
ADAPTIVE 2014

The Sixth International Conference on Adaptive and Self-Adaptive Systems and

Applications

ISBN: 978-1-61208-341-4

May 25 - 29, 2014

Venice, Italy

ADAPTIVE 2014 Editors

David Musliner, SIFT, LLC, USA

Elena Troubitsyna, Abo Akademi University, Finland

Dan Tamir, Texas State University, USA

 1 / 143

ADAPTIVE 2014

Foreword

The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications
(ADAPTIVE 2014), held between May 25-29, 2014 in Venice, Italy, targeted advanced system and
application design paradigms driven by adaptiveness and self-adaptiveness. With the current tendencies
in developing and deploying complex systems, and under the continuous changes of system and
application requirements, adaptation is a key feature. Speed and scalability of changes require self-
adaptation for special cases. How to build systems to be easily adaptive and self-adaptive, what
constraints and what mechanisms must be used, and how to evaluate a stable state in such systems are
challenging duties. Context-aware and user-aware are major situations where environment and user
feedback is considered for further adaptation.

We take here the opportunity to warmly thank all the members of the ADAPTIVE 2014 Technical
Program Committee, as well as all of the reviewers. The creation of such a high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
who dedicated much of their time and efforts to contribute to ADAPTIVE 2014. We truly believe that,
thanks to all these efforts, the final conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the ADAPTIVE 2014 organizing
committee for their help in handling the logistics and for their work to make this professional meeting a
success.

We hope that ADAPTIVE 2014 was a successful international forum for the exchange of ideas
and results between academia and industry and for the promotion of progress in the area of adaptive
and self-adaptive systems and applications.

We are convinced that the participants found the event useful and communications very open.
We hope that Venice, Italy, provided a pleasant environment during the conference and everyone saved
some time to enjoy the charm of the city.

ADAPTIVE 2014 Chairs:

Radu Calinescu, University of York, UK
Thomas H. Morris, Mississippi State University, USA
Serge Kernbach, University of Stuttgart, Germany
Antonio Bucchiarone, FBK-IRST of Trento, Italy
Jose Alfredo F. Costa, Universidade Federal do Rio Grande do Norte (UFRN), Brazil
Marc Kurz, Johannes Kepler University Linz - Institute for Pervasive Computing, Austria
Dalimír Orfánus, ABB Corporate Research Center, Norway
Weirong Jiang, Xilinx Research Labs, San Jose, USA
Kier Dugan, University of Southampton, UK

 2 / 143

ADAPTIVE 2014

Committee

ADAPTIVE Advisory Chairs

Radu Calinescu, University of York, UK
Thomas H. Morris, Mississippi State University, USA
Serge Kernbach, University of Stuttgart, Germany
Antonio Bucchiarone, FBK-IRST of Trento, Italy
Jose Alfredo F. Costa, Universidade Federal do Rio Grande do Norte (UFRN), Brazil
Marc Kurz, Johannes Kepler University Linz - Institute for Pervasive Computing, Austria

ADAPTIVE Industry/Research Chairs

Dalimír Orfánus, ABB Corporate Research Center, Norway
Weirong Jiang, Xilinx Research Labs, San Jose, USA

ADAPTIVE Publicity Chairs

Kier Dugan, University of Southampton, UK

ADAPTIVE 2014 Technical Program Committee

Sherif Abdelwahed, Mississippi State University, USA
Nadia Abchiche-Mimouni, Université d'Evry, France
Habtamu Abie, Norwegian Computing Center/Norsk Regnesentral-Blindern, Norway
Muhammad Tanvir Afzal, Mohammad Ali Jinnah University- Islamabad, Pakistan
Jose M. Alcaraz Calero, University of the West of the Scotland, UK
Giner Alor Hernández, Instituto Tecnológico de Orizaba - Veracruz, México
Richard Anthony, University of Greenwich, UK
Flavien Balbo, Université Paris-Dauphine, Lamsade-CNRS, France
Luciano Baresi, Politecnico di Milano, Italy
Bernhard Bauer, University of Augsburg, Germany
Imen Ben Lahmar, Institut Telecom SudParis, France
Christophe Bobda, University of Arkansas, USA
Jean Botev, University of Luxembourg, Luxembourg
Jesus G. Boticario, Spanish National University for Distance Education (UNED), Spain
Sven Brueckner, Axon, USA
Aldo Campi, Center for Industrial Research on ICT (CIRI ICT) - University of Bologna., Italy
Valérie Camps, IRIT-Toulouse, France
Radu Calinescu, University of York, UK
Chris Cannings, University of Sheffield, UK
Carlos Carrascosa, Universidad Politécnica de Valencia, Spain
Federica Cena, University of Torino, Italy
Luke Chen, University of Ulster, UK
Po-Hsun Cheng, National Kaohsiung Normal University, Taiwan

 3 / 143

José Alfredo F. Costa, Federal University, UFRN, Brazil
Carlos E. Cuesta, Rey Juan Carlos University, Spain
Heiko Desruelle, Ghent University - IBBT, Belgium
Juan Ramon Diaz, Polytechnic University of Valencia, Spain
Mihaela Dinsoreanu, Technical University of Cluj-Napoca, Romania
Ioanna Dionysiou, University of Nicosia, Cyprus
Shlomi Dolev, Ben Gurion University, Israel
Bruce Edmonds, Manchester Metropolitan University, UK
Rino Falcone, Institute of Cognitive Sciences and Technologies - National Research Council, Italy
Alois Ferscha, Johannes Kepler Universität Linz, Austria
Ziny Flikop, Consultant, USA
Adina Magda Florea, University "Politehnica" of Bucharest, Romania
Carlos Flores, Universidad de Colima, México
Jorge Fox, ISTI-CNR [Consiglio Nazionale delle Ricerche (CNR), Italy
Naoki Fukuta, Shizuoka University, Japan
Matjaz Gams, Jožef Stefan Institute - Ljubljana, Slovenia
Francisco José García Peñalvo, Universidad de Salamanca, Spain
John C. Georgas, Northern Arizona University, USA
Joseph Giampapa, Carnegie Mellon University, USA
George Giannakopoulos, NCSR Demokritos, Greece
Harald Gjermundrod, University of Nicosia, Cyprus
Marie-Pierre Gleizes, Toulouse University, France
Sebastian Götz, Technische Universität Dresden, Germany
Gregor Grambow, University of Ulm, Germany
Mirsad Hadzikadic, College of Computing and Informatics, USA
Salima Hassas, Université Claude Bernard-Lyon, France
Joerg Henkel, Karlsruhe Institute of Technology, Germany
Gerold Hoelzl, Johannes Kepler University, Austria
Leszek Holenderski, Philips Research-Eindhoven, The Netherlands
Marc-Philippe Huget, University of Savoie, France
Waqar Jaffry, Vrije Universitiet - Amsterdam, The Netherlands
Jean-Paul Jamont, Université Pierre Mendès France - IUT de Valence & Laboratoire LCIS/INP Grenoble,
France
Weirong Jiang, Xilinx Research Labs, San Jose, USA
Imène Jraidi, University of Montreal, Canada
Ilia Kabak, "STANKIN" Moscow State Technological University, Russia
Anthony Karageorgos, University of Manchester, UK
Michael Katchabaw, University of Western Ontario, Canada
Serge Kernbach, University of Stuttgart, Germany
M. Alojzy Klopotek, Institute of Computer Science - Polish Academy of Sciences, Poland
Mitch Kokar, Northeastern University - Boston, USA
Satoshi Kurihara, Osaka University, Japan
Marc Kurz, Institute for Pervasive Computing, Johannes Kepler University of Linz, Austria
Rico Kusber, University of Kassel, Germany
Mario La Manna, SELEX Sistemi Integrati, Italy
Mikel Larrea, University of the Basque Country UPV/EHU, Spain
Ricardo Lent, Imperial College London, UK
Jingpeng Li, University of Stirling, UK

 4 / 143

Henrique Lopes Cardoso, LIACC, Universidade do Porto, Portugal
Emiliano Lorini, Institut de Recherche en Informatique de Toulouse (IRIT), France
Sam Malek, George Mason University, USA
Paulo Martins, University of Trás-os-Montes e Alto Douro (UTAD), Portugal
Olga Melekhova, Université Pierre et Marie Curie - Paris 6, France
Frederic Migeon, IRIT/Toulouse University, France
Gero Müehl, University of Rostock, Germany
Christian Müller-Schloer, Leibniz University of Hanover, Germany
Masayuki Murata, Osaka University, Japan
Filippo Neri, University of Naples "Federico II", Italy
Dirk Niebuhr, Clausthal University of Technology, Germany
Andrea Omicini, Università di Bologna, Italy
Flavio Oquendo, European University of Brittany/IRISA-UBS, France
Mathias Pacher, Leibniz Universität Hannover, Germany
Thanasis Papaioannou, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
Alexandros Paramythis, Contexity AG, Switzerland
Georg Püschel, Technische Universität Dresden, Germany
Raja Humza Qadir, dSPACE GmbH, Paderborn, Germany
Claudia Raibulet, University of Milano-Bicocca, Italy
Mahesh (Michael) S. Raisinghani, TWU School of Management, USA
Sitalakshmi Ramakrishnan, Monash University, Australia
Wolfgang Reif, University of Augsburg, Germany
Brian M. Sadler, Army Research Laboratory, USA
Yacine Sam, Université François Rabelais Tours, France
Huseyin Seker, De Montfort University Leicester, UK
Sebastian Senge, TU Dortmund, Germany
Estefanía Serral, Vienna University of Technology, Austria
Igor Sfiligoi, University of California San Diego - La Jolla, USA
Vasco Soares, Instituto de Telecomunicações / Polytechnic Institute of Castelo Branco, Portugal
Christoph Sondermann-Wölke, Universität Paderborn, Germany
Panagiotis Spapis, National and Kapodistrian University of Athens, Greece
Stephan Stilkerich, EADS Innovation Works, Germany
Greg Sullivan, BAE Systems, USA
Yehia Taher, Tilburg University, The Netherlands
Javid Teheri, The University of Sydney, Australia
Christof Teuscher, Portland State University, USA
Sotirios Terzis, University of Strathclyde, UK
Christof Teuscher, Portland State University, USA
Peppo Valetto, Drexel University, USA
Arlette van Wissen, VU University Amsterdam, Netherlands
Eiko Yoneki, University of Cambridge, UK

 5 / 143

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 6 / 143

Table of Contents

Model-based Run-Time Software Adaptation for Distributed Hierarchical Service Coordination
Hassan Gomaa and Koji Hashimoto

1

Towards a More Rigorous Foundation of Complex Adaptive Systems in Management Science: Dealing with
Misnomers and Metaphors
Leslie Klieb, Merle Rhoades, and Bill McKelvey

7

Towards Systematic Design of Adaptive Fault Tolerant Systems
Elena Troubitsyna and Kashif Javed

15

Moving Towards a Distributed Network of Proactive, Self-Adaptive and Context-Aware Systems
Remus-Alexandru Dobrican and Denis Zampunieris

22

DAiSI—A Component Model and Decentralized Configuration Mechanism for Dynamic Adaptive Systems
Holger Klus and Andreas Rausch

27

An Adaptive Middleware for Near-Time Processing of Bulk Data
Martin Swientek, Bernhard Humm, Paul Dowland, and Udo Bleimann

37

Intermittently Updated Simplified Proportionate Affine Projection Algorithm
Felix Albu, Henri Coanda, Dinu Coltuc, and Marius Rotaru

42

Application Independent Modeling and Simulation Environment for Systems with Self-aware and Self-expressive
Capabilities
Tatiana Djaba Nya and Stephan C. Stilkerich

48

Automated Fault Analysis and Filter Generation for Adaptive Cybersecurity
David Musliner, Scott Friedman, and Jeffrey Rye

56

Sensor-Hub: A Real-Time Data Integration and Processing Nexus for Adaptive C2 Systems
Jean-Francois Gagnon, Daniel Lafond, Martin Rivest, Francois Couderc, and Sebastien Tremblay

63

HCI Dilemmas for Context-Aware Support in Intelligence Analysis
Daniel Lafond, Rene Proulx, Alexis Morris, William Ross, Alexandre Bergeron-Guyard, and Mihaela Ulieru

68

Driving Style Recognition for Co-operative Driving: A Survey
Anastasia Bolovinou, Angelos Amditis, Francesco Bellotti, and Mikko Tarkiainen

73

A Dynamic Service Module Oriented Framework for Real-World Situation Representation
Peter Halbmayer, Gerold Hoelzl, and Alois Ferscha

79

 1 / 2 7 / 143

Performance Evaluation of Reconfiguration Algorithms for the Reconfigurable Network on Chip Architecture
RecMIN
Alexander Logvinenko and Dietmar Tutsch

85

Self-Adaptive Containers: Functionality Extensions and Further Case Study
Wei-Chih Huang and William Knottenbelt

92

An Adaptive Approach to Self-Healing in an Intelligent Environment
Guanitta Brady, Roy Sterritt, and George Wilkie

99

OfficeMate: A Study of an Online Learning Dialog System for Mobile Assistive Robots
Steffen Muller, Sina Sprenger, and Horst-Michael Gross

104

A Black Box Validation Strategy for Self-adaptive Systems
Georg Puschel, Christian Piechnick, Sebastian Gotz, Christoph Seidl, Sebastian Richly, and Uwe Assmann

111

A First Step Towards a Dependability Framework for Smart Environment Applications
Ehsan Ullah Warriach, Tanir Ozcelebi, and Johan J. Lukkien

117

ContextPoint: An Architecture for Extrinsic Meta-Adaptation in Smart Environments
Christian Piechnick, Sebastian Richly, Thomas Kuhn, Sebastian Gotz, Georg Puschel, and Uwe Assmann

121

Adaptive Scheduling of Smart Home Appliances Using Fuzzy Goal Programming
Honggang Bu and Kendall Nygard

129

Powered by TCPDF (www.tcpdf.org)

 2 / 2 8 / 143

Model-based Run-Time Software Adaptation for
Distributed Hierarchical Service Coordination

Hassan Gomaa, Koji Hashimoto

Department of Computer Science
George Mason University

Fairfax, VA, USA
hgomaa@gmu.edu, kojihashi@gmail.com

Abstract - Dynamic software adaptation addresses software
systems that need to change their behavior at run-time. A
software adaptation pattern models how the components that
make up an architecture pattern cooperate to change the
software configuration at run-time. This paper describes a
model-based run-time adaptation pattern for distributed
hierarchical service coordination in service-oriented
applications, in which multiple service coordinators are
organized in a distributed hierarchical configuration.

Keywords: service-oriented architecture; dynamic software
adaptation; model-based software adaptation pattern;
hierarchical service coordination adaptation.

I. INTRODUCTION

 Dynamic software adaptation addresses software systems
that need to change their behavior at run-time [1]. With
model-based dynamic software adaptation, models are used
to describe and sequence the adaptation of the software
architecture and executable system at run-time [2]. A model-
based software adaptation pattern defines how the
components that make up an architecture or design pattern
dynamically cooperate to change the software configuration
to a new configuration given a set of adaptation commands.
Because control and sequencing is so important in dynamic
run-time adaptation, this research focuses on dynamic
models, using in particular state machine models and object
communication models.
 Previous work has described model-based adaptation
patterns for distributed component-based systems [2] and
service-oriented architectures (SOA) [3][4]. In typical SOA
applications, services are self-contained, loosely coupled,
and orchestrated by coordination services [8]. This research
addresses dynamic adaptation based on SOA coordination
patterns. Previous work addressed independent SOA service
coordination [3] and transaction-based distributed software
adaptation [4], in which there is one service coordinator
orchestrating multiple services. This paper extends this
research to SOA applications with hierarchical service
coordination by describing and validating a dynamic
software adaptation pattern for distributed hierarchical
service coordination in which a higher-level coordinator
communicates with multiple lower-level coordinators.
 This paper describes related work in Section II, provides
an overview of software adaptation for SOA in Section III,
describes in detail the hierarchical service coordination

adaptation pattern in Section IV, describes its validation in
Section V, and provides concluding remarks in Section VI.

II. RELATED WORK

 Dynamic software architectures and dynamic
reconfiguration approaches have been applied to
dynamically adapt software systems. Research into self-
adaptive, self-managed or self-healing systems includes
approaches for monitoring the environment and adapting a
system’s behavior in order to support run-time adaptation
[11]. Kramer and Magee [1] describe how a component
must transition to a quiescent state before it can be removed
or replaced in a dynamic software configuration. Ramirez
and Cheng [5] describe applying adaptation design patterns
to the design of an adaptive web server. The patterns include
structural design patterns and reconfiguration patterns for
removing and replacing components.
 For service-oriented computing and service-oriented
architectures, Li et al. [9] describe an adaptable service
connector model, so that services can be dynamically
composed. Irmert et al. [10] provide a framework to adapt
services at run-time without affecting application execution
and service availability. A related research area is dynamic
adaptation of software product lines, in which the different
software configurations are organized as a product line, with
dynamic adaptation from one member configuration to
another managed through a feature model [6].
 In comparison with the previous approaches, this paper
focuses on dynamic self-adaptation in service-oriented
architectures. This paper describes a software adaptation
pattern for distributed hierarchical service coordination, in
order to adapt not only services but also distributed
hierarchical coordinator components.

III. SOFTWARE ADAPTATION FOR SOA

 In SOA applications, services are intended to be self-
contained and loosely coupled, so that dependencies
between services are kept to a minimum. Instead of one
service depending on another, it is desirable to provide
coordination services (also referred to as coordinators) in
situations where access to multiple services needs to be
coordinated and/or sequenced [3].

1Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 9 / 143

A. Software Coordination and Adaptation

 In SOA systems, loose coupling is ensured by separating
the concerns of individual services from those of the
coordinators, which sequence the access to the services. As
there are many different types of service coordination, it is
helpful to develop service coordination patterns to capture
the different kinds of service coordination. For each of
these coordination patterns, there is a corresponding
dynamic adaptation pattern [3]. The software adaptation
patterns described in this paper were developed as part of
Self-Architecting Software Systems (SASSY), which is a
model-driven framework for run-time self-architecting and
re-architecting of distributed service-oriented software
systems [8].

B. Software Adaptation State Machines

 An adaptation state machine defines the sequence of
states a component goes through from a normal operational
state to a quiescent state [2][3]. A component is in the
Active state when it is engaged in its normal application
computations. A component is in the Passive state when it is
not currently engaged in a transaction it initiated, and will
not initiate new transactions. A component transitions to the
Quiescent state when it is no longer operational and its
neighboring components no longer communicate with it.
Once quiescent, the component is idle and can be removed
from the configuration, so that it can be replaced with a
different version of the component. To enable adaptation
patterns, as well as the corresponding code that realizes each
pattern, to be more reusable, adaptation state machines are

encapsulated in software adaptation connectors as discussed
next.

C. Software Adaptation Connectors

 Software adaptation connectors [3][4] are used to
encapsulate adaptation state machines so that adaptation
patterns can be more reusable. The adaptation patterns
described in this paper include two different types of
adaptation connector, coordinator connector and service
connector. The goal of an adaptation connector is to separate
the concerns of an individual component (service or
coordinator) from its dynamic adaptation. An adaptation
connector models the adaptation mechanism for its
corresponding service or coordinator. An adaptation
connector behaves as a proxy for a component, such that its
clients can interact with the connector as if it were the
component, as shown in Fig. 1.

IV. HIERARCHICAL SERVICE COORDINATION

ADAPTATION PATTERN

 In the hierarchical service coordination adaptation
pattern for SOA, a higher-level coordinator orchestrates
lower-level coordinators, whereas each of the lower-level
coordinators is responsible for distributed service
coordination. The communication diagram depicted in Fig.
1 shows a general hierarchical coordination pattern where a
higher-level parent coordinator coordinates M lower-level
child coordinators, each of which interacts with multiple
services.

Fig. 1 Hierarchical service coordination communication diagram

2Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 10 / 143

 An example of hierarchical coordination is a client trip
request to the parent coordinator consisting of an airline
reservation, a hotel reservation and a car reservation. The
parent coordinator decomposes the client request into three
smaller requests, which are sent to child coordinators for
airline, hotel, and car reservations using a combination of
sequential and concurrent coordination (e.g., hotel
reservation followed by concurrent hotel and car
reservations. Each child coordinator interacts with several
individual services (e.g., airline companies) in order to
select the most appropriate service. The parent coordinator
receives the child coordinator responses and then responds
to the client.
 The hierarchical service coordination adaptation pattern
is organized as follows:

 A parent coordinator is instantiated for each client.
 Two or more child coordinators are instantiated for

each parent coordinator.
 A client interacts with a parent coordinator using

synchronous message communication; thus, it
sends a new request only when it receives a
response to its previous request.

