these filters have on our application, we applied two filters
(Gaussian and Bilateral) to raw RGB files for comparison.
Thus, finally we have 60 different frames.

We followed ITU-R BT.500-14 to run our subjective tests
and used 11-point impairment scale recommended in [7]. 18
subjects participated in the test. Prior to the subjective test, all
the participants successfully passed the color vision test and
vision acuity test. Before starting the subjective tests, subjects
were trained to become familiar with the test procedure. We
used a professional 8K HDR TV for our subjective test.
During the subjective test for each combination, the message
indicating that the reference image would be shown was
displayed for 2 seconds followed by the reference frame that
was shown for 10 seconds. Afterwards, the message
indicating that the 4K HDR image would be shown was
displayed for 2 seconds, then one of that the generated 4K
HDR was displayed at the center of 8K HDR TV was shown
for 10 seconds. Then, the subjects were given 6 seconds to
score the generated 4K HDR image compared to the reference
image. The range of the score was between 0 to 10 according
to ITU-R BT.500. The higher the number the better the down-

sampling combination preserved the spatial and color
information of the reference. Table I presents the
interpretation of the 11-grade numerical quality scale, ranging
from perceptible quality level to severely annoying quality
level. It is worth mentioning that the combinations were
shown to the subjects in random orders. Post processing
resulted in finding one outlier for whom the related
information was removed. Table II shows the Mean Opinion
Score (MOS). As it can be seen, the combination of Gaussian
and Biquintic achieved the highest MOS followed by the
combination of Guassian and Bicubic.

IV. CONCLUSION

In this paper, we proposed an approach for converting 8K
HDR images to 4K HDR images that maintains the spatial and
color information as much as possible. In order to design our
method, we investigated the performance of four commonly
used down-sampling methods, namely Bilinear, Bicubic,
Biquintic, and Lanczos. The color spaces that we examined

Figure 2. DeltaE error matrix for all colorspaces and down-sampling combinations on synthetic data. The axes of each sub-figure are the same as the

axes of Figure 1 (vertical and horizental axes of the resulting deltaE image).

CIELab

Bicubic Bilinear

Biquintic Lanczos

yCbCr

Bicubic Bilinear

Biquintic Lanczos

ICtCp

Bicubic Bilinear

Biquintic Lanczos

13Copyright (c) IARIA, 2023. ISBN: 978-1-68558-076-6

ACCSE 2023 : The Eighth International Conference on Advances in Computation, Communications and Services

 19 / 23

were RGB, L*a*b*, YCbCr, and IctCP. Moreover, we
investigated the effects of two well-known filters including
Gaussian and Bilateral. Our subjective results showed that the
combination of the Gaussian filter for RGB color space and
Biquintic achieved the best mean opinion score. Future work
involves checking this combination for video applications.

ACKNOWLEDGMENT

This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC – PG
11R12450), and TELUS (PG 11R10321). This research was
enabled in part by support provided by WestGrid
(www.westgrid.ca) and Compute Canada
(www.computecanada.ca).

REFERENCES
[1] CIE Colorimetry 15 (Third ed.). CIE. 2004. ISBN 3-901-906-

33-9.
[2] Recommendation ITU-R BT.2100-2, “Image Parameter

Values for High Dynamic Range Television for Use in
Production and International Programme Exchange,” available
online: https://www.itu.int/rec/R-REC-BT.2100 [retrieved:
May 2023].

[3] R. C. Gonzalez and R. E. Woods, “Digital Image Processing
(3rd Edition),” Prentice-Hall, Inc., 2006.

[4] S. Kumar, “A Straightforward Introduction to Image
Blurring/Smoothing Using Python.” Medium, Spinor, 4 Dec.
2019, available online: https://medium.com/spinor/a-
straightforward-introduction-to-image-blurring-smoothing-
using-python-f8870cf1096 [retrieved: May 2023].

[5] G. Sharma, “Digital Color Imaging Handbook”, (1.7.2 ed.)
CRC Press. 2003, ISBN 0-8493-0900-X.

[6] Test chart Ultra-high definition, wide color gamut HDR
version standard moving image (C series).
https://www.ite.or.jp/content/test-materials/uhdtv_hdr/
[retrieved: May 2023].

[7] Recommendation ITU-R BT.500-14, “Methodologies for the
subjective assessment of the quality of television images,”
2019.

TABLE II. AVERAGE MOS FOR ALL THE COMBINATIONS TESTED IN

THIS STUDY.

 Down-
sampling
Methods /

Color Space
or Filter

Bicubic Bilinear Biquintic Lanczos

Lab 7.29 7.06 7.36 7.25

ICtCp 7.28 7.05 7.35 7.24

YCbCr 7.26 7.00 7.34 7.23

Bilateral 7.77 7.30 7.84 7.61

Gaussian 8.14 7.95 8.52 8.03

deltaE

deltaE

Bicubic Bilinear

deltaE

deltaE

Biquintic Lanczos

Figure 3. Normalized histogram of error values.