 A parent coordinator receives a client request and
decomposes it into smaller requests, which are
sent to child coordinators. The parent coordinator
communicates with the child coordinators either
sequentially or concurrently.

 A child coordinator communicates with multiple
services sequentially or concurrently. It uses
independent service coordination for stateless
services [3] and transaction based communication
(e.g., two phase commit protocol) for stateful
services [4].

 The parent coordinator responds to the client after
it has received responses from each of the child
coordinators.

 To address hierarchical service adaptation it is necessary
to consider adaptation of parent coordinators, adaptation of
child coordinators, and adaptation of individual services.

A. DYNAMIC RUN-TIME ADAPTATION FOR HIERARCHICAL

COORDINATION

 Using the hierarchical service adaptation pattern, the
parent coordinator component can be removed or replaced
after it has received all the responses from the child
coordinators and sent its response to the client. A child
coordinator can be removed or replaced after it has received
responses from all the services invoked and sent its response
to the parent coordinator. On the other hand, a service can
be removed or replaced after it completes the current service
execution in the case of a sequential service, or after
completing the current set of service executions in the case
of a concurrent service.
 The solution involves one coordinator connector for the
parent coordinator and one coordinator connector for each
child coordinator, as depicted in Fig. 1. Each connector
encapsulates the adaptation state machine for its
corresponding coordinator. This is possible because a
connector tracks the states of its corresponding coordinator,
since it receives (and forwards) each upstream message sent
to the coordinator and each downstream message sent by the
coordinator.
 Figures 2 and 3 depict the adaptation state machines
executed by the coordinator connectors for the parent
coordinator and the child coordinator respectively. Applying
separation of concerns, parent and child coordinators deal
with coordination decisions while their corresponding
connectors address adaptation decisions. Thus, the parent
coordinator connector encapsulates the adaptation state
machine of the parent coordinator it communicates with,
whereas the parent coordinator interacts with multiple child
coordinators via their coordinator connectors.

Fig. 2 Parent coordinator adaptation connector state machine

3Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 11 / 143

Fig. 3 Child coordinator adaptation connector state machine

B. Adaptation of Parent Coordinator

 As described in the previous subsection, the parent
coordinator connector encapsulates and executes the
adaptation state machine for the parent coordinator, shown
in Fig 2. (Because of this, the state names reflect the states
of the coordinator and not the connector). There are three
main states, Active, Passive, and Quiescent. In the Active
state, the coordinator is operating normally and its state
machine is in one of the two substates of the composite
Active state. As shown in Fig. 2, the parent coordinator
connector is initially in Waiting for Client Request substate.
When it receives a request from the client (message S1 in
Fig 1), the connector transitions to Processing Client
Request substate (event S1 in Fig 2) and forwards the next
client request to the Parent Coordinator (action S2 in Fig 2
and corresponding outgoing message S2 in Fig 1). The
parent coordinator then interacts with the child coordinators.
When the parent receives the responses from all its children,
it sends the client response (message S9 on Fig.1) to the
connector. The parent connector transitions back to Waiting
for Client Request state (event S9 on Fig. 2) and forwards
the response to the client message (action S10 on Fig.2 and
corresponding message S10 on Fig. 1).
 To initiate dynamic adaptation of the parent coordinator,
a Change Manager (CM) [2][3], which is part of the SASSY
adaptation framework (see IIIA and [8]), sends the Passivate
command to the parent coordinator connector. If the
connector is in the Waiting for Client substate (Fig 2), it
transitions directly to the Quiescent state; the action is to
send a quiescent notification message to CM. Alternatively,
if the connector is in the Processing Client Request substate
when it receives a Passivate command, it transitions to the
Passive state because the parent coordinator is still
interacting with the child coordinators to complete the client
request. When the connector receives the Client Response
(message S9 on Fig.1) from the Parent Coordinator
(indicating that the coordinator has completed the client
request), it transitions to Quiescent state (event S9 on Fig.
2). The actions are to forward the response to the client
(action S10 on Fig. 2 and message S10 on Fig. 1) and to

send a quiescent notification to the CM. In Quiescent state,
the parent coordinator is idle and ready to be replaced. If a
new client request arrives in Quiescent state, the request is
stored in a buffer. After the coordinator has been replaced,
CM sends a Reactivate command to the coordinator. If the
buffer is empty, the connector transitions to Waiting for
Client Request. Otherwise, the connector transitions from
Quiescent state to Processing Client Request and sends the
buffered client request to the reactivated parent coordinator
(action S2 on Fig. 2 and corresponding message on Fig. 1).

C. Adaptation of Child Coordinator

 Each child coordinator connector in Fig. 3 encapsulates
the state machine for its corresponding child coordinator. It
receives child requests from the parent coordinator and
forwards these to the child coordinator. The connector
receives child responses from the child coordinator and
forwards these to the parent coordinator. When the child
connector receives a Passivate command from CM, it
transitions to Quiescent state (if it is waiting for a client
request) or to Passive state (if it is processing a child
request). In the latter case, when the connector receives the
child response from the child coordinator, it transitions to
Quiescent state and forwards the child response to the parent
coordinator.
 If the child coordinator coordinates stateless services
independently, independent coordination adaptation patterns
[3] are applied to the adaptation of a service in the
hierarchical coordination pattern, as depicted in Fig. 3 and
described above. If a child coordinator orchestrates stateful
services using a Two-Phase Commit Protocol, the two-
phase commit coordination adaptation pattern described in
[4] is applied.

D. Adaptation of Services

 A concurrent service services multiple client requests
concurrently. The adaptation state machine for a concurrent
service connector is shown in Fig. 4. The service connector
receives service requests from a child coordinator as well as
from other clients and forwards them to the service. For a
concurrent service, the service can be

4Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 12 / 143

Service Connector
State Machine

Active

Sx5: Service Response [t = 1] /
Sx6: Forward Service Response,
t = 0

Sx3: Service Request /
Sx4: Next Service Request,
t++

Activate Processing
(0 < t)exit / q = 0, t = 0

Waiting For
Service Request Passive

Passivate /
Send Quiescent Notification To Change Management Layer

Sx3: Service Request /
q++

Sx5: Service Response [t = 1] /
Sx6: Forward Service Response,
t = 0,
Send Quiescent Notification
To Change Management LayerPassivate

Sx3: Service Request /
q++

Reactivate [q > 0] /
Send Gone Active Notification To Change Management Layer,
Sx4: Next Service Request {for each request in the queue},
t = q, q = 0

Reactivate [q = 0] /
Send Gone Active Notification To Change Management Layer

Quiescent

Sx5: Forward Service Response [1 < t] /
Sx6: Service Response,
t--

Sx5: Service Response [1 < t] /
Sx6: Forward Service Response,
t--

Sx3: Service Request /
Sx4: Next Service Request,
t++

Figure 4 Concurrent service adaptation connector state machine

removed or replaced after it has completed the service
requests it has received via the service adaptation connector.
The service connector keeps a count t of the requests
currently being executed by the service, incrementing the
count when a new request is sent to the service and
decrementing the count when the response is received and
then forwarded to the appropriate client or child coordinator.
 If a passivate command is received from CM, the
adaptation connector transitions to Passive state if busy,
where it waits for the current service requests to complete.
New service requests are queued in a service request queue,
which is managed by a queue counter q. When the current
service requests are completed, the adaptor transitions to
Quiescent state. When it receives the reactivate command
from CM, the service connector sends the queued service
requests to the replacement service and transitions to
Processing state.

V. VALIDATION OF HIERARCHICAL SERVICE COORDINATION

ADAPTATION PATTERN

 The SOA adaptation patterns were validated using the
SASSY dynamic run-time software adaptation framework
[3][8]. The prototype implementation of the SASSY
framework is based on Web services and was developed
using open-source SOA frameworks, namely Eclipse
Swordfish and Apache CXF. A prototype emergency
response system was developed using this framework.
Using this framework, validation of a service adaptation
pattern consists of executing change management scenarios,
performing the run-time adaptation from one configuration
to another, and resuming the application after the
adaptation.
 For the validation of the hierarchical service
coordination adaptation pattern, the emergency response
system consisted of a region (parent) emergency coordinator
that assigned emergency requests to three district (child)
emergency coordinators, which each coordinated their local
fire engine and ambulance services. Separate adaptation

scenarios were executed for the parent and child
coordinators and were monitored using execution traces for
the parent and child adaptation connectors. The execution
trace for the parent coordinator connector is shown in Fig. 5,
during which adaptation of the parent coordinator is carried
out. The trace depicts the sequence of states the connector
transitions through, starting in Idle state. The connector
receives a client request, transitions from Idle to Processing
state, and sends the new transaction to the parent
coordinator. It then receives a Passivate command from CM
and transitions to Passive state. When the transaction
completed response is received from the parent coordinator,
the connector transitions to Quiescent state. In this state, the
parent coordinator can be replaced. While in Quiescent
state, a new request arrives at the connector from the client
and is queued. After adaptation is completed, the connector
receives the Reactivate command from CM, transitions to
Processing state, and sends the queued request to the new
parent coordinator. After the transaction is completed, the
connector transitions back to Idle state.
 An execution trace for adaptation of a child coordinator
is shown in Fig. 6. This scenario shows that child
coordinator connector transitions to Processing state after
receiving a request from the parent coordinator, which it
then sends to the child coordinator. After receiving a
Passivate command, the connector transitions to Passive
state. When the connector receives the completion message
from the child coordinator, it transitions to Quiescent state.
In this state, the child coordinator can be adapted. While in
Quiescent state, the connector receives a new request, which
it queues. After receiving the Reactivate command, the
connector then transitions to Processing state and sends the
queued request to the child coordinator. When this request is
completed, the child coordinator connector transitions to
idle state.
 In summary, the validation scenarios confirm that the
parent and child coordinator adaptation connectors behaved
as specified, transitioning from Processing to Passive to
Quiescent states and then back to Processing state, while
sending and receiving the expected messages.

5Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 13 / 143

Fig. 5 Execution trace of Parent Coordinator Connector in hierarchical service coordination

Fig. 6 Execution trace of Child Coordinator Connector in hierarchical service coordination

VI. CONCLUSIONS

 This paper has described how software adaptation can
be applied to hierarchical coordination in service oriented
systems. The main contributions of this paper are:
1. Adaptation pattern for distributed hierarchical
service coordination, which can operate with either
stateless or stateful services. For hierarchical service
coordination with distributed transactions, the pattern
corresponds to the compound transaction pattern [6], in
which a compound transaction is decomposed into two or
more atomic transactions.
2. Design of adaptation connectors for distributed
service coordination. Adaptation connectors encapsulate
the adaptation state machines for the adaptation pattern to
separate the concerns of an individual service or
coordinator from software adaptation.
 Future work consists of investigating performance
issues of dynamic adaptation for service-oriented
architectures, developing additional adaptation patterns,
and considering recovery from service failure.

ACKNOWLEDGMENTS

 This research was partially supported by grant CCF-
0820060 from the National Science Foundation. The
authors gratefully acknowledge the contributions of D.
Menasce, S. Malek, J. Sousa, N. Esfahani, and J. Ewing to
the SASSY project.

REFERENCES
[1] J. Kramer and J. Magee, “The Evolving Philosophers Problem:

Dynamic Change Management”, IEEE Transactions on
Software Eng., Vol. 16, No. 11, 1990, pp. 1293-1306.

[2] H. Gomaa, “A Software Modeling Odyssey: Designing
Evolutionary Architecture-centric Real-Time Systems and
Product Lines”, Springer Verlag LNCS 4199, 2006, pp 1-15.

[3] H. Gomaa, K. Hashimoto, M. Kim, S. Malek, and D. Menasce
"Software Adaptation Patterns for Service-Oriented
Architectures", Proc. ACM Symp. on Applied Computing,
March 2010, pp. 462-469, Sierre, Switzerland.

[4] H. Gomaa and K. Hashimoto, “Dynamic Self-Adaptation for
Distributed Service-Oriented Transactions”, Proc. SEAMS
Symposium, Zurich, Switzerland, June 2012, pp. 12-20.

[5] A. J. Ramirez and B. H. Cheng, “Applying Adaptation Design
Patterns,” Proc. 6th Intl. Conf. on Autonomic Computing
(ICAC), Jun. 2009, pp. 69-70.

[6] H. Gomaa and K. Hashimoto, “Dynamic Software Adaptation
for Service-Oriented Product Lines”, in Proc. Intl Wkshp on
Dynamic Software Product Lines, Munich, Germany, August
2011.

[7] H. Gomaa, “Software Modeling and Design”, Cambridge
University Press, 2011.

[8] D. Menasce, H. Gomaa, S. Malek, and J. Sousa, SASSY: A
Framework for Self-Architecting Service-Oriented Systems",
IEEE Software, Vol. 28, No. 6, 2011, pp. 78-85.

[9] G. Li, et al., “Facilitating Dynamic Service Compositions by
Adaptable Service Connectors”, International Journal of Web
Services Research, Vol. 3, No. 1, 2006, pp. 67-83.

[10] F. Irmert, T. Fischer, and K. Meyer-Wegener, “Runtime
adaptation in a service-oriented component model”, Proc.
SEAMS Symposium, May 2008, pp. 97-104.

[11] J. Kramer and J. Magee, “Self-Managed Systems: an
Architectural Challenge”, Proc Intl. Conference on Software
Engineering, Minneapolis, MN, May 2007, pp. 259-268.

6Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 14 / 143

Towards a More Rigorous Foundation of Complex Adaptive Systems in
Management Science: Dealing with Misnomers and Metaphors

Leslie Klieb1, 2 , Merle Rhoades1, 3, Bill McKelvey 4
 1 University of Liverpool in partnership with Laureate Education, Inc., Liverpool, UK

2 Webster University Thailand, Bangkok, Thailand
3 East Colorado SBDC and U. of Northern Colorado, Greeley, CO, USA

4 Kedge Business School, Marseille, France
{leslieklieb@gmail.com, bbr@q.com, mckelveybill1@gmail.com}

Abstract—This paper provides a framework for organizational
Complex Adaptive Systems without directly referring to
biology (evolution theory), physics and mathematics. The
model can reproduce most of standard management science
and sheds light on new ideas in corporate strategy. Possibilities
for numerical simulation are discussed.

Keywords-adaptive systems; management science; agents;
modelling.

I. INTRODUCTION

The existing literature about organizations seen through a
Complex Adaptive Systems (CAS) lens (Lewin, 1992 [1];
Kauffman, 1993 [2]; Holland, 1995 [3]; Maguire et al., 2006
[4]) usually borrows for a discussion of system properties
from biology, mainly from evolutionary dynamics (Holland,
1975 [5]; Mandelbrot, 1982 [6]; Nicolis and Prigogine, 1989
[7]; Kauffman, 1993 [2]; Aldrich, 1999 [8]; McKelvey,
1982 [9]; Nelson and Winter, 1982 [10]) and from physics
(Prigogine, 1955 [11]; Kaye, 1993 [12]; Cramer, 1993 [13];
Gell-Mann, 1994 [14]). Not only does this make this the
literature extremely hard to read for managerial scientists
and practitioners, it also obscures that CAS in social science
have essential differences with biological systems. We show
here that organizational systems (businesses, but not
exclusively) can be easily interpreted as a collection of
agents (Carley, 1992 [15], 1999 [16]; Carley and Hill, 2001
[17]). While standard CAS literature avoids specifying the
attributes of the agents and their interactions (schemata), we
show here that specifying these schemata leads to an easily
understandable framework that encompasses most of
standard business science, and gives a clear interpretation of
most standard CAS literature on organizations. It also
makes it easier to see what the differences are relative to the
evolution of biological systems (McKelvey, 1982 [9];
1994[18]; Maguire et al, 2006 [4]; McKelvey et al., 2013
[19]).

 The plan of this work is as follows. In Section II, a brief

overview of some salient literature is given. In section III,
schemata between agents are formulated. After that, the rest
of the paper is devoted to how these schemata, although

admittedly (too) simple to be predictive of all behavior of
agents, are sufficient to reproduce most standard CAS
management literature. So, in Section IV, sudden shifts in
phase space from punctuated equilibrium are discussed.
Section V focuses on the Edge of Chaos. Section VI focuses
on how the agent description reduces to many standard
management science descriptions when certain interactions
are small compared with others and therefore can be
neglected. As these standard management descriptions have
been usually experimentally verified, this provides the
necessary link with empirical descriptions in a large number
of limiting cases. Section VII provides an interpretation of
the Soft System Methodology in an agent view. Section VIII
does the same for Action Research. Section IX provides
some conclusions and an outlook.

II. LITERATURE REVIEW FOR CAS

Especially when the application of CAS to business was

developed, authors frequently considered the business
ecology as analogous to evolutionary biological systems (for
instance Kauffman, 1993 [2]; Bak, 1996 [20]; Anderson,
1999 [21], Gell-Mann, 1994 [14]). This has often been very
fruitful. McKelvey (1982, 1994) [9][18], McKelvey et al.
(2013) [19], and in an unpublished work McKelvey (2002)
[22] identified many patterns that are common between the
dynamics of biological systems under influence of
evolutionary forces and the dynamics of business systems.
However, the relationship between biological and social
CAS remains unclear. In this work, we show:

- Both may be represented and studied via agent-based
(computational) models of system dynamics (aggregates of
agents)

- In general, models need to be sufficiently detailed so
that they can reproduce the characteristics of dynamics. On
the other hand, models should focus on essentials and not be
cluttered with too many details. Davis and Eisenhardt (2007)
[23] called this the “sweet spot” of model design. We give
arguments here that it is possible to develop successful
models of both biological and business dynamics
independently. Such independent modeling has already been
done successfully for biology, and it will be done in a
heuristic way in this work for the kinds of CAS systems in
human organizations. Such a model for social organizations

7Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 15 / 143

can reproduce most of business science, and is, therefore,
empirically valid. A useful beginning is the model developed
by Carley and Hill (2001) [17].

- There is a large similarity between the two models, and
this explains similarities in evolutionary dynamics, like the
patterns found by McKelvey (2002) [22].

- There are also essential differences between the two
models, and this explains where the analogies break down.
Biology is a metaphor, not an explanation for business
science (McKelvey et al., 2013 [19]).

III. THE MODEL

As postulated by an agent-model of CAS that applies to
most of management science, agents have the following
attributes—mostly developed early on by Carley et al. (e.g.,
Carley, 1992 [15], 1999 [16], 2002 [24]; Carley and
Svoboda, 1996 [25]; Carley and Hill, 2001[17]):

• Needs for food, energy, shelter, and similar
(equivalent needs for organizations)

• Need company and bonding mediated by
connections (attractive force)

• Need space (privacy, physical room (repellent
force)

• Needs are hierarchical, a lower more essential need
can overcome a higher need, analogous to Maslow’s
hierarchy.

• Intentionality (considered also as a need, for the
ease of discussion here)

• Agents can (and actually like) to learn (learning =
behavior change under influence of stimuli on longer time
scales).

• Agents cannot have perfect knowledge about other
agents. There is always interpretation.

Satisfying needs comes with costs. The number of needs

is countable, possibly (and probably) infinite. Agents in this
context can be people but also organizations, and every other
kind of system that is studied in social science. We will show
that the above needs are sufficient to define a CAS. The
system shows many characteristics of CAS as discussed in
the management literature and provides helpful guidance for
managers in understanding system effects.

Agents try to do what they perceive as best for them to
fulfil their needs and survive while taking into account the
costs to do so, and therefore, make an assessment of their
needs and situation and try to improve their situation. CAS
literature calls this measure of how well needs are satisfied
(fitness), but it is a perception of ‘fitness’ (if fitness is taken
as defined in biology by ability for survival). Perceived
fitness is an assessment how well various needs are satisfied
and in which direction an agent would like to move in order
to satisfy better the needs and enhance survival or other
measures of success. This includes an outlook for the future.
Perceived utility is the gain that can be made in perceived
fitness (a small extension of or maybe identification with the
economic term). Utility is a function of the needs.

A technical assumption is based on transitivity of
choices: If Choice A is preferred over B and also B is
preferred over C, then A is preferred over C. In this case,
perceived fitness can be measured on a one-dimensional
scale, it is a mathematical non-linear function of all
variables/needs.

Given these assumptions, agents always have a

perception of a best course of action. This is sufficient to
define a fitness landscape and a phase space consisting of
{needs x perceived fitness}. The dynamics of agents are
determined by their attempts to increase perceived fitness.
Their interactions lead to a CAS: the dynamics are
irreducible (cannot be compartmentalized). Agents form
systems because of the long-range attraction and short-range
repulsion, which leads to an optimal size with respect to
costs. An example provides the work by Bettencourt, 2013
[26] on the size of cities or the work of Krugman, 1996 [27]
on spatial economy. The schemata also cause the system to
operate far from equilibrium (Lewin, 1992 [1]; Cramer, 1993
[13]). The above needs/schemata are insufficient to explain
all observed dynamics. For instance, for human agents,
psychological factors (in principle, part of the schemata) are
not included in the above model. In modern times, dynamics
between agents are mostly determined by other agents and
not by a non-human environment (like forces of nature). The
interaction between agents is now termed co-evolution
(Kauffman, 1993 [2]).

In a business science context, agents are heterogeneous;

they can be and usually are different. These differences are
expressed in that they react differently to their environment
and to other agents (because of differences in attributes), and
that therefore they tend to have different interactions.
Technically, agents have different schemata (Carley, 1992
[15], 1999 [15]; Carley and Hill, 2001 [17]; Ilgen and Hulin,
2000 [28]).

IV. PUNCTUATED EQUILIBRIUM

Most agents are close to a local peak, but not to a more
optimal but (usually) more distant global peak (Carley and
Svoboda, 1996 [25]). Usually, most changes in an agent’s
environment can be accommodated by making gradual
moves. Changes in environment can be limited to changes in
the relative height of peaks. Sometimes peaks disappear or
new peaks emerge. Such events can have a dramatic
influence, because disappearance or growth of one peak can
lead to a domino effect and influence peaks in the
neighborhood of those peaks that in turn influence peaks in
their neighborhood and so on, leading to a major
configuration (Barabási, 2005 [29]). This can lead to a huge
change in the fitness landscape for an agent. This shows that
often changes for an agent can be accommodated slowly,
close to a dynamic equilibrium, but sometimes the fitness
landscape, and with that the dynamics of an agent, changes
tremendously and no slow (adiabatic) change is possible
anymore. Equilibrium is punctuated by sudden disruptions
(Bak and Sneppen, 1993 [30]; Romanelli and Tushman,

8Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 16 / 143

1994 [31]; Bak, 1996 [20]; Gould and Eldredge, 2000 [32]).
Disruptive technology is an example of this (Andriani and
Cohen, 2013 [33]).

V. THE EDGE OF CHAOS

In every assembly of such agents, intuitively, there are

three regions: not enough meaningful interaction between
them to speak of a system, enough interaction so that tacit
and explicit knowledge is exchanged between nodes, and a
region in which too many interactions make the system
uncontrollable and overreacting (Langton, 1990 [34];
Kauffman and Johnson, 1991 [35]; Lewin, 1992 [1]; Brown
and Eisenhardt, 1998 [36]; Pascale, Millemann, and Gioja,
1999 [37]). The transition between “enough interaction” and
“too much” is metaphorically called the edge of chaos.
Although in certain mathematical models in biology the
uncontrollable region is chaotic in the mathematical sense,
here the dynamics is not predictable enough to make such
general mathematical statements as the existence and size of
Lyapunov coefficients (Montroll and Badger, 1974 [38]).

In organizations, overly connected regions of the CAS

that have too few links with their environment are called
silos (LaBonte, 2001 [39]; Diamond, Stein, and Allcorn,
2002 [40]; Dell, 2005 [41]). They are a sad consequence of
the heterogeneity of agents, which in good cases makes the
system more adaptive. If agents were homogeneous, exactly
similar, each agent would have the same type of interactions
with other agents, and the phase diagram would still have
symmetry breaking, but not on such a large scale. It would
be homogenous throughout each of the three regions.
Therefore, in an organization the three-region model is
simplistic. Regions of more and less connections are
scattered all over the organization (often department-wise, or
otherwise as informal groups, see above for arguments how
such more or less stable subsystems diminish costs). It does
not help that because of fractality (i.e., self-similarity), these
subsystems have their own edge of chaos (Schroeder, 1991
[42]). A silo is an uncontrollable region where link inside
link density is too high from the point of view of
controllability by the enveloping organization. Intuitively, it
is similar to a type of attractor (fixed point, limit cycle, limit
torus, strange attractor, not necessarily chaotic).

VI. LINKS WITH KNOWN MANAGEMENT

SCIENCE

The agent model given here reproduces a large number of
disparate management fields of study. It reproduces most of
the standard CAS literature. It deviates where the
assumptions are different, for instance Stacey’s (2011) [43]
theory of responsive processes stresses very different
interactions between agents (different schemata). This makes
the scope of applicability of Stacey’s theories very different.
In fact, there is increasing evidence that various kinds of
both static and dynamic aspects of organizations are self-
similar from small to large to environmental scales, Batty
and Longley (2004) [44], Newman (2005) [45], Andriani and

McKelvey, (2007 [46], 2009 [47]), McKelvey and Salmador
(2011) [48], and McKelvey, Lichtenstein and Andriani
(2013) [49] offer 200+ examples of how the many variables
characterizing organizations result in fractal (i.e., Pareto long
tailed rather than normal) distributions.

A. The agent in its environment and misalignment issues:
static descriptions

Organizational CASs are fractal systems, they exhibit

self-similarity in their dynamics, and because of this, similar
social structures arise at various sizes (Stanley et al., 1996
[50]; Solé, 2001 [51]; Andriani and McKelvey, 2007 [46],
2009 [47]). Agents are part of many groups of different sizes.
All these groups have their own perception of fitness. These
perceptions are in general not aligned. The result is that an
agent in a group may feel misalignment up to a certain
degree, between its own perception and the perceptions of
fitness (mission, goal, purpose) of the group to which it
belongs. Examples:

Resistance to change: An agent’s perception of its own
fitness clashes with the perception of the fitness of a group it
belongs to. This is usually its employer or boss, but can be a
religious or political or other organization.

Principal Agent Problem: Aided by asymmetric
information, perception of fitness of a C-level director is
misaligned with the perception of fitness of the owners of the
firm (who are after maximization of shareholder profit).
Note: The existence of asymmetric information comes from
the postulate in the schemata that no objective knowledge is
possible.

Turnover: an agent feels so much misalignment that it is
leaving its group (examples are in employment, marriage,
club membership, etc.)

Cognitive dissonance: An agent tries to reconcile
misalignment between its own perception of fitness with the
group’s perception of fitness (Festinger, 1947 [53]). Values
held by agents can be understood as the agent’s ideas about
best direction to go, so these values are part of utility in this
scheme.

Ajzen’s (2011) theory of planned behavior [52]
recognizes environment, i.e., the interactions that one agent
feels from other ones, via the subjective norm and shows that
this influences the dynamics (intentions leading to
behaviors).

Marketing: People do not always go for the least
expensive purchase, because buying upscale signals to others
their ability to survive (analogous to the potlatch). Giving of
presents serves the same purpose.

Global Controller: Holland, 1988 [54] notes that in
biological CASs there is no global controller, i.e., no paid
boss – even the queen bee doesn’t get paid to tell worker
bees what to do. However, all organizations have a CEO
who is paid to take charge, take control, etc., and lower-level
managers who are also paid to be in charge. This asymmetry
between agents is probably the most fundamental difference
between biological species and herds vs. human
organizations.

9Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 17 / 143

Theories of leadership: Complex Leadership Theory
(CLT). Continuing where Holland (1988) [54] left off, Uhl-
Bien et al. (2007) [55] point to the unavoidable consequences
of fractality and heterogeneity. In every group, (subsystem),
leaders and followers will emerge, because agents are
heterogeneous and interactions are asymmetric. Some groups
are labelled “formal” and others “informal” but that is pure
convention. Leaders in formal group are called
administrative leaders and function differently towards the
environment and are usually recognized by it. Leadership in
informal groups (“adaptive leadership”) is often not
recognized outside the group. In this framework, it becomes
very hard to evaluate objectively people’s contributions.
Leaders of one group can enhance their fitness and the
fitness of their own group sometimes by co-opting the
leaders that spontaneously emerged from a different group.
This process is called enabling leadership.

Leadership Exchange Theory: All leadership occurs in
the space between agents. Theories like Leadership
Exchange Theory amount to a more precise specification of
the schemata.

Resource-based view of the firm applies to all groups
(systems). There is always an advantage in pooling resources
from the postulate of bonding.

Test particle approach: Introduce one agent into an
organization – i.e., an agent is hired. In a first approximation,
the agent’s dynamics starts to be determined by the
interaction of its own perception of fitness and the influence
of all the other agents. This influence of all the other agents
on a single agent is called organizational culture. In a second
approximation, one can “calculate” the influence that this
particular agent’s new dynamics (which includes its own
previous learning, experience and other attributes) is having
on the organization. Then one can “calculate” again the
influence of the new organizational dynamics on the person,
and so finally arrive at a self-consistent description (in
theory, not in practice). The second approximation, the
influence of the agent on the culture of its group, is
alternatively called leadership, art, volunteerism, and any
other way agent influences on a system to which it belongs
are named.

All the above aspects have in common that they mirror

standard areas of business science. However, in the
conventional treatment these normally disparate areas are not
put into one unified framework. This shows that the
schemata used in this description are powerful enough
(Cramer, 1993 [13]) to reproduce standard theory (or
alternatively, if you want that interpretation, that many
management theories have very simple assumptions about
the interactions of the agents) (Williamson, 1975 [56]; Read,
1990 [57]). However, in the above applications they do not
really test the dynamics of the system.

B. The agent in its environment: dynamic descriptions

Dynamic capabilities: Many benefits of groups result

from pooled resources. This is the resource-based view of the

firm (Barney, 1991 [58]; Barney, Wright, and Ketchen, 2001
[59]) (which applies in this view to every CAS, as there is no
fundamental difference between a firm and any other CAS).
So, this theory is really the resource-based view of the group
or system, and results from the nature of the fundamental
interactions between agents. When it is necessary for the
CAS to increase its fitness because of external events
(threats, opportunities), often its resources need to be re-
configured. This will need to be done in different ways
depending on the amount of turbulence and change.
Eisenhardt and Martin, 2000 [60], discern high-velocity and
medium-low velocity markets. Under high turbulence, many
tools, like standard strategic forecasts, lose their value.

Strategy: Depends on the ability to make a moderately
successful prediction of the future of the group where one
belongs. Events that can be classified as “punctuated
equilibrium” or “black swans” (Taleb, 2007 [61]) are
inherently nearly impossible to predict accurately (“black
swans” result from the fat tails of power laws; the
descriptions of the domino theory of punctuated equilibrium
and power laws are probably related). Under moderate
turbulence, some prediction might be possible (Eisenhardt
and Martin, 19[60]. In the transition from low turbulence to
high turbulence regions, a prediction about future changes in
the fitness landscape, and therefore strategy, becomes more
and more unreliable (Holland, 1995 [3]; Krugman, 1996
[27]; Dooley and Van de Ven, 1999 [62]; Sornette, 2003
[63]; De Vany, 2004 [64]; Sornette et al., 2004 [65]; Baum
and McKelvey, 2006 [66]). One of the CAS alternatives is to
strengthen connections and upgrade the knowledge of the
agents (change their schemata by learning), which moves the
organizational culture of the company closer to the “edge of
chaos” (Carley, 1999 [16]; Pascale, Millemann, and Gioja,
1999 [37]). The organization is more adaptive and better
learning at this point, and this gives it more of a chance to
survive as a group (Carley and Hill, 2001[17]). If it fails to
do this, its constituent agents will move on to different
groups (given enough employment possibilities) and add
variety to their new group, as discussed above.

Some economic models rely on heterogeneity of agents
and mirror such conclusions, like the work by Melitz (2003)
[67].

In the foregoing description, organizational failure can be

beneficial because it releases agents to other groups that are
hopefully better equipped at this juncture in time. However,
it follows also that each organization fails because of some
specific circumstances in its ecology (e.g., Blackberry) and
(in general) not from some type of generalized low capacity
for success (e.g., UK public rail system; Cyprus banks).
Survival does not signify a generalized better “health”. A
bank that survived a financial crisis can still be defenseless
against fraud. A software company that was very successful
in developing operating systems for PCs might still stumble
in with tablets or smartphones (e.g., Blackberry and Nokia).
There is a large path dependency here. The amount of
control that a CAS has in determining its own future when
multiplicative interaction (connectivity) effects instigate
extreme events is much more problematic, if not actually

10Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 18 / 143

reduced (Anderson, 2006 [68]; McKelvey and Andriani,
2010 [69]; Andriani and McKelvey, 2011 [70]).

In biology, there is no control at all. Survival is random

from accidental ability to survive certain threats. The control
among human agents comes from their intentionality (we do
not want to enter into a discussion if this is real or just an
illusion, it makes no difference for this discussion.) Jack
Welch, former CEO of GE, is a good example of CEO who
created tensions to motivate managers and employees to seek
better solutions by changing their objectives and learning
from other executives and/or employees (often newly
acquired by “M&A” activities), along with various
additional complexity elements so as to get employees,
departments, divisions, and companies operation closer to
the edge of chaos (McKelvey, 2010 [71]).

Computational Simulation [agent-based computational

models (ABMs)]: ABMs allow computational simulations
when details of the schemata are sufficiently specified. Many
models that can be analytically analyzed have chaotic
regions [caused by too many connected variables (degrees of
freedom)] in the phase space—like the “melting zone” (the
Region of Emergent new Order between the Edge of Order
and the Edge of Chaos) in Kauffman’s (1993) NK-model [2].
Mathematical optimization models work well below the
Edge of Order (in the Region of Order). However,
instabilities are expected once the system being modeled tips
over the Edge of Chaos.(Canuto et al., 2005 [72]; Bruun,
2006 [73]). Averaging over coordinates of the phase space
that are judged irrelevant (coarse graining) reduces the
degrees of freedom and makes optimization models more
feasible. Incorporating feedback mechanisms (intermediate
changes in the schemata made by the agents), and other
smoothing mechanisms can handle numerical instabilities
that are otherwise unavoidable in chaotic regions, which is to
say, get the system out of chaos and back into the Region of
Emergence.

In realistic ABM simulations, one would also attach
probabilities to some of the options that an agent has,
because one could not be sure what an agent would do, given
the imperfect knowledge an agent has about other agents.
This would also require an ensemble-averaging by making
many simulation runs (usually somewhere between 250 and
10,000 runs of the same ABM design to get the average).
ABM simulations allow the exploration of interesting areas
of phase spaces that current management theories do not
probe. For instance, does cognitive dissonance play a role in
principal-agent issues? ABM simulations make it possible to
formulate hypotheses that can be empirically tested and go
beyond the over-simplified math-based optimization models
that characterize standard management science by making
less rigorous simplifications.

VII. CHECKLAND’S SOFT SYSTEM

METHODOLOGY

The Soft System Methodology (SSM) of Checkland

(2000) [74] and co-workers can be understood as an attempt
to transfer diagnostic tools from “hard systems” as much as
possible to “soft systems”. Hard systems are those that can
be observed from the outside and the dynamics measured
with arbitrary precision limited by technology or physics.
Hard systems are diagnosed with instruments via
observations. Such observations provide a snapshot in time
about the system. Experiments can probe its dynamics by
disturbing the system.

We assume that there is one (or in any case very few)
observers in an organizational CAS who want to know
system-wide properties. Most agents will be satisfied with
local observations because their dynamics are more
determined by these. Others do not have the access or the
tools, or do not have the impetus. Managers, who are the
administrative leaders in the formal organizations, usually
make such more system-wide observations because they
need to confront “messy” or “wicked” problems that do not
have a “best” solution. At best, managers can develop
“approximate” solutions, which may be improved over
time—usually in changing environments in which no single,
permanent solution is possible, relevant or desirable.

Some of their diagnostic tools are:
- Agents’ own observations of the system dynamics: This

entails a shift to an interpretive stance, as the observing agent
has usually no means to validate its observations in an
objective way. (This relates to the postulate in the schemata
that no objective knowledge is possible for an agent about
another agent)

- Possibly objective observations like business statistics,
stored computer records, and so on. These data usually
require interpretation as well.

- Ask other agents for their observations. The Soft
Systems literature calls this “collecting worldviews”.
Diverging worldviews are a hallmark of a messy problem.
Such messy problems are typical for open systems, because
these provide the adaptive tensions that create such “messy”
problems.

 In principle, the Checkland’s soft tools could be applied

to a larger organization, but in practice, they do not scale up
sufficiently—they are overwhelmed by too many degrees of
freedom. In a small subsystem, however, Checkland’s SSM
approach may offer different worldviews than can shed light
on smaller scale messy problems.

The insider/outsider problem boils down to the
impossibility for the manager-agent to hold the two
measurements resulting from using different diagnostic tools
in its mind at the same time. It is not fruitful to consider this
as a deep epistemological problem as is sometimes done in
the literature. It is just observing the system from two
different positions. There is no mystery in that the two views
do not coalesce and that looking at a system from two

11Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 19 / 143

different points of view with different diagnostic tools does
not give a consistent description.

The process of collecting worldviews and possibly get to
some convergence among stakeholders, amount to a
snapshot and does not lead to new knowledge about the
dynamic properties of the system. However, it is more
cognizant of systemic issues than most other business and
organizational science. On the one hand, an ABM allows the
mixing of different views in different contexts to search for
the best-at-the-time perspective. On the other, the ABM
allows a manager to search for the parts of systemic issues
that are essentially the same across the system vs. those that
are demonstrably different.

VIII. ACTION RESEARCH

The only way to learn something about the dynamics of a

system for which there is no mathematical model is to look
at the effects under disturbances. Such disturbances can
come from the environment. Much research has been done in
observing shocks to systems; most case studies fall in this
category. Only via experiments can one alter the
disturbances affecting an organization. But we can’t put
organizations into laboratories. ABMs, however, allow to
simulate organizational phenomena and then conduct
simulated experiments.

Alternatively, manager-agents can sometimes apply more
controlled shocks themselves. This provides an interpretation
in CAS terms of the work of Lewin (1946) [75]. Applying
shocks and studying scientifically the resulting changed
dynamics is, in this interpretation, Action Research.
Managers can apply Actions themselves, but it makes sense
to first learn as much of the system as possible. One tool is
SSM.The problem with SSM is that the static snapshot is
little predictive about the dynamics, and so can lead to
unintended and unforeseen consequences. But again, doing
this in real time with real people could have negative
consequences. Safer to use an ABM.

This provides a useful demarcation for what should be

called Action Research and what not. Action Research is the
scientific study of the dynamical properties of systems by
applying shocks in a controlled way and studying the results
in an accepted (quantitative or qualitative) way. This
criterion, compatible with Checkland’s, is very different
from Coghlan’s [76], for instance. One of the most important
points of difference is that our and Checkland’s research see
CAS and Action Research as (descriptive) science and not as
a tool for emancipation or other ethically driven goals. Such
goals are possible and compatible, but they are not part of a
scientific description. As an alternative for direct
observation, this one can do with ABMs.

IX. CONCLUSION AND OUTLOOK

We have shown that it is possible to give a transparent

account of CAS with human agents as the indivisible
smallest elements that account for most of the characteristics

of organizations as they are discussed in management
science. This clarifies the relationship between biological
CAS systems and organizational ones.

Similarities as well as differences between the models are
very important.

- Business agents are inherently less homogeneous than
the agents in biology, making fractality much more
prominent in business systems. Business agents are
constantly adjusting their behavior over a much larger range
than in biology, where phenotype behavior is generally set
by genotype. Consequently:

- Dynamics is less predictable in business system because
of the many degrees of freedom. ABMs become the more
relevant method since they offer modeling options and
results across a much broader range of interaction effects and
nonlinear dynamics resulting from connectivities among
some number of heterogeneous agents. Math models cannot
be successfully applied to such phenomena.