TABLE I. MEANING OF THE 11 GRADES NUMERICAL SCALE [7].

Score Impairment item

10 Imperceptible

9
Slightly perceptible

somewhere

8 everywhere

7
Perceptible

somewhere

6 everywhere

5
Clearly perceptible

somewhere

4 everywhere

3
Annoying

somewhere

2 everywhere

1
Severely annoying

somewhere

0 everywhere

14Copyright (c) IARIA, 2023. ISBN: 978-1-68558-076-6

ACCSE 2023 : The Eighth International Conference on Advances in Computation, Communications and Services

 20 / 23

Review of Basic Research on Factors Media and Word Formation Typologies that

Cause Bursts Between Online Social Networks

Yasuko Kawahata1,2

1Rikkyo University, 3-34-1 Nishi-Ikebukuro,Toshima-ku,Tokyo, Japan
2Center for Spatial Information Science, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, Japan

e-mail: kawahata@rikkyo.ac.jp

Abstract—In this paper, we obtained a study on the interaction

between Twitter and other media. As basic research on the

interaction between large-scale media and discourse space in

Japan, we will examine the characteristics of discourse space

regarding the interaction of direct and indirect actions of

information, based on the results of simulations of basic

mentions and interactions centered on the characteristic

keyword "human" from around 2011 to 2014. In this research,

we explored the possibility of analyzing the characteristics of

the discourse space regarding the direct and indirect actions of

information.

Keywords-Social Media; Simulation; Sociophysical; Twitter.

I. INTRODUCTION

 As the number of academic approaches to social media

increases, the number of social media outlets has also

diversified, and the number of users and their contact time

continues to grow. However, in recent years, there has been a

tendency for Twitter to be linked to other social media such

as images and videos, and the diffusion and perception of

trends differs depending on the language. In this paper, we

discuss the interaction between Twitter and other media. In

this study, as basic research on the interaction between large-

scale media and discourse space in Japan, we will examine

the characteristics of discourse space regarding the

interaction of direct and indirect actions of information,

based on the results of simulations of basic mentions and

interactions centered on the characteristic keyword "human"

from around 2011 to 2014. In this research, we explored the

possibility of analyzing the characteristics of the discourse

space regarding the direct and indirect actions of

information. According to [1], the equation of reputation

dynamics in the mathematical model for hit phenomena has

the following form:

 (1)

Here, the first term corresponds to the effect of media as

an external force; the second term corresponds to attenuation
of attention and direct communication D; and the third term
corresponds to indirect communication. In the analysis of
reputation on social media, the third term, the indirect

communication term, is very important. However, for Web
application access, the third term, the indirect
communication term, has been discussed in previous studies
as lacking [2][3][4], and we would like it to be re-examined
in the process of basic research for this analysis, such as
adjustment of random numbers.

In previous studies of mathematical models of hit
phenomena [2][3], analyses were focused on topics that
received special attention on social media in Japan.

In reality, however, it is necessary to conduct basic
research on how one keyword or word is intertwined with or
affected by other bursts of keywords, and to compare and
discuss the relationship between the interaction of media
information around these keywords and the actual results. In
addition, it is necessary to compare and discuss the
relationship between the interaction of media information
around these keywords and the results of actual
measurements. The task of this research is to find out what
kind of universal keywords change their behavior on the
Web due to the increase in their quantity on other media at
what time, and to consider the difference between the
phenomena in the real world and on the Web.

Figure 1. The amount of exposure in each media including
"Keyword:Human" (the number of exposure in online social media and TV

media in Japan), 2011/01-2015/03 (Tweet data sampling 1/10).

The reason for including the keyword "human" in the

graph of data examples in Figure 1 is that "human" was the
most frequently mentioned word in the Japanese language
from 2011 to 2015, and it is also a frequently appearing word
in Japanese idiomatic dictionaries. In addition, around 2011,
Japan was hit by the Great East Japan Earthquake, an
unprecedented disaster, and Japan received a great deal of
support not only from within Japan, but also from countries

15Copyright (c) IARIA, 2023. ISBN: 978-1-68558-076-6

ACCSE 2023 : The Eighth International Conference on Advances in Computation, Communications and Services

 21 / 23

around the world. This is because, at that time, too, the
keyword "human," which expresses "human life," was most
frequently used in the center of communication keywords in
the Social Network Sites (SNS) space within Japan. In other
words, this keyword was first taken up because "human" was
the keyword representing the core that was communicated a
lot on SNS during the period when people were conscious of
communication between people's hearts and minds.

II. DISCUSSION

Nowadays, we are able to obtain information on social

trends and excessive movements from social media.
In the early days of research on mathematical models of

hit phenomena [2], the number of external forces in the
media and the actual number of mentions on social media
such as Twitter were to some extent determined by
simulation results, and the transition could be inferred from
the behavior of parameters in the calculation results.
However, in recent years, due to complex factors such as
advertising agencies, external forces have been arbitrarily
applied to certain "keywords", and it has become somewhat
difficult to analyze them using the mathematical models in
previous studies [2][5].