- Timescales are much smaller. Biological evolution
plays out over hundreds of generations. Businesses change at
a scale within the lifetime of many organizations, and
business adapt. This is possible because of much faster
learning in human than in most biological systems, where
most evolutionary change is due more to the genetic
structure of offspring than the learning abilities of living
phenotypes (Darwin, 1859 [77]), though many biologists
now place some emphasis on “organic learning” (i.e.,
learning and change during a phenotype’s lifetime (Baldwin,
1896 [78]; Simpson, 1953 [79]; Crispo, 2007 [80]; Badyaev,
2009 [81]; Kauffman, 2013 [82]; Scarfe, 2013 [83]).
Survival in changing environments is a function of learning
quickly as needed in addition to surviving because of
genetic, structural or endemic advantage.

REFERENCES

[1] R. Lewin, Complexity: Life at the Edge of Chaos, University

of Chicago Press, Chicago, IL, 1992 [2nd ed. 1999].
[2] S. A. Kauffman, The Origins of Order. Oxford, UK: Oxford

University Press, 1993.
[3] J. H. Holland, Hidden Order: How Adaptation Builds

Complexity. Reading, MA: Addison Wesley, 1995.
[4] S. Maguire, B. McKelvey, L. Mirabeau, and N. Öztas,

“Organizational complexity science,” in S. R. Clegg, C.
Hardy, T. Lawrence, W. Nord (Eds.), Handbook of
Organizational Studies, 2nd ed. Thousand Oaks, CA: Sage,
pp. 165–214, 2006.

[5] J. H. Holland, Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control and
artificial intelligence. Ann Arbor: University of Michigan
Press, 1975.

[6] B. B. Mandelbrot, The fractal geometry of nature. New York:
Freeman, 1982.

[7] G. Nicolis, I. Prigogine, Exploring Complexity: An
Introduction. New York: Freeman, 1982.

[8] H. E. Aldrich, Organizations Evolving. Thousand Oaks, CA:
Sage, 1999.

[9] B. McKelvey, Organizational systematics: Taxonomy,
evolution, classification. Berkeley, CA: UC Press, 1982.

12Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 20 / 143

[10] R. R. Nelson, and S. G. Winter, An Evolutionary Theory of
Economic Change. Cambridge, MA: Harvard University
Press, 1982.

[11] I. Prigogine, An Introduction to Thermodynamics of
irreversible Processes. Springfield, IL: Thomas, 1955.

[12] B. Kaye, Chaos and Complexity. New York: VCH, 1993.
[13] F. Cramer, Chaos and Order, (trans. D. L. Loewus). New

York: VCH, 1993.
[14] M. Gell-Mann, The quark and the jaguar. New York, NY:

Freeman, 1994.
[15] K. M. Carley, “Organizational learning and personnel

turnover,” Organization Science, vol. 3, no. 1, pp. 2-46,
1992.

[16] K. M. Carley, “Learning within and among organizations.” In:
P. C. Anderson, J. A. C. Baum, A. S. Miner, (Eds.), Advances
in Strategic Management, vol. 16. Elsevier, New York, pp.
33-56, 1999.

[17] K. M. Carley and V. Hill, “Structural change and learning
within organizations,” In: Lomi, A., and Larsen, E. R. (Eds.),
Dynamics of Organizations: Computational Modeling and
Organizational Theories, Cambridge, MA. MIT Press, pp. 63-
92, 2001.

[18] B. McKelvey, “Evolution and organization science,” in J. A.
C. Baum and J. V. Singh (Eds.), Evolutionary dynamics of
organizations. New York: Oxford, pp. 314–326, 1994.

[19] B. McKelvey, M. Li, H. Xu, and R. Vidgen, “Re-thinking
Kauffman’s NK fitness landscape: From artifact & groupthink
to weak-tie effects.” Human Systems Management, vol. 32,
no. 2, pp. 17-42, 2013.

[20] P. Bak, How nature works: the science of self-organized
criticality. New York, NY: Copernicus, 1996.

[21] P. Anderson, Perspective: Complexity theory and
organization science. Organization Science, vol. 10, no. 3, pp.
216-232, 1999.

[22] B. McKelvey, “Managing coevolutionary dynamics,”
Working paper, UCLA Anderson School of Management, Los
Angeles, CA, 2002.

[23] J. P. Davis and K. M. Eisenhardt, “Developing theory through
simulation methods,” Academy of Management Review, vol.
32, no. 2, pp. 480-499, 2007.

[24] K. M. Carley, “Simulating society: The tension between
transparency and veridicality,” Proc. Workshop on Social
Agents: Ecology, Exchange, and Evolution. Chicago, IL:
University of Chicago, 2002.

[25] K. M. Carley and D. M. Svoboda, “Modeling organizational
adaptation as a simulated annealing process,” Sociological
Methods and Research, vol. 25, no. 1, pp. 138-168, 1996.

[26] L.M.A. Bettencourt, “The origins of scaling in cities,”
Science, vol. 340, no. 6139, pp. 1438-1441, 2013.

[27] P. Krugman, The self-organizing economy, Malden, MA:
Blackwell, 1996.

[28] D. Ilgen, and C. Hulin, (Eds.) Computational Modeling of
Behavior, in Organizations. Washington, DC: American
Psychological Association, 2000.

[29] A.-L. Barabási, “The origin of bursts and heavy tails in
human dynamics.” Nature, vol. 435, no. 7039, pp. 207-211,
2005.

[30] P. Bak, and K. Sneppen, “Punctuated equilibrium and
criticality in a simple model of evolution.” Physical Review
letters, vol. 71, no. 24, pp. 4083-4086, 1993.

[31] E. Romanelli, and M.L. Tushman, “Organizational
transformation as punctuated equilibrium: An empirical test.”
Academy of Management, vol. 37, no. 5, pp. 1141-1166,
1994.

[32] S.J. Gould and N. Eldredge, “Punctuated equilibrium comes
of age,” Nature, vol. 366, no. 6452, pp. 223-227, 1993.

[33] P. Andriani and J. Cohen, “From exaptation to radical niche
construction in biological and technological complex
systems,” Complexity, vol. 18, no. 5, pp. 7-14, 2013.

[34] C. G. Langton, “Computation at the edge of chaos: Phase
transitions and emergent computation,” Physica D: Nonlinear
Phenomena, vol. 42, no. 1, pp. 12-37, 1990.

[35] S. A. Kauffman and S. Johnson, “Coevolution to the edge of
chaos: Coupled fitness landscapes, poised states, and
coevolutionary avalanches,” Journal of Theoretical Biology,
vol. 149, no. 4, pp. 467-505, 1991.

[36] S. L. Brown, and K.M. Eisenhardt, “Competing on the edge;
Strategy as structured chaos,” Boston, MA: Harvard Business
School Press, 1998.

[37] R. T. Pascale, M. Millemann, and L. Gioja, Surfing the Edge
of Chaos. New York, NY: Random House,1999.

[38] E. W. Montroll and W. W. Badger, Introduction to
Quantitative Aspects of Social Phenomena. New York , NY:
Gordon and Breach, 1974.

[39] T. J. LaBonte, “Building a new performance vision: Break
down organizational silos and create a unified approach to
human performance improvement,” Alexandria, VA:
American Society for Training and Development, 2001.

[40] M. A. Diamond, H. F. Stein, and S. Allcore, “Organizational
silos: Horizontal organizational fragmentation,” Journal for
the Psychoanalysis of Culture and Society, vol. 7, no. 2, pp.
280-296, 2002.

[41] R. K. Dell, “Current Issues—Breaking organizational silos:
Removing barriers to exceptional performance,” Journal-
American Waterworks Association, vol. 97, no. 6, pp. 34-37,
2005.

[42] M. Schroeder, Fractals, Chaos, Power Laws. New York, NY:
Freeman, 1991.

[43] R. D. Stacey, Strategic management and organisational
dynamics: the challenge of complexity, 6th ed. Harlow,
England: Pearson, 2011.

[44] M. Batty, P. A. Longley, Fractal Cities. San Diego, CA:
Academic Press, 2004.

[45] M. E. J. Newman, “Power laws, Pareto distributions and
Zipf’s law,” Contemporary Physics, vol. 46, no. 5, pp. 323-
351, 2005.

[46] P. Andriani and B. McKelvey, “Beyond Gaussian Averages:
Redirecting Organization Science Toward Extreme Events
and Power Laws,” Journal of International Business Studies,
vol. 38, no. 7, 1212–1230, 2007.

[47] P. Andriani and B. McKelvey, “From Gaussian to Paretian
Thinking: Causes and Implications of Power Laws in
Organizations,” Organization Science, vol. 20, no. 6, pp.
1053-1071, 2009.

[48] B. McKelvey and M. P. Salmador Sanchez, “Explaining the
2007 bank liquidity crisis: Lessons from complexity science
and econophysics,” Working paper, UCLA, Los Angeles, CA,
2011.

[49] B. McKelvey, B. B. Lichtenstein, and P. Andriani, “When
organizations and ecosystems interact: Toward a law of
requisite fractality in firms,” International Journal of
Complexity In Leadership and Management, vol. 2, no. 1-2,
pp. 104-136, 2012.

[50] M. H. R. Stanley, L. A. N. Amaral, S. V. Buldyrev, S.
Havlin, H. Leschhorn, P. Maass, M. A. Salinger, and H. E.
Stanley, “Scaling Behavior in the Growth of Companies”,
Nature, vol. 379 no. 6568, pp. 804–806, 1966.

[51] R. V. Solé, D. Alonso, J. Bascompte, S. C. Manrubia, On the
fractal nature of ecological and macroevolutionary dynamics,
Fractals, vol. 9, no. 1, pp. 1-16, 2001.

13Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 21 / 143

[52] I. Ajzen, “The theory of planned behaviour: reactions and
reflections,” Psychology and Health, vol. 26, no. 9, pp. 1113–
1127, September 2011,

[53] L. Festinger,. A theory of cognitive dissonance. Stanford, CA:
Stanford University Press, 1957.

[54] J. Holland, The global economy as an adaptive process, in
The Economy as an Evolving Complex System, P. W.
Anderson, K. J. Arrow, and D. Pines, (eds.), pp. 117-123.
Redwood City, CA: Addison-Wesley, 1988.

[55] M. Uhl-Bien, R. Marion, and B. McKelvey, “Complex
leadership: Shifting leadership from the industrial age to the
knowledge era,” The Leadership Quarterly, vol. 18, no. 4, pp.
298-318, 2007.

[56] O. E. Williamson, Markets and Hierarchies. New York, NY:
Free Press, 1975.

[57] D. W. Read, The utility of mathematical constructs in
building archaeological theory. In: Voorrips, A. (Ed.),
Mathematics and Information Science in Archaeology: A
Flexible Framework, vol. 3, pp. 29-60. Bonn, Germany:
Helos, 1990.

[58] J. B. Barney, “Firm resources and sustained competitive
advantage.”, Journal of Management, vol. 17, no. 1, pp. 99-
120, 1991.

[59] J. Barney, M. Wright, , and D. J. Ketchen, “The resource-
based view of the firm: Ten years after 1991,” Journal of
Management, vol. 27, no. 6, pp. 625-641, 2001.

[60] K. Eisenhardt and J. Martin, “Dynamic capabilities: What are
they?,” Strategic Management Journal, vol. 21, no. 10-11, pp.
1105-1120, 2000.

[61] N. N. Taleb, The Black Swan: The Impact of the Highly
Improbable Fragility. Random House, New York, 2007.

[62] Dooley, K. J., A. H. Van de Ven, “Explaining complex
organizational dynamics,” Organization Science vol. 10, no.
3, pp. 358-372, 1999.

[63] D. Sornette, Why Stock Markets Crash. Princeton, NJ:
Princeton University Press, 2003.

[64] De Vany, A., Hollywood Economics. Routledge: New York,
2004.

[65] D. Sornette, F. Deschâtres, T. Gilbert, and Y. Ageon,
Endogenous versus exogenous shocks in complex networks,
Physical Review Letters, vol. 93, no. 1, pp. 228701-228704,
2004.

[66] J. A. C. Baum and B. McKelvey, “Analysis of extremes in
management studies.” In: D. J. Ketchen and D. D. Bergh,
(Eds.), Research Methodology in Strategy and Management,
vol. 3, pp. 123-197. Oxford, UK: Elsevier, 2006.

[67] M. J. Melitz, “The impact of trade on intra-industry
reallocations and aggregate industry productivity,”
Econometrica, vol. 71, no. 6, pp. 1695-1725,
doi:10.1111/1468-0262.00467, 2003

[68] C. Anderson, The Long Tail. London, UK: Random House
Business Books, 2006.

[69] B. McKelvey and P. Andriani, “Avoiding extreme risk before
it occurs: A complexity science approach to incubation,” Risk
Management, vol. 12, no. 1, pp. 54-82, 2010.

[70] P. Andriani and B. McKelvey, “Managing in a Pareto world
calls for new thinking,” M@n@gement, vol. 14, no. 2, pp. 89-
118, 2011.

[71] B. McKelvey, “Complexity leadership: The secret of Jack
Welch’s success.” International Journal of Complexity in
Leadership and Management, vol. 1, no. 1, pp. 4-36, 2010.

[72] A. J. P. Canuto, A. M. Campos, J. C. Alchiere, E. C. de
Moura, A. M. Santos, E. B. dos Santos, and R. G. Soares, A
personality-based model of agents for representing individuals
in working organizations, in: Intelligent Agent Technology,
IEEE/WIC/ACM International Conference, pp. 65-71, 2005.

[73] C. Bruun, "Agent-Based Computational Economics - An
Introduction," working paper: Department of Economics,
Politics and Public Administration, Aalborg University
Aalborg, Denmark, 2006.

[74] P. Checkland, “Soft systems methodology: A thirty year
retrospective,” Systems Research and Behavioral Science,
vol. 17, pp. S11-S58, 2000.

[75] K. Lewin, “Action research and minority problems,” J. Soc.
Issues, vol. 2, no. 4, pp. 34-46, 1946.

[76] D. Coghlan, “Action research: exploring perspectives on a
philosophy of practical knowing,” The Academy of
Management Annals, vol. 5, no. 1, pp. 53-87, 2011.

[77] C. Darwin, On the origin of species. London, UK: John
Murray, 1859. Available from
http://en.wikisource.org/wiki/On_the_Origin_of_Species_(18
59)

[78] J. M. Baldwin, “A new factor in evolution,” American
Naturalist, vol. 30, no. 354, pp. 441-451, 536-553, 1896.

[79] G. G. Simpson, The Baldwin effect, Evolution, vol. 7, no. 2,
pp. 110-117, 1953.

[80] E. Crispo, “The Baldwin effect and genetic assimilation:
revisiting two mechanisms of evolutionary change meditated
by phenotypic plasticity,” Evolution, vol. 61, no. 11, pp.
2469-2479, 2007.

[81] A. V. Badyaev, “Evolutionary significance of phenotypic
accommodation in novel environments: An empirical test of
the Baldwin effect.” Philosophical Transactions of the Royal
Society B: Biological Sciences, vol. 364, no. 1520, pp. 1125-
1141, 2009.

[82] S. A. Kauffman, “Foreword: Evolution beyond Newton,
Darwin, and entailing law,” in B. G. Henning and A. D.
Scarfe (Eds.), Beyond Mechanism: Putting Live Back into
Biology, pp. 1-24. New York, NY: Lexington Books, 2013.

[83] A. C. Scarfe, “On the ramifications of the theory of organic
selection for environmental and evolutionary ethics,” in B. G.
Henning and A. D. Scarfe (Eds.), Beyond Mechanism: Putting
Life Back into Biology, pp. 259-284. New York, NY:
Lexington Books, 2013.

14Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 22 / 143

Towards Systematic Design of Adaptive Fault Tolerant Systems

Elena Troubitsyna, Kashif Javed
Åbo Akademi University, Finland

e-mails: {Elena.Troubitsyna, Kashif.Javed}@abo.fi

Abstract—The development of modern distributed software
systems poses a significant engineering challenge. The system
architecture should exhibit plasticity and high degree of
reconfigurability to enable an automated adaptation to
continuously changing operating conditions and component
failures. Traditional engineering approaches are inefficient to
cope with complexity of such systems to ensure their
robustness and fault tolerance. Therefore, there is a clear need
for the approaches explicitly addressing the problem of
designing adaptive fault tolerance mechanisms. In this paper,
we propose a systematic approach to the development of
adaptive fault tolerant systems. We discuss the main principles
of architecting such systems to enable plasticity and
reconfigurability. We demonstrate how deployment of the
predictive adaptation allows us to ensure that the system would
be able to continuously deliver its services with the acceptable
quality despite occurrence of component failures.

Keywords-adaptable systems; fault tolerance, predictive
adaptation; reconfiguration.

I. INTRODUCTION

The complexity of modern large-scale systems requires
solutions that ensure that systems autonomously adapt to the
operating environment and internal conditions. Often, such
systems are put into a wide class of autonomic systems --
the software-intensive systems that, besides providing their
intended functionality, are also capable to diagnose and
recover from errors caused either by external faults or
unforeseen state of environment in which the system is
operating [3]. In this paper, we focus on the fault tolerance
aspect of such systems.

Fault tolerance is an ability of a system to deliver its
services in a predictable way despite faults [8]. The generic
principle underlying design of fault tolerant systems is to
detect a discrepancy between a model representing fault free
system behaviour and the observed state, and implement
error recovery [8] .

In this paper, we propose a general pattern for
architecting and developing the adaptive fault tolerant
systems. The proposed pattern supports a layered design
approach [6] that enables separation of concerns and
facilitates structured design of fault tolerance mechanisms.
In our representation of the architectural pattern, we define
the interfaces between the components at different levels of
abstraction to ensure correct propagation of fault tolerance
related data. The high-level coordination of the fault

tolerance mechanisms is implemented by an adaptation
manager – a component that is responsible for implementing
predictive fault tolerance. To specify the adaptation manager,
we propose an algorithm that allows the adaptation manager
to monitor state of the system at the run time and implement
proactive adaptation. Such an approach ensures that the
overall system would continuously deliver the services with
the acceptable quality. We believe that the proposed
approach ensures a systematic development of adaptive fault
tolerant systems.

The paper is structured as follows: in Section II, we
overview the state-of-the-art in designing adaptive fault
tolerant systems. In Section III, we describe general
principles of achieving fault tolerance, and, in particular,
proactive fault tolerance. In Section IV, we present our
proposal for structuring adaptive fault tolerant system. In
Section V, we present our proposal for algorithms that
implement proactive fault tolerance. Finally, in Section VI,
we discuss the proposed approach and future work.

II. RELATED WORK

The need for high performance and continuous service
provisioning demands novel solutions for achieving system
fault tolerance. We are increasingly observing deployment
of proactive fault tolerance techniques that replace
traditional reactive approaches [10]. In modern large-scale
systems, error rate is increasing and reliance on traditional
“error-detection – error-recovery” pattern leads to poor
performance and prolonged system downtime, which is
often unacceptable. The approaches for proactive fault
tolerance are based on preventive treatment of faults aiming
at precluding failures and minimising recovery time [10].
The main mechanism of achieving proactive fault tolerance
is adaptation.

The problem of software adaptation has been extensively
studied at the implementation level, (see e.g., [2] for an
overview). However, there is a lack of approaches that
attempt to derive appropriate adaptation mechanisms from
system-level goals as well as support layered reasoning
needed to efficiently cope with system complexity. A
prominent work on formal modelling of adaptive systems
has been done within the HATS project [2]. In [13][14], an
approach to quantitative assessment of reconfiguration
strategy has been proposed. In our previous work, we also
investigated the impact of faults on dependability, as well as

15Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 23 / 143

structured approach to designing fault tolerant distributed
systems [7][11].

Current engineering practice takes an architecture-
centric perspective on adaptive systems. Among the most
prominent examples are the Rainbow framework proposed
at Carnegie Mellon University [12] and the autonomic
computing initiative by IBM [3]. These frameworks outline
the main abstractions for describing and managing dynamic
system changes. However, currently, the approaches to
proactive fault tolerance are not well-integrated into the
system development process [10]. In this paper, we will
address this problem by proposing a structured approach to
architecting adaptive fault tolerant systems. Our approach
aims at facilitating design space exploration at the early
development stages and enabling explicit representation of
the mechanisms for proactive fault tolerance.

III. FAULT TOLERANCE

The main goal of introducing fault tolerance is to design
a system in such a way that faults of components do not
result in a system failure. A fault cannot be detected by a
system until the manifestation of the fault generates errors in
the component function. The first step in implementing fault
tolerance is error processing [10]. Error processing aims at
removing errors from the computational state.

The first step in error processing is error detection. An
error is a manifestation of a fault. The general mechanism of
error detection is to intercept outputs produced by a system
(or a component) and to check whether those outputs
conform to the specification of fault free behaviour.
Discrepancy between produced outputs and the specification
indicates an occurrence of an error. The next step in error
processing – damage confinement – is concerned with
structuring the system to minimise the spread of errors. Once
the damage is assessed and confined the error recovery can
be performed. Error recovery has two main forms – forward
and backward error recovery. The forward error recovery
mechanisms manipulate the current system state to produce a
new system state, which is presumably error free. The
success of error recovery strongly depends on how precisely
the error is located and how well it is confined. A typical
example of forward recovery is failsafe [1]. If a system has a
safe though non-operational state then it may be possible to
recover from an error by forcing the system permanently to
that safe state (obviously, this strategy is only appropriate
where shut down of the system operation is possible).

By analyzing actions to be undertaken for error
processing, we observe that error processing imposes
additional requirements on the system design. Namely:

- The system should be specified in such a way that
error occurrence conditions are easily deduced and
then explicitly checked;

- The system architecture should enable error
confinement;

- Error recovery procedures should be identified for
every output, which differs from the specified one.

Obviously, an incorporation of error processing in the
system design has a strong impact on all levels of the system
structure. Hence, fault tolerance should be an intrinsic part of
system development and should start from the early stages of
the system design.

To embrace complexity challenge, fault tolerance
community has been proposing new concepts that can be
seen from initiatives and research efforts on autonomic
computing [3] and various forums on self-healing [9] or
self-protection (see, e.g., [1]). These terms span a wide
range of research fields ranging from adaptive memory
management to advanced security mechanisms.

A promising direction among them focuses on
determining how computer systems can proactively handle
failures: if the system knows about a critical situation in
advance, it can try to apply countermeasures in order to
prevent the occurrence of a failure, or it can prepare repair
mechanisms for the upcoming failure, in order to reduce the
time-to-repair.

Such an approach can be called proactive fault
tolerance. It encompasses three main steps:

1. Failure prediction: it aims at identifying failure-
prone situations, i.e., the situations that will
probably evolve into a failure. The result of failure
prediction is an evaluation of whether the current
situation is failure-prone.

2. Proactive reconfiguration: based on the outcome of
failure prediction, a system should make a decision
and implement the countermeasures to be executed
in order to remedy the problem. These decisions
are based on an objective function taking into
account the cost of the actions, the confidence in
the prediction, and the effectiveness and
complexity of the actions to determine the optimal
tradeoff. Challenges for action execution include
online reconfiguration of globally distributed
systems, data synchronization of distributed data
centers, and many more.

3. Recovery: this stage enables graceful degradation
of services while the resources are insufficient for
mitigating the failures. For instance, the predictive
reconfiguration might not be completed as
promptly as expected and the system should
compensate for insufficient resources. Another
example would be a sudden simultaneous failure of
several components due to unexpectedly adverse
situations in the environment.

Each one of these stages is important for an efficient
implementation of the proactive fault tolerance. Hence,
novel architectural solutions, algorithms and development
approaches are needed to attain the goal of building adaptive
fault tolerant systems.

16Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 24 / 143

To build a proactive fault tolerance solution that is able
to boost system dependability, the best techniques from all
fields for the given surrounding conditions have to be
combined.

In this paper, we consider the proactive fault tolerance to
be the main adaptation mechanism to achieve system
dependability. In the next section, we present our approach
to structuring an adaptive fault tolerant system. Then, we
focus on designing the proactive adaptation mechanisms.
Our proposal aims at enhancing self-adaptation system
capabilities. Our goal is to design the mechanisms that allow
a system to autonomously adapt to changing operating
conditions without human intervention. Essentially, our
proposal follows a spirit of the autonomic computing
paradigm.

IV. ARCHITECTURE OF ADAPTIVE FAULT TOLERANT

SYSTEMS

In this paper, we propose to structure an adaptive fault
tolerant system in a layered manner [6]. The layered
architecture significantly simplifies the development of
complex software-intensive systems. Each layer becomes
responsible for a certain aspect of the system behaviour. It
facilitates a clear separation of concerns and simplifies the
interfaces between the layers. The main issue is to device a
well-structured clean architecture that does not introduce
tangled interdependencies between layers. In this paper, we
propose to structure the architecture of a fault tolerant
adaptive system in four layers:

• Application layer
• Adaptation layer
• Fault tolerance layer
• Physical layer

The physical layer represents the environment whose
state should be monitored. It might be a complex control
system that uses sensors to monitor the health of its
components. Another example might be an indoor sensor
network that monitors such conditions as temperature,
humidity, the level of CO, etc. Finally, it might also be a
sensor network for monitoring the outdoor environment, e.g.,
such as used for forest fire detection, air pollution etc.

The fault tolerance layer performs the data aggregation
and evaluation of the quality of monitoring. This information
is supplied to the adaptation layer that is responsible for
defining the proactive adaptation policy. The aim of the
application and fault tolerance layer is to continuously
supply the application with the monitoring data of an
acceptable quality. The design of the application is defined
by its purpose – it varies from the complex control functions
to collecting data intelligence. The graphical representation
of the system architecture is given in Fig.1.

The physical layer consists of the component to be
controlled by the application software. In order to implement

proactive fault tolerance, the software should continuously
monitor the state of the controlled components.

Figure 1. Structure of an adaptive fault tolerant system.

The monitoring capabilities are achieved by integrating
sensors that measure the parameters required to observe the
behaviour of the system in real-time. Usually, complex
systems contain a large number of sensors. Hence, from the
fault tolerance perspective, the physical layer can be
considered as a sensor network.

It generates raw data. Each sensor produces the data in
the following format

<value, timestamp>

We consider two most typical failure modes of the sensors:
stuck at previous value and producing a (detectably)
incorrect value. In the former case, the sensor fails silently
by failing to update its reading, i.e., the timestamp indicates
that the produced data is old. In the latter case, the sensor
produces the value that is outside of the feasible range.

At the fault tolerance layer resides fault tolerance
manager. The goal of the fault tolerance manager is

• To periodically read the sensor data,
• To filter out faulty data,
• To compute the average value of valid data together

with defining the quality level.

The fault tolerance manager produces the input for the
adaptation manager as a tuple

<value, level>

To compute the quality level, the fault tolerance manager
keeps track of the number of sensors that have produced
valid data. There are two thresholds: lim1 and lim2 such that
lim2 > lim1. They determine the quality level. If the number
of the sensors that produced the valid data is greater than
lim2 then the quality level is set to Level 3. If the number of
sensors produced valid data is between lim1 and lim2 then

Adaptive Fault Tolerant System

Application

Adaptation layer

Fault tolerance layer

Physical layer

17Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 25 / 143

the quality level is set to Level 2. If the number of valid
readings is between 1 and lim1 then the quality level is set to
Level 1. Finally, if none of the sensors have produced valid
results then the quality level is assigned value Level 0.

The adaptation manager and deployment manager
constitute the adaptation layer. The adaptation manager
receives the data from the fault tolerance manager in the
format

<value, level>

where level is an integer between 0 and 3. If the level has
value 3, then, the value has a good quality and the adaptation
manager simply forwards the received value to the
applications. However, if the quality level is below 3 but
greater that 0 then the adaptation manager still forwards the
received data to the application but starts an observation
period.

The aim of the observation period is to establish
whether the decline in the quality of data is temporal or
permanent. Assume that, after receiving a value with the
levels 1 or 2, the adaptation manager observes a continuous
period of receiving data with quality level 3. Then, the
observation period terminates and no reconfiguration is
initiated, i.e., the adaptation manager treats the decline in the
quality of data as a temporal one and considers the system to
be healthy.

If, during the observation period the adaptation
manager continuously receives data with quality level 1 or 2
then after the observation period expires, it initiates
reconfiguration, i.e., considers the quality deterioration to be
the permanent one.

The reconfiguration is triggered by sending a request to
the deployment manager to deploy a new set of sensors. The
deployment can be achieved in several different ways. For
instance, if we consider a wireless sensor network that is
used to monitor the state of the environment then the
deployment is performed via a distribution of a set of fresh
sensors (e.g., from an airplane). If the sensors are used to
monitor an indoor environment then the deployment triggers
a request to the maintenance company. The same principle
applies if the sensor network is used to monitor the
behaviour of a complex control system. In any case, the main
advantage of the proposed approach is a possibility to
preventively react on the deterioration of the quality of
monitoring and avoid the loss of the observability of the
physical layer.

The requested number of new sensors to be deployed
depends on how deeply the level of data quality has
deteriorated. If the quality level has value 1 then the
deployment manager requests n new sensors to be deployed.
If the quality level has the value 2 then m new sensors are to
be deployed, where m<n.

In general, we could design a more sophisticated
deployment mechanism. For instance, if each sensor or a
group of sensors is assigned an id then the failures can be
diagnosed precisely. This would allow the adaptation
manager to communicate the exact requirements for the
deployment of new sensors.

When the new sensors are deployed, the deployment
manager acknowledges the completion of the reconfiguration
and the adaptation manager notifies the fault tolerance
manager about availability of the new sensors. The fault
tolerance manager closes the connection with the failed
sensors and establishes connection with the newly deployed
ones.

An important aspect to be considered is how to define
the behaviour of the adaptation manager when the quality
level keeps fluctuating between the values 2 and 3. On the
one hand, the adaptation manager should not trigger the
reconfiguration prematurely. On the other hand, delaying a
reaction on such an unstable situation might result in an
abrupt deterioration of the quality of data that should be
prevented.

To resolve this issue, we let the adaptation manager to
maintain the observation period as long as no continuous
improvement in quality has been observed. Every time when
the data are received with the quality threshold lower than 3,
the adaptation manager increments the counter of the
observation period. When this counter exceeds the
predefined threshold, the adaptation manager triggers the
reconfiguration. This approach is taken to ensure that the
preventive reconfiguration will be initiated even if the
system keeps fluctuating between quality levels.

Finally, if the adaptation manager receives data with
the quality level equal to 0, then it immediately initiates
reconfiguration of the data flow. In this case, it starts to send
to the application data received at the previous cycle. It
continues to send the last data with an acceptable quality
value until the reconfiguration is completed and the fault
tolerance manager starts to send the data with an acceptable
quality level.

In the next section, we define the main behavioural
patterns of adaptation manager and fault tolerance manager.

V. ALGORITMS FOR PROACTIVE FAULT TOLERANCE

Let us focus first on defining the module specifying the
fault tolerance manager.

The module should implement the procedures of

• Reading the sensor data,
• Checking validity of sensor data with respect to

time and feasibility
• Calculating the average of the received valid data

and the quality level.

In our definition of the fault tolerance manager, we used two
abstract functions fresh and valid. The function fresh relies
on the specific parameters to determine whether the
produced data is fresh. Since the clocks of the sensors might
fluctuate, the function checks whether the timestamp is
within certain boundaries.

The function valid checks feasibility of the data
produced by a sensor. It returns the Boolean value True if the
data is valid and False otherwise.

18Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 26 / 143

Module Fault Tolerance Manager
Global Variables

in_buffers: array of <float, INT>
out_buffer: seq of <float, INT>

Local Variables
count: INT /*counter of healthy sensors
sum : float /*sum of readings
avg: float /*average value
level: [0..3]

Initialisation:
count:= 0;
sum:= 0;
avg:= 0;
level:= 0

Begin

for i = 1 to k do
read (data, time_stamp, in_buffer[i]);
if

fresh (time_stamp) = True & valid(data)= True
then count:= count +1; sum := sum +data

end;

if counter > 0 then avg:= sum/count;

case count = 0 then level:= 0
elseif count>0 & count<lim1 then level:=1
elseif count>lim1 & count<lim2 then level:=2
else level:=3;

out_buf:= out_buf^<avg,level>;
count:= 0;
sum:= 0;
avg:= 0

End

Figure 2. Fault Tolerance Manager.

Reliance of the abstract functions allows us to
parameterise the definition of the module and reuse the
proposed definition in different contexts.

In our definition of the module, we have abstracted
away from the implementation details of the communication
between the fault tolerance manager and the sensors. We
assume that they communicate by shared variables -- data
and time stamps that are stored in the in_buf array of pairs.

The proposed algorithm implements the procedure of
reading the sensor data, checking their validity with respect
to time and feasibility and calculates the average of the
received valid data.

By keeping track of the number of valid readings, the
fault tolerance manager calculates the quality level. It
compares this number with two constants – lim1 and lim2.
The pair of calculated data and the quality level is appended
to the output buffer that is read by the Adaptation Manager.
The specification of the Fault Tolerance Manager module is
given in Fig. 2 and the Adaptation Manager in Fig. 3.

Module Adaptation Manager

Global Variables
a_out_buf: float

Local variables:
observ : Bool
cur_level : INT
cur_data:float
fault_count : INT
suc_count : INT
mode: {Normal, Adapt, Adapt_Compl, Adapt_activ}

Initialisation:
observ :=0;
cur_level :=0;
fault_count :=0;
suc_count :=0;

Begin

cur_level, cur_data := head(out_buf);

if observ= False & cur_level= 3 then out_buf:= cur_data

if observ= False & cur_level= 2 & fault_count<thr
then fault_count:= fault_count+1; out_buf:= cur_data;

if observ= False & cur_level<3 & cur_level>0 &
fault_count>thr-1

then mode := adapt_active, adapt_req:= True;

if observ= False & cur_level=3 & fault_count>0 &
fault_count<thr-1

then observ:= True; suc_count := suc_count +1;
observ:= 0;

if observ= True & cur_level=3 & fault_count>0 &
fault_count<thr-1 & suc_count<thr_s

then suc_count:= suc_count+1;
observ_s_iter:= observ_s_iter:=+1;

if observ= True & cur_level=3 & fault_count>0 &
fault_count<thr-1 & suc_count>thr_s-1 &
suc_count =observ_s_iter

then observ:= False ; suc_count:= 0; fault_count:= 0;
observ_s_iter:= 0;

if observ= True & cur_level<3 & fault_count>0 &
fault_count<thr-1 & suc_count<thr_s

then suc_count:= suc_count+1;
observ_s_iter:= observ_s_iter+1;

if mode= adapt_activ then adapt_req ;

if adapt_conf then mode:= normal
End

Figure 3. Adaptation Manager.

In the specification of the Adaptation manager, the
variable observ indicates whether the observation period has
started. The variable obtains the value True when the first

19Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 27 / 143

data with the quality level below 3 is received. The variable
is reset to True if the quality has recovered or a new period
of observation is initiated.

The variables cur_level and cur_data designate the data
and the quality level received from the fault tolerance
manager. The variable fault_count is used to keep track of
the number of iterations, in which the data with the quality
level lower than 3 have been received. When the value of
fault_count exceeds the predefined threshold thr, the
reconfiguration is triggered.

The variable suc_count is used to keep track of the
iterations that produced data with the quality level 3 after the
observation period has been initiated. When the value of
suc_count exceeds the predefined threshold thr_s the
adaptation manager has continuously received the data with
the quality level 3 for sufficiently long period of time.
Therefore, the quality level has recovered and the
observation period can be deactivated.

The adaptation manager provides the application with the
latest data by updating the global variable a_out_buf. It
forwards the data received from the fault tolerance manager
if the quality level is higher than zero. Otherwise, it simply
does not update the variable.

The adaptation manager triggers the reconfiguration by
issuing the adaptation request adapt_req that is received by
the deployment manager. When the new sensors are
deployed the deployment manager confirms the
reconfiguration by issuing the signal adapt_conf.

After triggering the reconfiguration, the adaptation
manager enters the mode Adapt. After the reconfiguration is
completed, the adaptation manager enters the mode
Adapt_Compl. In this mode [4] [5], it notifies the fault
tolerance manager about availability of new healthy sensors.
As a response to this, the fault tolerance manager shuts down
the connection with the failed sensors and establishes a new
connection with the newly deployed sensors. After this
procedure is completed, the fault tolerance manager notifies
the adaptation manager. It enables transition to the mode
Normal.

The general scheme of an implementation of the mode
transition is given in Fig. 4. The main principle that underlies
the mode transition is as follows: the mode is stable and
unchanged until a fluctuation in the quality level is
registered. We show the snippet implementing this principle
as a generic mode changing procedure.

The proposed architecture ensures a separation of
concerns and clear allocation of responsibilities between the
components. Indeed, the fault tolerance manager is
responsible for collecting data and validating them. It
encapsulates the failures of sensors and gives only the high-
level indication of the current health of the system by
annotating the data with the quality level. The adaptation
manager is responsible for diagnosing the situation and
executing the preventive reconfiguration – requesting the
new sensors to be deployed before the quality of data
deteriorates below the acceptable level. At the same time, it
also ensures remedial actions when no data is produced – it
outputs to the application the last healthy value. Such
behaviour ensures graceful degradation of quality of service.

Procedure ModeTransition

Variables
last_mode: {Normal, Adapt, Adapt_Compl, Adapt_activ}
next_target: {Normal, Adapt, Adapt_Compl, Adapt_activ}

prev_target: {Normal, Adapt, Adapt_Compl, Adapt_activ}
level: int

Begin

if adaptation completed
then initiate a forward transition

to next_target according to
the predefined scenario;

if level dropped
then initiate a backward transition to next_target

adaptation mode
The choice of target mode depends on severity
of level decrease;

if the conditions for entering the target
mode are satisfied

then complete a transition to next_target mode
and become stable ;

if neither the conditions for entering
the next global mode are satisfied nor the level dropped

then maintain the current mode

End

Figure 4. Mode transition procedure.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a systematic approach to
architecting adaptive fault tolerant systems. We have
demonstrated how to structure the system to facilitate layered
design of proactive fault tolerant mechanisms. We defined
the information flow between the layers of the system
architecture that enables adaptation and guarantees a
continuous delivery of services with an acceptable quality
level.

Proactive fault tolerance is a promising research direction
that aims at providing systems with capabilities of executing
preventive reconfiguration to preclude occurrence of failure
and disruption in service provision. In our paper, the main
mechanism of achieving proactive fault tolerance relies on
several levels of error detection and monitoring of system
health.

As a future work, we are planning to investigate
alternative approaches to preventive reconfiguration as well
as conduct quantitative assessment of various system
characteristics, e.g., correlation between frequency of the
network rejuvenation with new sensors and quality of data,
proportion between periods of low quality data and different
thresholds etc. Such a work, would allow us to define
heuristics for designing proactive fault tolerance.

20Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 28 / 143

REFERENCES

[1] O. Babaouglu, M. Jelasity, A. Montresor, C. Fetzer, S.
Leonardi, A. van Moorsel, and M. van Steen (Eds.) Self-Star
Properties in Complex Information Systems. LNCS 3460.
Springer-Verlag, 2005.

[2] HATS Project: Highly Adaptable and Trustworthy Software
using formal models. www.hats-project.eu/.Accessed
20.03.2014

[3] P. Horn, Autonomic Computing: IBM's perspective on the
State of Information Technology.
http://researchweb.watson.ibm.com /autonomic/. Accessed
20.03.2014

[4] A .Iliasov, E. Troubitsyna, L. Laibinis, A.Romanovsky, and
K.Varpaaniemi. Verfifying Mode Consistency for On-Board
Satellite Softyware. In.Proc. SAFECOMP 2010, LNCS 6351,
pp. 126-141, Springer, 2004.

[5] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky,
K.Varpaaniemi, D. Ilic, T. Latvala, Developing Mode-Rich
Satellite Software by Refinement in Event B . In: Proc. of
FMICS 2010, LNCS 6371, pp. 50-66, Springer, 2010.

[6] L. Laibinis and E.Troubitsyna. Fault tolerance in a layered
architecture: a general specification pattern in B. In Proc. of
SEFM 2004. pp. 346-355, IEEE Computer Press, 2004.

[7] L. Laibinis, E. Troubitsyna, A. Iliasov and A. Romanovsky.
Rigorous Development of Fault-Tolerant Agent Systems.

Rigorous Development of Complex Fault-Tolerant Systems.
LNCS 4157, pp. 241-260, Springer, 2006.

[8] J. C. Laprie, Dependability: Basic Concepts and Terminology.
New York, Springer-Verlag, 1991.

[9] M. Salehie, L. Tahvildari: Self-adaptive software: Landscape
and research challenges. ACM Transactions on Autonomous
and Adaptive Systems 4(2). ACM, 2009.