In this study, we examine the number of Twitter, Blog,
2ch, and TV exposures of registered words in nouns, verbs,
adverbs, coordinating verbs, conjunctions, and
inspirations/interjections in Wiktionary: Japanese Basic
Vocabulary 1000 [7] from the dawn of the social media
space in Japan (2011/01-2015/03).

We wanted to extract the number of mentions in Twitter,
Blog, 2ch, and TV exposure (in seconds) of the registered
words in the basic Japanese vocabulary of 1000 [7] and
return to the basic research to obtain a consideration of the
behavior of these direct and indirect media information and
media interaction. In order to understand the characteristic,
arbitrary, and excessive behaviors on SNS as one of the
natural phenomena, we think it is important to compare and
analyze the behaviors and activities around the accounts
(sources) that have a strong network structure on social
media with the real-life events and phenomena on social
media for the future development of the web science field.
The number of mentions among online social networks
(media) starting from keywords and topics is shown in
Figure 2.

There are "keywords" and "topics," especially "natural
phenomena”. For this reason, as mentioned in the
introduction, we believe it is necessary to consider the
interaction of information and keywords that spontaneously
generate interaction outside of the media in the future.

Figure 2. Amount of media exposure related to” Keyword: human"
including the results of the two calculations during disasters in Japan, when
social incident (Tweet data sampling 1/10), Simulation Result1: Effect TV,

Simulation Result2: TV and News.

Figure 3. Result of simulation 1,2, the second term, the parameter D of

direct communication and the third term, the parameter P of indirect
communication, are accounted from the proportion of optimal solutions from

the proportion and random number calculation (1), 10000 times [2][3].

16Copyright (c) IARIA, 2023. ISBN: 978-1-68558-076-6

ACCSE 2023 : The Eighth International Conference on Advances in Computation, Communications and Services

 22 / 23

III. CONCLUSION

As shown in Figure 2 and Figure 3, when looking at the

number of mentions among online social networks (media)
starting from naturally occurring cases such as when a
disaster occurs, or keywords that appear frequently in daily
life, the number of mentions in the above Figure 2 and
Figure 3 are the number of mentions when a disaster occurs.

In the case of a major incident, the number of press
mentions of a common word can have a rapid impact one or
two days after the incident occurs. Therefore, it is difficult to
predict the number of mentions on Twitter and 2ch, where
the volume of information exchange is large.

As for the calculation results, D and P show the optimal
solutions by assigning parameters using the Monte Carlo
method to generate random numbers, but in the case of
sudden incidents, the number of reports increases rapidly by
a day or two. On the other hand, when the keywords are
generalized, the calculation results show that the influence of
the parameter D (especially, TV+News) as the influence of
extremely direct information is a little strong. Therefore, in
the case of using a sociophysical approach for this kind of
analysis, it is important to examine the qualitative
characteristics of the real numbers and conduct the analysis,
and to compare the parameters of the simulation results
separately at the time of the incident and before and after the
incident. We believe that it is important to further
accumulate basic research. By accumulating these studies,
we may be able to propose ideas to compensate for the
missing parameters in (1) according to [2].

 ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant
Number JP19K04881. The author is grateful for R1 Leading
Initiative for Excellent Young Researchers (LEADER) based
on Japan Society for the Promotion of Science (JSPS).

REFERENCES

[1] N. Yoshida, A. Ishii, and H. Aragaki, “The equation for big
hits: Mathematizing the word-of-mouth effect of social
media” Discover 21, Inc., 2010.

[2] A. Ishii, H. Arakaki, N. Matsuda, S. Umemura, T. Urushidani,
N. Yamagata and N. Yoshida, The ’hit’ phenomenon: a
mathematical model of human dynamic Interactions as
stochastic processs. New Journal of Physics 14, 2012.

[3] S. Suzuki and S. Morimoto, Present status and issues of
internet television in Japan: Information Processing Society of
Japan 74th Nationwide Meeting (4-733).

[4] J. B. Pendry, “Reliability Factors for LEE D Calculations. ” J.
Phys. C3: 937, 1980.

[5] N. Yamagata, “Discussion of parameters of mathematical
model of hit phenomenon using random numbers,” Graduate
thesis, Department of Applied Mathematics and Physics,
Faculty of Engineering, Tottori University, 2010.

[6] A. Ishii, T. Koyabu, K. Uchiyama, and T. Usui,
"Mathematical theory for social phenomena to analyze
popularity of social incidents quantitatively using social
networks", Proceeding in Adaptation, Learning and
Optimization, vol. 2, pp 389-402, ISI Proceedings by
Springer-Verlag, 2015.

[7] Wiktionary, 1000 Basic Japanese Vocabulary
(Ref:2015/08/26), https://ja.wiktionary.org/wiki/Wiktionary

17Copyright (c) IARIA, 2023. ISBN: 978-1-68558-076-6

ACCSE 2023 : The Eighth International Conference on Advances in Computation, Communications and Services

Powered by TCPDF (www.tcpdf.org)

 23 / 23

http://www.tcpdf.org