[10] F. Salfner, M. Lenk, and M. Malek: A survey of online failure
prediction methods. ACM Comput. Surv. 42(3), 2010.

[11] K. Sere and E. Troubitsyna. Safety Analysis in Formal
Specification. In Proc. of FM'99, LNCS 1709, pp. 1564 –
1583, Springer, 1999.

[12] B. Schmerl, J. Aldrich, D. Garlan, R. Kazman, and H. Yan.
Discovering Architectures from Running Systems. In IEEE
Transactions on Software Engineering, Vol. 32(7), July 2006.

[13] A. Tarasyuk, I. Pereverzeva, E. Troubitsyna, T. Latvala, and
L. Nummila, Formal Development and Assessment of a
Reconfigurable On-Board Satellite System. In Proc. of
SAFECOMP 2012, LNCS 7612, pp. 210–222, Springer-
Verlag, 2012.

[14] E. Troubitsyna. Reliability assessment through probabilistic
refinement. Nordic Journal of Computing 6(3), 320-342,
1999.

21Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 29 / 143

Moving Towards a Distributed Network of Proactive, Self-Adaptive and
Context-Aware Systems

Remus-Alexandru Dobrican, Denis Zampunieris
Computer Science and Communication Research Unit, University of Luxembourg
 Luxembourg, Luxembourg

Email:{remus.dobrican, denis.zampunieris}@uni.lu

Abstract—Instead of being static and waiting passively for
instructions, software systems are required to take a more
proactive approach in their behavior in order to anticipate and
to adapt to the needs of their users. To design and develop such
systems in an affordable, predictable and timely manner is a
great engineering challenge. Even though there have been
notable steps towards distributed self-adaptive and context-
aware systems, there is still a lack of methodologies on how to
model and implement applications which have to distribute
and to manage large amounts of information. In this work-in-
progress, we address this issue by proposing a self-adaptive
and context-aware model with a structure that allows the
system to learn from the user’s behavior by using Proactive
Computing. The novelty comes from the possibility of having a
distributed network of Proactive Engines in which the
exchange of contextual information would help each system to
take smart decisions.

Keywords—self-adaptive systems; context-aware systems;
proactive computing; distributed network.

I. INTRODUCTION
The demand for devices and applications that are able to

adapt their behavior at run-time, as a response to the
increasing demands of users, has risen considerably in the
last couple of years [1]. Giving instructions to complex
software systems is becoming quite a difficult task for users,
as it requires their continuous involvement, a set of advanced
technical skills and a lot of knowledge about the system. As
a consequence, our model is leading the users towards new
ways of interacting with smart systems that will be able to
perform a variety of automated tasks on users’ behalf.

Three main properties are to be distinguished when
speaking about systems that dynamically adapt themselves
according to the context variation or the requirements
change: self-adaptation, proactivity and context-awareness.

Self-adaptation in software systems comes in many
different aspects. Self-adaptive systems can be characterized
by their operating mode which easily permits them to fulfill
their goals in a modified context. Feedback loops provide an
architectural solution for self-adaptation. Brun et al. [2]
indicate that feedback loops usually include four key
activities: collecting, analyzing, deciding and acting. These
activities are essential for achieving self-adaptability. In
Figure 1, a generic model of a unidirectional feedback loop
is given. It shows the inputs or the outputs of each state but
the data flow between the states is omitted.

Context-aware systems are designed to continuously
analyzing contextual information, which is a key feature for
determining the occurrence or the lack of events.

Events play a central role in the lifecycle of software
systems. They range from simple request for different
services to serious incidents that prevent the well-functioning
of a system. Events can be divided into three main
categories: foreseen (taken care of), expected (planned for)
and unexpected (not planned for) [4].

Tennenhouse [5] firstly introduced Proactive Computing
as a new mode of operation that was crucial for moving
towards human-supervised computing. The essential features
of proactive systems, as seen in [6], are taking decision for
their users and acting on their own initiative. Proactive
Computing is a solution for foreseeable events, while
context-awareness and self-adaptiveness handle unforeseen
events, which are seen as deviations from the normal
situations.

The contribution of this paper is two-fold. First, it offers
an infrastructure for software systems capable of performing
automated tasks for the user, of analyzing large quantities of
data and making decision in different contexts. Second, it
provides an analysis of a distributed network of systems that
are implementing our model.

The rest of the paper is organized as follows: Section 2
describes the main characteristics of a Proactive Engine.
Section 3 investigates the possibility of having a distributed
network of Proactive Engines. Section 4 provides an
example of application for our model; other applications are
proposed. Section 5 conclusions about the potential of
Proactive Engines.

Figure 1. Autonomic control loop [3]

22Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 30 / 143

II. PREVIOUS WORK
Zampunieris developed the concept and the structure of

the first Proactive Engine in 2006 [7]. It was designed as a
complex mechanism for running Proactive Rules. A
Proactive Rule is a structure conceived to perform specific
actions in case a special situation was detected or in case of
the lack of an event. The detection of students that did not
submit their online assignment and the notification of their
professor as a consequence, is a concrete example of a rule
which was used in a real-case scenario, when the initial
Proactive Engine was deployed aside a Learning
Management System (LMS) [8]. Results showed that major
limitations of a LMS such as the restricted interaction and
limited collaboration between learners and educators inside
courses could be overcome with the help of a Proactive
Computing [9]. Previous work, [10] and [11], focused until
now on applying Proactive Computing on a single system,
thus exploring only the scenario of having only one
centralized Proactive Engine. But, a centralized solution can
become quite fast non-scalable in many scenarios where a
Proactive Engine handles a big number of devices and
applications. The possibility of having an entire network of
Proactive Engines exchanging data and learning from each
other was not yet explored.

III. PROACTIVE ENGINES
We propose a new version of the Proactive Engine, where

processes are divided between the sub-parts of the model.
Before, Proactive Rules were taking care of data acquisition,
activation guards, conditions, actions and rules generation;
now, each step is assigned to a specific structure. A major
benefit of separating these processes is that they are handled
by structures that are focusing only on particular tasks.

In order to develop a proactive context-aware adaptive
system, an infrastructure that combines and uses all three
properties is required. The LPE is an advanced mechanism
that could be easily integrated into new software systems

because it provides means for gathering data from the
internal and external sensors, for detecting context changes,
for processing and modeling contextual information, for
executing adaptive tasks and for providing an adequate
system behavior in any situation. The term “sensor” refers
not only to the hardware parts being able to sense but also to
the various data sources that may give contextual
information.

Thus, the architecture of a LPE is composed of a set of
interconnected components, including a Context-Manager, a
Rules Engine connected to a set of Queues and a local
database, and a Notification Manager (as seen in Figure 2).

A. The Context-Manager
The Context-Manager is mainly responsible for detecting

and handling context changes that appear, and as a result,
taking the proper actions. Another important task for the
Context-Manager is to acquire user input and to decide if it
is relevant or not. It is composed two elements: the
Awareness Engine and the Adaptation Engine.

1) The Awareness Engine
This component is managing the data coming from

sensors, which are in charge of detecting possible context
changes. For smartphones, sensors are providing important
information about the user’s location, motion and
preferences. For PCs, the information would focus more on
the user’s interests, activities and set of used applications.
Accessing this kind of information should be limited to
some extend and controlled as it represents a privacy issue.

2) The Adaptation Engine
This component is crucial, as it is used for dealing with

unexpected events and for ensuring that adaptive actions are
performed in a smooth cooperation between the main sub-
parts of the Proactive Engine. Also, it has to check the
constraints and the conditions of the system before
adaptation and if the system will still behave according to its
policies.

Figure 2. The infrastructure of a Proactive Engine

23Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 31 / 143

B. The Rules Engine
The Rules Engine is responsible for maintaining a precise

overview of the system’s goals and for running Proactive
Rules. It keeps a list of required actions that would come as
a response in case an expected event shows up. It is also
used for storing the state of the system. Executing multiple
Proactive Rules in parallel is due to its integrated Queue
System and it is one of the great functionalities of the Rules
Engine. Proactive Rules can be used for serving multiple
purposes: for checking context situations, for detecting
special events, for analyzing contextual information, for
synchronizing sub-parts of the model, for saving useful data
into the Local Database, for sending rules and commands to
other PE and for sending content to the Notification
Manager. The Awareness Engine and the Adaptation Engine
have the ability to activate Proactive Rules.

C. The Notification Manager
The purpose of the Notification Manager is to deliver

informative content to the user. The content can take various
forms like hints, messages, notifications or alarm. This is a
crucial part of the entire model as it helps in achieving
his/her goals, guides him/her in multiple situations and
informs the user about certain events.

IV. A NETWORK OF PROACTIVE ENGINES
PEs are designed to work both offline and online. Having

a network of distributed LPEs that communicate and
exchange data provides a great opportunity for these
systems to gain useful information. This way, LPEs are not
only gathering data from their internal sensors but also from
other LPEs. By design, information sharing between devices
using LPEs is conceived to be done in a transparent way,
without the implicit command of the user.

Figure 3 shows a possible scenario of a network of
distributed LPEs. Three devices, with a running LPE,
located on the same LAN, are connected to the Internet
through a WiFi connection. A direct connection can be also
established via Bluetooth, via Near Field Communication
(NFC) techniques or via Android’s WiFiP2P library for
smartphones. The advantage of having a direct connection
between the devices, illustrated in figure 3 with a straight
line, is that Proactive Rules are exchanged immediately,
without having to be sent firstly to a server. This means that
each device with a LPE will be acting like a server, being
able to receive and send data to other devices with LPEs.

The most significant aspect to be taken into consideration
is the actual information that is gained by a LPE when it
gets data from other LPEs. One case is to find common
interest or preferences between users that are working with
applications having an integrated LPE. For example, a user
could be looking for a ride on a car-sharing web site.
Another user, which would be located nearby, maybe from
the same city, would be looking for a ride having the same
destination and exactly on the same dates. The LPEs would
notify both users and would propose to share a ride for

reducing the costs. Another case where data exchanging is
useful is when a LPE is not sure what action to take and
how to adapt its behavior when unexpected events are
appearing. Requesting feedback from other LPEs that have
more information is a possible solution for taking the right
decision.

If we take, for example, two LPEs, one which was offline
for a long period of time and one which was online during
the same period of time. And now, both of the LPEs would
be able to share information because they would be have
access to a communication channel between them. The LPE
that was offline could learn a lot from the online LPE that
stored information about its previous tasks and about the
older state of the system, without using the Adaptive
Engine, the Awareness Engine and the Rules Engine to
process similar data and to go through the same adaptation
process. As a consequence, local resources and time could
be saved.

V. CASE STUDY
To better illustrate the behavior of a LPE and the

usefulness of having a network of LPEs, we created an
example of a possible scenario for its practical
implementation. For simplicity, we focused more on
describing the possible situations that highlight the benefits
of having a network of LPEs and not on the implementation
details.

All around the world, students are using online e-learning
platforms, like Moodle™ [12], for accessing educational
content, completing assignments and participating in
discussion related to their courses. These e-learning
platforms are quite static as they are waiting for instructions
or commands from their users. This is why an e-learning
application for PCs and for smartphones, with an integrated
Proactive Engine, would come in hand. We assume that the
application would be directly connected with the web
platform and would have access to all the data from the
student’s account on the LMS.

Figure 3. A possible network of distributed LPEs

24Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 32 / 143

Global Meta-Scenario (GMS) 001
Description: This Rule is designed to run on each
LPE in order to check for new connections in the
same network with which the current LPE could
share information if they are working on the same
assignment.

data acquisition

conn [] = getConnectionsOnSameNetwork()
activation guards
 conn.size != 0
conditions
 conn.assignment.isStillValid()
actions
 foreach connection in conn []

if(usersWorkOnSameAssignment(
connection.assignemnt.ID))

 sendMessageToLPE(conn.ID, message)
inviteOtherLPEforCollaborativeWork(
connection.assignemnt.ID)

 end if
 end foreach
rules generation
 if(!activationGuard)
 createGMS002(conn.ID, conn.assignemnt.ID)
 end if
 cloneRule (GMS 001)

The application would include basic actions like
displaying notifications and questions for the user, provide
hints and trigger alarms. Hints would be used for guiding the
user, questions for asking for specific instructions,
notifications as short messages to inform the user and alarm
to alert him/her in case of extraordinary situations or/and
events.

Even though these actions are quite elementary, they are
already addressing some of the major issues when using an
online e-learning platform. These issues appear because of
the lack of an immediate notification channel between the
students or between the students and the professors in case
extraordinary situations appear. Certain online platform have
an online mechanism for enrolling to an exam, and students
often miss these deadlines, resulting in a big problem both
for the student and the administration of universities and
schools. More issues include missing deadlines for
assignments and nonparticipating in forums.

For example, if an instructor were to give an exam on a
specific date, at a specific hour, and is late due to traffic,
he/she could post a short message, via his/her smartphone,
on the forum of the course announcing that he/she will be
late. Not only will the students be notified of this, but a
person from the administration could also alert the students
in person if they would not have their device with them. The
sensors of the LPE would sense that he is moving and so
would adjust the graphical user interface for writing
messages.

More advance actions would include setting an alarm for
deadlines, putting the events into an integrated calendar,
proposing to students to collaborate on solving assignments
with other classmates which are close to their location or
even more, automatically download documents or course
material directly to the private PCs or smartphones of the
students. The majority of these actions are not currently
provided by any existing LMS and, adding plugins or third
party applications will not change the overall behavior of the
system.

In Figure 4, an example of a Proactive Rule, which
would be used for this case study, is illustrated in pseudo-
code. More specifically, it is a Global Meta-Scenario
because it runs at each iteration of the Proactive Engine and
because it is used only when there are at least two LPEs on
the same network. Its purpose is to invite the users of the
LPEs, in case they are working on the same assignment, to
collaborate and share their knowledge. The Proactive aspect
comes from the fact that this situation is anticipated by the
Global Meta-Scenario, without any specific intervention or
command from the users of the LPEs.

There are five main parts that compose a Proactive Rule:
data acquisition, activation guards, conditions, actions and
rules generation. The first part is used for gathering useful
data, in this case if there are new connections or LPEs
available on the same network, the second and the third part
are used for checking for special conditions and constraints,
like if the users of the LPEs have common assignments, and
the fourth and the fifth parts are used to take specific actions,
like sending a personalized messages to the users of the
LPEs, and to generate other Proactive Rules.

A. Other fields of applications for LPEs
The previous case study indicated that LPEs could be used

in education. In hospitals for example, LPEs could share
information and create very accurate and useful reports for
doctors. They could also be implemented in other domains,
which have to handle big amounts of data coming from
sensors, like other areas of medicine, transportation,
engineering, aviation and many social networks platforms.

VI. A SHORT IMPLEMENTATION OVERVIEW
We are currently working on the implementation of LPEs

for smartphones and tablets, with an Android Operating
System, as they allow direct data exchange between devices
which are on the same Wi-Fi network, without having an
intermediate access point. Frameworks like Android’s WiFi-
P2P, SQLite™ [13] and ORMLite™ [14] will be used for
creating the prototype. The Proactive Engine will run as a
background service.

VII. CONCLUSION AND FUTURE WORK
In this work-in-progress, we have identified and

described a few of the important features and characteristics
of a model that achieves to integrate proactive, self-adaptive
and context-aware features into software systems. With the
proposed model, the user is focusing more on how to interact

Figure 4. An example, in pseudo-code, of a Proactive Rule

25Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 33 / 143

with the application and not how to manage and configure
the system.

A. Challenges Ahead
Two of the most challenging points are to ensure the

communication between the components of a LPE and to
design proactive scenarios, while taking in account
important factors like user mobility, different computing
capabilities of various devices and privacy issues.

B. Future work
A case-study based evaluation will follow for validating

all the characteristics of the presented model and for
answering to some research questions such as whether or
not the model is correctly providing routines in a context-
adaptive manner, or if the parts of the model are really
taking into account the user’s preferences, or if the model
has self-adaptive properties that allow it to modify its
behavior.

REFERENCES
[1] M. Salehie and L. Tahvildari, “Self-adaptive software:

Landscape and research challenges”. ACM Transactions on
Autonomous and Adaptive Systems, 2009, vol. 4, pp. 1-42.

[2] Y. Brun et al., “Software Engineering for Self-Adaptive
Systems: A Research Roadmap” in Software Engineering for
Self-Adaptive Systems, Lecture Notes In Computer Science,
Springer, 2009, vol. 5525, pp. 48-70.

[3] S. Dobson et al., “A survey of autonomic communications”.
ACM Trans. Auton. Adapt. Syst., 2006, vol. 1, pp. 223-259.

[4] B.H.C. Cheng et al., “Engineering Self-Adaptive Systems
through Feedback Loops” in Software Engineering for Self-

Adaptive Systems, Lecture Notes In Computer Science,
Springer, 2009, vol. 5525, pp. 1-26.

[5] D. Tennenhouse, “Proactive Computing”. Communications
of the ACM, 2000, vol. 43, issue 5, pp. 43-50.

[6] A. Oulasvirta and A. Salovaara, “Six modes of proactive
resource management: a user-centric typology for proactive
behaviors”, in Proc. NordiCHI 2004, ACM Press, pp. 57-60.

[7] D. Zampunieris, “Implementation of a Proactive Learning
Management System”, in Proc. E-learn 2006, AACE Press,
pp. 3145-3151.

[8] S. Coronado and D. Zampunieris, “Towards a proactive
learning management system using early activity detection”.
In SITE08, AACE Publishing, 2008, vol. 1, pp. 306-311.

[9] R. Dobrican and D. Zampunieris, “Supporting collaborative
learning inside communities of practive through proactive
computing”, in Proc. EDULEARN13, 2013, pp. 5824-5833.

[10] R. Dobrican, S. Reis, and D. Zampunieris, “Empirical
Investigations on Community Building and Collaborative
Work inside a LMS using Proactive Computing” in Proc. E-
learn 2013, vol. 1, pp. 1840-1852.

[11] D. Shirnin, S. Reis, and D. Zampunieris, “Experimentation of
Proactive Computing in Context Aware Systems: Case Study
of Human-Computer Interactions in e-Learning
Environment”. IEEE CogSIMA, Feb. 2013, pp. 269-276.

[12] Moodle - Modular Object-Oriented Dynamic Learning
Environment. [retrieved: April, 2014]. Available from:
https://moodle.org/

[13] SQLite Framework. [retrieved: April, 2014]. Available from:
http://www.sqlite.org/

[14] ORMLite - Lightweight Object Relational Mapping (ORM)
Java Package. [retrieved: April, 2014]. Available from: http://
http://ormlite.com/

26Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 34 / 143

DAiSI—A Component Model and Decentralized Configuration Mechanism for
Dynamic Adaptive Systems

Holger Klus
Technische Universität Clausthal

Clausthal-Zellerfeld, Germany
holger.klus@tu-clausthal.de

Andreas Rausch
Technische Universität Clausthal

Clausthal-Zellerfeld, Germany
andreas.rausch@tu-clausthal.de

Abstract— Dynamic adaptive systems are systems that change
behavior according to the needs of the user during run time,
based on context information. Since it is not feasible to develop
these systems from scratch every time, a component model
enabling dynamic adaptive systems is called for. Moreover, an
infrastructure is required that is capable of wiring dynamic
adaptive systems from a set of components in order to provide
a dynamic and adaptive behavior to the user. In this paper we
present just such an infrastructure or framework—called
Dynamic Adaptive System Infrastructure (DAiSI). The focus of
the paper is on the underlying component model and the
decentralized configuration mechanism. We will present an
example scenario illustrating the adaptation capabilities of the
framework we introduce.

Keywords-dynamic adaptive systems; component model;
component composition; adaptation; componentware;
component container; decentralized configuration.

I. INTRODUCTION

Software-based systems pervade our daily life—at work
as well as at home. Public administration or enterprise
organizations can scarcely be managed without software-
based systems. We come across devices executing software
in nearly every household. The continuous increase in size
and functionality of software systems has now made some of
them among the most complex man-made systems ever
devised [1].

In the last two decades the trend towards “everything,
every time, everywhere” has been dramatically increased
through a) smaller mobile devices with higher computation
and communication capabilities, b) ubiquitous availability of
the Internet (almost all devices are connected with the
Internet and thereby connected with each other), and c)
devices equipped with more and more connected, intelligent
and sophisticated sensors and actuators.

 Nowadays these devices are increasingly used within an
organically grown, heterogeneous, and dynamic IT
environment. Users expect them not only to provide their
primary services but also to collaborate autonomously with
each other and thus to provide real added value. The
challenge is therefore to provide software systems that are
robust in the presence of increasing challenges such as
change and complexity [2].

The reasons for the steady increase in complexity are
twofold: On the one hand, the set of requirements imposed
on software systems is becoming larger and larger as the
extrinsic complexity increases, in the form of, for example,
additional functionality and variability. In addition, the
structures of software systems—in terms of size, scope,
distribution and networking of the system among other
things—are themselves becoming more complex, which
leads to an increase in the intrinsic complexity of the system.

Change is inherent, both in the changing needs of users
and in the changes which take place in the operational
environment of the system. Hence it is essential that our
systems be able to adapt as necessary to continue to satisfy
user expectations and environmental changes in terms of an
evolutionary change. Dynamic change, in contrast to
evolutionary change, occurs while the system is operational.
Dynamic change requires that the system adapt at run time.

Since the complexity and change may not permit human
intervention, we must plan for automated management of
adaptation. The systems themselves must be capable of
determining what system change is required, and in initiating
and managing the change process wherever possible. This is
the aim of self-managed systems.

Self-managed systems are those capable of adapting to
the current context as required though self-configuration,
self-healing, self-monitoring, self-tuning, and so on. These
are also referred to as self-x, autonomic systems. We call
them dynamic adaptive systems.

Providing dynamic adaptive systems is a great challenge
in software engineering [2]. In order to provide dynamic
adaptive systems, the activities of classical development
approaches have to be partially or completely moved from
development time to run time. For instance, devices and
software components can be attached to a dynamic adaptive
system at any time. Consequently, devices and software
components can be removed from the dynamic adaptive
system or they can fail as the result of a defect. Hence, for
dynamic adaptive systems, system integration takes place
during run time.

To support the development of dynamic adaptive systems
a couple of infrastructures and frameworks have been
developed, as discussed in a related work section, Section 2.
In our research group we have also developed a framework
for dynamic adaptive (and distributed) systems, called DAiSI

ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 27

 35 / 143

(Dynamic Adaptive System Infrastructure). The first version
of DAiSI was implemented and published in 2006/07 [15],
[10], [14] , [11]. Based on the DAiSI framework a couple of
dynamic adaptive systems (research and industrial
demonstrators) were developed and evaluated within the
following domains: assisted sport training systems [3],
emergency management systems [7], [9], assisted living
systems for elderly people [8], [10], intelligent beer
dispensing systems [5], [6], and airport baggage management
system [12], [13], [11]. All of these systems were exhibited
at CeBIT, such as [4]. Some of them were successfully
transformed into products, for instance [5] and [6].

Based on the evaluation results a couple of drawbacks
were identified. I) DAiSI’s component model was not able to
handle manage service cardinalities, such as exclusive and
shared use of a specific service or service reference sets.
Most of the applications realized needed service
cardinalities. Due to the absence of service cardinalities we
had to create workarounds. II) DAiSI’s dynamic
configuration mechanism was realized as a centralized
component. The centralized configuration component was
easy to implement but obviously it turned out to be a
bottleneck.

For that reasons we have developed and implemented an
improved version of the DAiSI framework. It contains a
sophisticated component model including service
cardinalities and a decentralized system configuration
mechanism. In this paper the new version of the DAiSI
framework will be presented.

The rest of the paper is structured as follows: After a
short description of the related work we provide an overview
of the DAiSI framework. In the following three subsections
we will introduce DAiSI’s main essential: a domain model,
an adaptive component model, and a decentralized dynamic
configuration mechanism. Then we describe a small sample
application to illustrate the decentralized dynamic
configuration mechanism of the adaptive components. A
short conclusion will round the paper up.

II. RELATED WORK

Component-based software development, component
models and component frameworks provide a solid approach
to support evolutionary changes to systems. Components are
the units of deployment and integration. During design time
components may be added or removed from a system [16].

However, dynamic changes, e.g. adding or removing
components from a system during run time is not direct
support. Service-oriented approaches promise a more
flexible approach for dynamic changes. Service users query
for services within a service directory. Once they have found
the corresponding service they can dynamically connect
themselves to the service [17].

Unfortunately in service-oriented approaches the
components are responsible for the dynamic adaptive
behavior. They have to query for the proper services, verify
that the services fit the ones they are looking for and connect
themselves to the corresponding services. For that reason a
couple of frameworks have been developed. Those
frameworks support the component configuration during run

time and thereby form dynamic adaptive systems. CONIC
and REX provide a description technique to describe an
initial system configuration and system adaptions during run
time [18], [19].

Figure 1. Core elements of the DAiSI framework.

Current frameworks such as ProAdapt [20] and
Config.NETServices [21] have a more generic adaption and
configuration mechanism. Components that were not known
during the design-time of the system, are added and removed
from the dynamic adaptive system during run time.
Therefore a generic component configuration mechanism is
provided by the framework. As with our first version of the
DAiSI framework, these frameworks are based on a
centralized configuration mechanism. Moreover the
underlying component model is restricted—for instance the
exclusive usage of services cannot be described.

III. DAISI – DYNAMIC ADAPTIVE SYSTEM

INFRASTRUCTURE

Our approach for self-organizing systems is based on a
specific framework called DAiSI [15], [10], [14] , [11].
DAiSI consists of three main parts or elements: a domain
model, an adaptive component model, and a decentralized
dynamic configuration mechanism. All three will be
introduced at a glance in the following section. The three
elements and their relationship to each other are depicted in
Figure 1 using a UML class diagram. Note, a complete
description of the DAiSI framework can be found in [22].

ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 28

 36 / 143

A. Domain Model

As in other domains, such as the network domain,
physical connectors (like the RJ 45 connector) and their pin
configurations are standard and well known by all
component vendors. A similar situation can be found in the
operating system domain: The interface for printer drivers is
standardized and published by the operating system vendor.
Third-party printer vendors adhere to this interface
specification to create printer drivers that are plugged into
the operating system during run time.

The same principle is used in the DAiSI framework: The
domain model contains standardized and broadly accepted
interfaces in the domain. The domain model defines the
basic notions and concepts of the domain shared by all
components. This means the domain model provides the
foundation for the dynamic configuration of the adaptive
system and the available components.

The domain model, as shown in Figure 1, consists of the
DomainInterface and DomainArchitecture classes. The
domain model itself is represented by an instance of the
DomainArchitecture class. A domain model contains a set of
domain interfaces, represented by an instance of the class
DomainInterface.

Domain interfaces contain syntactical information like
method signatures or datatypes occuring in the interfaces. In
addition they may also contain a behavioral specification of
the interface following the design by contract approach, for
instance using pre- and postconditions and invariants to
describe the functional behavior of a domain interface [9].

Usually components need services from other
components to provide their own service within the dynamic
adaptive system. To indicate which services a component
provides and requires it refers to the corresponding
DomainInterface. As components providing services and
components requiring services refer to the same domain
interface description DAiSI is able to identify those and bind
these components together during run time.

Using simple domain interface descriptions the
correctness of the binding can only be guaranteed on a
syntactical level. Once the domain interface descriptions
contain additional information about the functional behavior,
the correctness of the binding can also be guaranteed on the
behavioral level. Therefore we have developed a sophistic
approach based on run-time testing. Further information of
DAiSI’s solution to guarantee functional correctness of
dynamic adaptive systems during run time can be found in
[9], [23].

B. Adaptive Component Model

Each component in the system is represented by the
DynamicAdaptiveComponent class. Each component may
provide services to other components or use services,
provided by other components. The services a component
provides are represented by the ProvidedService class. The
services a component requires are specified by the
RequiredServiceReferenceSet class, where each instance
represents a set of required services for exactly one domain
interface. The ComponentConfiguration class of the
component model represents a mapping between services

required and provided. If all the required services of a
component configuration are available, the provided services
of that component configuration can in turn be provided to
other components. In the following subsections the
individual parts of the component model are introduced in
more detail. Afterwards, the interplay of these parts during
the configuration process will be explained.

1) Dynamic Adaptive components

Figure 2. DynamicAdaptiveComponent class.

Each component instance within the system is
represented by an instance of the class
DynamicAdaptiveComponent, see Figure 2. By calling the
install or uninstall methods, a component is, respectively,
published or removed from the system. If install is called, all
other parts of that component are informed by calling the
trigger install. The framework then starts trying to resolve
dependencies on other components in order to run
ProvidedServices and provide them to other components
within the system. Each DynamicAdaptiveComponent
realizes a state machine, as shown in Figure 3 whose current
state is stored in a variable called state.

Figure 3. State machine - DynamicAdaptiveComponent class.

Two states are distinguished for
DynamicAdaptiveComponent, namely RESOLVED and
NOT_RESOLVED. In the beginning a component is in the
NOT_RESOLVED state. If, for a single
ComponentConfiguration, all dependencies to services of
other components are resolved, the trigger
configurationResolved of DynamicAdaptiveComponent is
called and the state machine switches to state RESOLVED.

ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 29

 37 / 143

Every time a state transition takes place, the abstract method,
notifyStateChanged, is called. A component developer can
override this method in order to react to certain state
transitions, e.g. by showing or fading out a graphical user
interface.

2) Component Configuration

Figure 4. ComponentConfiguration class.

Each component defines at least one
ComponentConfiguration. Figure 4 shows the corresponding
class diagram for ComponentConfiguration. The defined
ComponentConfigurations are connected to a component by
the association contains. Each ComponentConfiguration
represents a mapping between a set of required and provided
services. If all services required by a
ComponentConfiguration are available, the corresponding
provided services can be provided to other components. That
configuration is then marked as activatable. In case a
component has more than one ComponentConfiguration, an
order must be defined by the component developer. During
run time, at most one ComponentConfiguration can be
active. That one is then marked as current and only those
provided services are executed that are connected to
ComponentConfiguration, which is marked as current.

Figure 5. State machine - ComponentConfiguration class.

Each ComponentConfiguration realizes a state machine,
as shown in Figure 5, with three states, namely
NOT_RESOLVED, RESOLVING and RESOLVED. If a
ProvidedService has to be executed (e.g. because another
component needs it), the trigger mustRun of
ComponentConfiguration is called. Afterwards the trigger
mustResolve is called at each RequiredServiceReferenceSet
in order to initiate the resolving of dependencies to other
components. A RequiredServiceReferenceSet informs the
ComponentConfiguration of the current status of the
dependency resolution by calling the triggers rsrsResolved
and rsrsNotResolved. A ComponentConfiguration is in
RESOLVED state if the dependencies of all required
services are resolved, i.e. all connected
RequiredServiceReferenceSets have called the trigger
rsrsResolved. The ComponentConfiguration in turn calls
configurationResolved to inform the
DynamicAdaptiveComponent.

3) Provided Service
A component’s provided services are represented by the

class ProvidedService shown in the class diagram in Figure
6. Each one implements exactly one domain interface. For
each ProvidedService the number of service users who are
allowed to use the service in parallel can be specified. This is
done by setting the variable maxNoOfUsers to the required
value. In our component model, a service is executed for
only two reasons. The first reason is that there exist one or
more components that want to use that service. Requests for
service usage can be placed by calling the method wantsUse,
or wantsNotUse if the usage request has become invalid. If
there is a usage request for a ProvidedService, the connected
ComponentConfigurations are informed by calling the
trigger mustRun. The second reason that a service might
have to be executed is that it provides some kind of direct
benefit for end users. A component developer can set the flag
requestRun in this case (e.g. because the service realizes a
graphical user interface).

ProvidedService

- state : StatePS
- maxNoOfUsers : int
- requestRun : bool

serviceRunnable()
serviceNotRunnable()
install()
uninstall()
notifyStateChanged(StatePS newState)
+ wantsUse(RequiredServiceReferenceSet r)
+ wantsNotUse(RequiredServiceReferenceSet r)

Figure 6. ProvidedService class.

A ProvidedService realizes a state machine with three
states namely NOT_RUNNING, RUNNABLE and
RUNNING, as illustrated in Figure 7. A service is in
RUNNABLE state if it is exclusively connected to
ComponentConfigurations whose dependendies are resolved
but none of them is marked as current. This is the case for a
ComponentConfiguration that has higher priority and that is

ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 30

 38 / 143

marked as activatable. However, a service is in RUNNING
state if it is connected to a ComponentConfiguration which is
marked as current. If a ComponentConfiguration becomes
current, all connected ProvidedServices are informed by
calling the serviceRunnable trigger.

Figure 7. State machine - ProvidedService class.

4) Required Service Reference Set
A component may need functionality provided by other

components in the system. In our component model those
dependencies are specified with the
RequiredServiceReferenceSet class, shown in Figure 8. Each
instance of RequiredServiceReferenceSet represents
dependencies on a set of services that implement the same
domain interface. That domain interface is specified by the
association, refersTo. A component representing a trainer for
example may define a RequiredServiceReferenceSet that
refers to a domain interface called IAthlete in order to get
access to the training data of athletes. The minimum and
maximum number of required references to services can be
specified by setting the variables minNoOfRequiredRefs and
maxNoOfRequiredRefs.

Figure 8. RequiredServiceReferenceSet class.

A RequiredServiceReferenceSet realizes a state machine
with three states, namely NOT_RESOLVED, RESOLVING
and RESOLVED. Figure 9 visualizes this state machine. As

soon as there is a request for resolving dependencies, the
state switches to RESOLVED or RESOLVING, depending
on the value of minNoOfRequiredRefs. If it is zero, then the
requirements are fulfilled and it can switch directly to
RESOLVED. A request for dependency resolution is placed
by calling the mustResolve trigger.

Figure 9. State machine - RequiredServiceReferenceSet class.

5) Notation for DAiSI Components
To describe DAiSI components we use a compact

notation, illustrated in Figure 10. Provided services are
notated as circles, required services as semicircles,
component configurations are depicted as crossbars, and the
component itself is represented by a rectangle. Provided
services that are intended to be activated (flag requestRun is
true) are shown as a black circle.

ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 31

 39 / 143

Figure 10. Notation for DAiSI components.

The component depicted in Figure 10 thus specifies two
component configurations. The first requires exactly one
service, which implements the DomainInterface IPulse. If
such a service is available, the service variable p1 of type
IAthlete can in turn be provided to other components in the
system. If no pulse service is available, the second
configuration can still be activated because that one defines
no dependencies to other services. In that case, the athlete
component provides the service variable p2 to other
components.

C. Decentralized Dynamic Configuration Mechanism

There exist three types of relations between
RequiredServiceReferenceSets and ProvidedServices,
represented by the associations canUse, wantsUse and uses.
The set of services that implement the domain interface
referred by the RequiredServiceReferenceSet is represented
by canUse. Note, this only guarantees a syntactically correct
binding. In [9] and [23] we have shown how this approach
can be extended to guarantee functional-behaviorally correct
binding as well during run time using a run-time testing
approach.

The wantsUse set holds references to those services for
which a usage request has been placed by calling wantsUse.
And the uses set contains references to those services which
are currently in use by the component or by
RequiredServiceReferenceSet.

Each time a new service becomes available in the system,
the newService method is called with a reference to the
service as parameter. The new service is added to all canUse
sets, if the corresponding RequiredServiceReferenceSet
refers to the same DomainInterface as the ProvidedServices.
If there is a request for dependency resolution (by a call of
the mustResolve trigger), usage requests are placed at the
services in canUse by calling wantsUse and those service
references are copied to the wantsUse set. ProvidedServices

The management of these three associations—canUse,
wantsUse and uses—between RequiredServiceReferenceSets
and ProvidedServices is handled by DAiSI’s decentralized
dynamic configuration mechanism. This configuration
mechanism relays on the state machines, presented in the
previous sections, of the corresponding classes in the DAiSI
framework and their interaction. In the following section we
will first describe the local configuration mechanism
component and then the interaction between two components
for inter-component configuration.

1) Local Configuration Mechanism

Assume a given component as shown in Figure 11. The
component t of type CTrainer has a single configuration. It
provides a service of type ITrainer to the environment,
which can be used by an arbitrary number of other
components. The component requires zero to any number of
references to services of type IAthlete.

Figure 11. CTrainer component.

The boolean flag requestRun is true for the service
provided. Hence, DAiSI has to run the component and
provide the service within the dynamic adaptive system to
other components and to users. As the component requires
zero reference to services of type IAthlete, DAiSI can run the
component directly and thereby provide the component
service to other components and users as shown in the
sequence diagram in Figure 12.

Figure 12. Local configuration mechanism component.

2) Inter-Component Configuration Mechanism

Figure 13. CAthlete and CPulse components.

Now assume two components: The CAthlete component,
shown on the right hand side of Figure 13, requires zero or
one reference to a service of type IPulse. The second
component, CPulse, shown on the left hand side of Figure
13, provides a service of type IPulse. Note, this service can
only be exclusively used by a single component.

ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 32

 40 / 143

Figure 14. Inter-component configuration mechanism.

Once the CPulse component is installed or activated
within the dynamic adaptive system, DAiSI integrates the
new service in the canUse relationship of the
RequiredServiceReferenceSet r1 of the component CAthlete.
Then DAiSI informs (calling the method newService) the
CAthlete component that a new service that can be used is
available as shown in Figure 14. DAiSI indicates that
CAthlete wants to use this new service by adding this service
in the set of services that CAthlete wants to use (set wantUse
of CAthlete). Once the service runs it is assigned to the
CAthlete component which can use the service from now on
(added to the set uses of CAthlete).

IV. SAMPLE APPLICATION – SMART BIATHLON TRAINING

SYSTEM

As already mentioned we have realized and used a couple
of dynamic adaptive systems based on DAiSI. One of the
first domains for which we developed dynamic adaptive
systems was training systems for athletes. For that reason we
have chosen this domain to implement the first dynamic
adaptive system on top of the new DAiSI version.

A. Domain Model

In the desired dynamic adaptive system, athletes
(IAthlete) and trainers (ITrainer) can supervise the pulse
(IPulse) of the athlete (see Figure 15). Moreover athletes my
use ski sticks (IStick), which have gyro sensors. Once
connected with the sticks the athlete as well as the trainer can
monitor the technically appropriate use of the sticks during
skiing for the required skiing style. Once the biathlete has
reached a shooting line (IShootingLine) he is allowed to use
the shooting line only if a superviser is available
(ISupervisor).

Figure 15. Domain model - "Smart Biathlon Training System".

B. Available Components

For a simple version of the system only three component
types have been realized (see Figure 16): CPulse, CAthlete,
and CTrainer. Note that additional components have been
realized and evaluated for more sophisticated systems. For
the purposes of this paper we only use these three
components to show the decentralized configuration
mechanism.

Figure 16. Adaptive components: CPulse, CAthlete, CTrainer.

The CPulse component provides an exclusive usable
service IPulse and requires no other services from the
dynamic adaptive system. The CAthlete component provides
two services: IPerson and IAthlete. In conf2 it provides the
service, IPerson, which has the flag, requestRun, and
requires no service from the environment. In conf1 it
provides the service, IAthlete, but therefore requires a
service, IPulse. And finally the CTrainer component may
supervise an arbitrary number of athletes and thus provides a
corresponding number of ITrainer interfaces to the real
trainer, supporting him with the online training information
of the supervised athletes.

C. Decentralized Dynamic Configuration Mechanism

Assume the following situation in the dynamic adaptive
system. The component, CPulse, is activated and the
component, CAthlete, is activated, see Figure 17 As the
requestRun flag of the provided service of conf2 is set and no
additional service references are needed, this configuration is
activated and the service is provided within the dynamic
adaptive system.

ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 33

 41 / 143

Figure 17. Initial situation in the Dynamic Adaptive System.

For the higher configuration, conf1, CAthlete requires a
reference to a service of type IPulse. The CPulse component
is able to provide this service. As the provided service,
IAthlete, of configuration conf1 of component CAthlete is
not requested by any other component and has not set the
requestRun flag, this higher configuration is not activated.

Figure 18 shows the following situation: A component,
CTrainer, has been activated and integrated into our dynamic
adaptive system. In the following the decentralized dynamic
configuration mechanism is shown. Based on the interaction
between the state machines of the adaptive components the
dynamic adaptive system is reconfigured and the component
is dynamically integrated into the system.

The configuration strategy is then as follows. Each
service with requestRun flag set—in Figure 18 the new
service ITrainer of the CTrainer component—resolves the
required services transitively from the root to the leaf. Once
all required services are resolved these services are activated
(RUNNING) from the leaf to the root. If not all required
services were resolvable, the resolved services are set back to
NOT_RESOLVED. This allows other services to resolve
these services.

ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 34

 42 / 143

Figure 18. Step-by-Step decentralized dynamic configuration of the Smart

Biathlon Training System.

V. CONCLUSION

The DAiSI approach is that a developer does not have to
implement a whole dynamic adaptive system on his own.
Instead the developer can develop one or more components
for a specific domain. This is only possible if a domain
model is available as described. This domain model has to
define the interfaces between the adaptive components of the
dynamic adaptive system in the specific domain.

Based on this, the developer can develop even a single
component and define which interfaces from the domain
architecture are required or provided in the different
configurations of this component. Moreover one can develop
mock-up components providing the required interfaces in
order to test the new component during development.

To support the component development DAiSI comes
with two implementation frameworks. These frameworks
provide several helper classes enabling a quick
implementation of dynamic adaptive systems in Java as well
as in C++, concentrating on the functional features of the
component to be developed. DAiSI-based dynamic adaptive
systems can be distributed across various machines. DAiSI is
also able to establish dynamic adaptive systems across
language barriers—Java- and C++-based DAiSI components
can be linked together through DAiSI to form a dynamic
adaptive system.

Figure 19. DAiSI Dynamic Adaptive System Monitor.

In order to monitor and debug a DAiSI-based dynamic
adaptive system during development, the developer may use
the so called “Dynamic Adaptive System Configuration
Browser.” This allows to view the internal structure of the
dynamic adaptive system in a graphical tree view.

As discussed in the introduction, DAiSI was used to
realize and evaluate a couple of different applications. This
allowed two main drawbacks of DAiSI to be identified: lack
of service cardinalities and the centralized configuration
mechanism.

In this paper we have shown DAiSI’s new component
model supporting service cardinalities and the new
decentralized dynamic configuration mechanism. A first
dynamic adaptive system has been successfully implemented
in the assisted sports training domain.

Consequently, further systems will be realized based on
the new DAiSI version. Additional research is required to
establish concepts to provide a proper balance between
controllability of the system’s applications and the autonomy
of the system components participating in these applications.

ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 35

 43 / 143

REFERENCES
[1] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R.

Linger, T. Longstaff, R. Kazman, M. Klein, D. Schmidt, K.
Sullivan, and K. Wallnau. Ultra-Large-Scale Systems—The
Software Challenge of the Future. Software Engineering
Institute, Carnegie Mellon, Tech. Rep., June 2006.

[2] J. Kramer and J. Magee. A rigorous architectural approach to
adaptive software engineering. Journal of Computer Science
and Technology, 24(2):183{188, 2009}.

[3] T. Jaitner, M. Trapp, D. Niebuhr, and J. Koch, “Indoor
simulation of team training in cycling,” in ISEA 2006, E.
Moritz and S. Haake, Eds. Munich, Germany: Springer, Jul.
2006, pp. 103–108.

[4] Emergency assistance system, Webpage of the cebit exhibit
2009, http://www2.in.tu-
clausthal.de/~Rettungsassistenzsystem/, accessed 2014

[5] Intelligent beer dispensing system, Webpage of the cebit
exhibit 2010”, http://www2.in.tu-
clausthal.de/~smartschank/systembeschreibung.php, Online;
accessed 2014

[6] DIRMEIER SmartSchank, Intelligent Beer Dispensing
System, DIRMEIER GmbH,
http://www.dirmeier.de/DIRMEIER-0-0-0-1-1-1.htm, Online;
accessed 2014

[7] A. Rausch, D. Niebuhr, M. Schindler, and D. Herrling.
Emergency Management System. In Proceedings of the
International Conference on Pervasive Services 2009 (ICSP
2009), 2009.

[8] Bilateral German-Hungarian Collaboration Project on
Ambient Intelligent Systems. http://www.belami-
project.hu/~micaz/belamiproject/history/part1. Online;
accessed 2014.

[9] D. Niebuhr and A. Rausch. Guaranteeing Correctness of
Component Bindings in Dynamic Adaptive Systems based on
run-time Testing. In Proceedings of the 4th Workshop on
Services Integration in Pervasive Environments (SIPE 09) at
the International Conference on Pervasive Services 2009
(ICSP 2009). 2009.

[10] H. Klus, D. Niebuhr, and A. Rausch. A Component Model for
Dynamic Adaptive Systems. In Proceedings of the
International Workshop on Engineering of software services
for pervasive environments (ESSPE 2007), 2007.

[11] H. Klus, D. Niebuhr, and A. Rausch. Dependable and Usage-
Aware Service Binding. In Proceedings of the third
International Conference on Adaptive and Self-Adaptive
Systems and Applications (ADAPTIVE 2011), 2011.

[12] A. Rausch and D. Niebuhr. ECas News Journal, DemSy—A
Scenario for an Integrated Demonstrator in a Smart City.
2010.

[13] C. Deiters, M. Köster, S. Lange, S. Lützel, B. Mokbel, C.
Mumme, and D. Niebuhr, NTH computer science report,
DemSy—A Scenario for an Integrated Demonstrator in a
SmartCity. 2010.

[14] D. Niebuhr, H. Klus, M. Anastasopoulos, J. Koch, O. Weiß,
and A. Rausch. DAiSI—Dynamic Adaptive System
Infrastructure. Technical Report Fraunhofer IESE, 2007.

[15] M. Anastasopoulos, H. Klus, J. Koch, D. Niebuhr, and E.
Werkman. DoAmI—A Middleware Platform facilitating (Re-
)configuration in Ubiquitous Systems. In Proceedings of the
Workshop on System Support for Ubiquitous Computing
(UbiSys). 2006.

[16] C. Szyperski. Component Software. Addison Wesley
Publishing Company. 2002.

[17] M. P. Papazoglou. Service-Oriented Computing: Concepts,
Characteristics and Directions. In: Proceedings of the 4th
International Conference on Web Information Systems
Engineering (WISE 2003). 10-12 December, Rome, Italy:
IEEE Computer Society Press, 2003, S. 3–12.

[18] J. Magee, J. Kramer, and M. Sloman. Constructing
Distributed Systems in Conic. In: IEEE Transactions on
Software Engineering 15 (1989), Nr. 6, S. 663–675

[19] J. Kramer. Configuration Programming: A Framework for the
Development of Distributable Systems. In: Proceedings of
IEEE International Conference on Computer Systems and
Software Engineering (COMPEURO 90). 8-10 May 1990,
Tel-Aviv, Israel: IEEE Computer Society Press, 1990. ISBN
0818620412, S. 374–384

[20] R. R. Aschoff, and A. Zisman. Proactive adaptation of service
composition. In: H. A. Müller, L. Baresi (Hrsg.): Proceedings
of the 7th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS'12):
Zürich, Switzerland, June 4-5, 2012. Los Alamitos,
California: IEEE Computer Society Press, 2012, S. 1–10

[21] A. Rasche, A. Polze. Configuration and Dynamic
Reconfiguration of Component-based Applications with
Microsoft .NET. In: Proceedings of the 6th IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2003). 14-16 May 2003, Hakodate,
Hokkaido, Japan: IEEE Computer Society Press, 2003. ISBN
0-7695-1928-8, S. 164–171

[22] H. Klus. Anwendungsarchitektur-konforme Konfiguration
selbstorganisierender Softwaresysteme, Ph.D. Thesis,
Technische Universität Clausthal, 2013.

[23] D. Niebuhr. Dependable Dynamic Adaptive Systems:
Approach, Model, and Infrastructure. Clausthal-Zellerfeld,
Technische Universität Clausthal, Institut für Informatik.
Dissertation. 2010

ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 36

 44 / 143

An Adaptive Middleware for Near-Time Processing of Bulk Data

Martin Swientek
Paul Dowland

School of Computing and Mathematics
Plymouth University

Plymouth, UK
e-mail: {martin.swientek, p.dowland}@plymouth.ac.uk

Bernhard Humm
Udo Bleimann

Department of Computer Science
University of Applied Sciences Darmstadt

Darmstadt, Germany
e-mail: {bernhard.humm, udo.bleimann}@h-da.de

Abstract—The processing type is usually a fixed property of an
enterprise system that is decided when the architecture of the
system is designed, prior to implementing the system. This choice
depends on the non-functional requirements of the system. These
requirements are not fixed and can change over time. In this
paper, we introduce the concept of a middleware that is able
to adapt its processing type fluently between batch processing
and single-event processing. By adjusting the data granularity at
runtime, the system is able to minimise the end-to-end latency
for different load scenarios.

Keywords–adaptive middleware; message aggregation; latency;
throughput

I. INTRODUCTION

Enterprise Systems like customer-billing systems or finan-
cial transaction systems are required to process large volumes
of data in a fixed period of time. For example, a billing system
for a large telecommunication provider has to process more
than 1 million bills per day. Those systems are increasingly
required to also provide near-time processing of data to support
new service offerings.

Traditionally, enterprise systems for bulk data processing
are implemented as batch processing systems [1]. Batch pro-
cessing delivers high throughput but cannot provide near-time
processing of data, that is the end-to-end latency of such a
system is high. End-to-end latency refers to the period of time
that it takes for a business process, implemented by multiple
subsystems, to process a single business event. For example,
consider the following billing system of telecommunications
provider:

• Customers are billed once per month

• Customers are partitioned in 30 billing groups

• The billing system processes 1 billing group per day,
running 24h under full load.

In this case, the mean time for a call event to be billed by
the billing system is 1/2 month. That is, the mean end-to-end
latency of this system is 1/2 month.

A lower end-to-end latency can be achieved by using
single-event processing, for example by utilizing a message-
oriented middleware for the integration of the services that
form the enterprise system. While this approach is able to
deliver near-time processing, it is hardly capable for bulk data

processing due to the additional communication overhead for
each processed message. Therefore, message-based processing
is usually not considered for building a system for bulk data
processing requiring high throughput.

The processing type is usually a fixed property of an
enterprise system that is decided when the architecture of
the system is designed, prior to implementing the system.
This choice depends on the non-functional requirements of
the system. These requirements are not fixed and can change
during the lifespan of a system, either anticipated or not
anticipated.

Additionally, enterprise systems often need to handle load
peaks that occur infrequently. For example, think of a billing
system with moderate load over most of the time, but there are
certain events with very high load such as New Year’s Eve.
Most of the time, a low end-to-end latency of the system is
preferable when the system faces moderate load. During the
peak load, it is more important that the system can handle the
load at all. A low end-to-end latency is not as important as an
optimized maximum throughput in this situation.

In this paper, we propose a solution to this problem:

• We introduce the concept of a middleware that is able
to adapt its processing type fluently between batch
processing and single-event processing. By adjusting
the data granularity at runtime, the system is able
to minimize the end-to-end latency for different load
scenarios. (Section III)

The remainder of this paper is organized as follows. Section
II defines the considered type of system and the terms through-
put and latency. The proposed middleware and the results of
preliminary performance tests are presented in Section III.
Section IV gives an overview of other work related to this
reasearch. Finally, Section V concludes the paper and gives
and outlook to the next steps of this research.

II. BACKGROUND

We consider a distributed system for bulk data processing
consisting of several subsystems running on different nodes
that together form a processing chain, that is, the output of
subsystem S1 is the input of the next subsystem S2 and so on
(see Figure 1a).

37Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 45 / 143

S1 S3S2

(a) Single processing line

S1 S3S2

S1 S3S2

(b) Parallel processing lines

Figure 1. A system consisting of several subsystems forming a processing
chain

To facilitate parallel processing, the system can consist of
several lines of subsystems with data beeing distributed among
each line. For simplification, we consider a system with a
single processing line in the remainder of this paper.

We discuss two processing types for this kind of system,
batch processing and message-based processing.

A. Batch processing

The traditional operation paradigm of a system for bulk
data processing is batch processing (see Figure 2). A batch
processing system is an application that processes bulk data
without user interaction. Input and output data is usually
organized in records using a file- or database-based interface.
In the case of a file-based interface, the application reads a
record from the input file, processes it and writes the record
to the output file.

S1 S2 S3

Figure 2. Batch processing

B. Message-base processing

Messaging facilitates the integration of heterogeneous ap-
plications using asynchronous communication. Applications
are communicating with each other by sending messages (see
Figure 3). A messaging server or message-oriented middleware
handles the asynchronous exchange of messages including an
appropriate transaction control [2].

S1 S2 S3

Figure 3. Message-based processing

Message-based systems are able to provide near-time pro-
cessing of data due to their lower latency compared with
batch processing systems. The advantage of a lower latency

comes with a performance cost in regard to a lower maxi-
mum throughput because of the additional overhead for each
processed message. Every message needs, amongst others,
to be serialized and deserialized, mapped between different
protocols and routed to the appropriate receiving system.

C. End-to-end Latency vs. Maximum Throughput

Throughput and latency are performance metrics of a
system. We are using the following definitions of maximum
throughput and latency in this paper:

• Maximum Throughput
The number of events the system is able to process in
a fixed timeframe.

• End-To-End Latency
The period of time between the occurrence of an
event and its processing. End-to-end latency refers
to the total latency of a complete business process
implemented by multiple subsystems. The remainder
of this paper focusses on end-to-end latency using the
general term latency as an abbreviation.

Latency and maximum throughput are opposed to each
other given a fixed amount of processing resources. High
maximum throughput, as provided by batch processing, leads
to high latency, which impedes near-time processing. On the
other hand, low latency, as provided by a message-based
system, cannot provide the maximum throughput needed for
bulk data processing because of the additional overhead for
each processed event.

III. AN ADAPTIVE MIDDLEWARE FOR NEAR-TIME
PROCESSING OF BULK DATA

This section introduces the concept of an adaptive middle-
ware which is able to adapt its processing type fluently between
batch processing and single-event processing. It continuously
monitors the load of the system and controls the message
aggregation size. Depending on the current aggregation size,
the middleware automatically chooses the appropriate service
implementation and transport mechanism to further optimize
the processing.

A. Middleware Components

Figure 4 shows the components of the middleware, that
are based on the Enterprise Integration Patterns described by
Hohpe et al. [3].

1) Aggregator: The Aggregator is a stateful filter which
stores correlated messages until a set of messages is complete
and sends this set to the next processing stage in the messaging
route.

There are different options to aggregate messages, which
can be implemented by the Aggregator:

• No correlation: Messages are aggregated in the order
in which they are read from the input message queue.
In this case, an optimized processing is not simply
possible.

38Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 46 / 143

S1
Endpoint A

S1
Endpoint BAggregator Router

Queue

Queue

Queue

Messages Message
Aggregate

Figure 4. Components of the Adaptive Middleware. We are using the notation defined by [3]

• Technical correlation: Messages are aggregated by
their technical properties, for example by message size
or message format.

• Business correlation: Messages are aggregated by
business rules, for example by customer segments or
product segments.

2) Feedback Loop: To control the level of message aggre-
gation at runtime, the middleware uses a closed feedback loop
with the following properties (see Figure 5):

• Input (u): Current aggregation size

• Output (y): Change of queue size measured between
sampling intervals

• Set point (r): The change of queue size should be
zero.

Ultimately, we want to control the average end-to-end
latency depending on the current load of the system. The
change of queue size seems to be an appropriate quantity
because it can be directly measured without a lag at each
sampling interval, unlike the average end-to-end latency.

Controller System
y = Net change of queue sizer = 0 e = r-y u = Aggregation size

Figure 5. Feedback loop to control the aggregation size

The concrete architecture and tuning of the feedback loop
and the controller is subject to our ongoing research.

3) Router: Depending on the size of the aggregated mes-
sage, the Router routes the message to the appropriate service
endpoint, which is either optimized for batch or single event
processing.

When processing data in batches, especially when a batch
contains correlated data, there are multiple ways to speed up
the processing:

• To reduce I/O, data can be pre-loaded at the beginning
of the batch job and held in memory.

• Storing calculated results for re-use in memory

• Use bulk database operations for reading and writing
data

With high levels of message aggregation, it is not preferred
to send the aggregated message payload itself over the message

bus using Java Message Service (JMS) or SOAP. Instead, the
message only contains a pointer to the data payload, which
is transferred using File Transfer Protocol (FTP) or a shared
database.

B. Prototype Implementation

To evaluate the proposed concepts of the adaptive middle-
ware, we have implemented a prototype of a billing system
using Apache Camel [4] as the messaging middleware.

Figure 6 shows the architecture of the prototype system.

Camel

Billing Route
ActiveMQ

Event
Generator

Tomcat

Costed Events

Master Data

Rating
Service

Tomcat

Mediation
Service

SO
AP

SO
AP

JPA

JMS

JM
S

CDR NCDR Costed
Event

MySQL

MySQL

Qeue
Aggregator Router

Figure 6. Architecture of the prototype system

Using this prototype, we have done some preliminary
performance tests to examine the impact of message aggre-
gation on latency and throughput. For each test, the input
message queue has been pre-filled with 100.000 events. We
have measured the total processing time and the processing
time of each message with different static message aggregation
sizes.

Figure 7 shows the impact of different aggregation sizes
on the throughput of the messaging prototype. The throughput
increases constantly for 1 < aggregation_size <= 50 with a
maximum of 673 events per second with aggregation_size =
50. Higher aggregation sizes than 50 do not further increase
the throughput, it stays around 390 events per second.

The increased throughput achieved by increasing the ag-
gregation size comes with the cost of a higher latency. Figure
8 shows the impact of different aggregation sizes on the 95th
percentile latency of the messaging prototype.

39Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 47 / 143

Figure 7. Impact of different aggregation sizes on throughput

Figure 8. Impact of different aggregation sizes on latency

An aggregation size of 50, resulting in the maximum
throughput of 673 events per seconds, shows a 95th percentile
latency of about 68 seconds.

The results indicate that there is an optimal range for
the aggregation size to control the throughput and latency of
the system. Setting the aggregation size higher than a certain
threshold leads to a throughput drop and latency gain. In case
of our prototype, this threshold is between an aggregation size
of 85 and 90. This threshold needs to be considered by the
control strategy. We are currently investigating the detailed
causes of this finding.

IV. RELATED WORK

Research on messaging middleware currently focusses on
Enterprise Services Bus (ESB) infrastructure. An ESB is an
integration plattform that combines messaging, web services,
data transformation and intelligent routing to connect multiple
heterogeneous services [5]. It is a common middleware to
implement the integration layer of an Service Oriented Archi-
tecture (SOA) and is available in numerous commercial and
open-source packages.

Several research has been done to extend the static service
composition and routing features of standard ESB implemen-
tations with dynamic capabilities decided at run-time, such as
dynamic service composition [6], routing [7] [8] [9] and load
balancing [10].

Work to manage and improve the Quality of Service
(QoS) of ESB and service-based systems in general is mainly
focussed on dynamic service composition and service selection
based on monitored QoS metrics such as throughput, availabil-
ity and response time [11]. Gonzaléz et al. [12] propose an
adaptive ESB infrastructure to adress QoS issues in service-
based systems which provides adaption strategies for response
time degradation and service saturation, such as invoking
an equivalent service, using previously stored information,
distributing requests to equivalent services, load balancing and
deferring service requests.

The adaption strategy of our middleware is to change the
message aggregation size based on the current load of the
system. Aggregating or batching of messages is a common
approach to increase the throughput of a messaging system, for
example to increase the throughput of total ordering protocols
[13] [14] [15] [16].

A different solution to handle infrequent load spikes is
to automatically instantiate additional server instances, as
provided by current Platform as a Service (PaaS) offerings
such as Amazon EC2 [17] or Google App Engine [18]. While
scaling is a common approach to improve the performance of
a system, it also leads to additional operational and possible
license costs. Of course, our solution can be combined with
these auto-scaling approaches.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a middleware that is
able to adapt itself to changing load scenarios by fluently
shifting the processing type between single event and batch
processing. The middleware uses a closed feedback loop to
control the end-to-end latency of the system by adjusting
the level of message aggregation depending on the current
load of the system. Determined by the aggregation size of
a messsage, the middleware routes a message to appropriate
service endpoints, which are optimized for either single-event
or batch processing.

To evaluate the proposed middleware concepts, we have
implemented a prototype system and performed preliminary
performance tests. The tests show that throughput and latency
of a messaging system depend on the level of data granularity
and that the throughput can be increased by increasing the
granularity of the processed messages.

Next steps of our research are the implementation of the
proposed middleware including the evaluation and tuning of
different controller architectures, performance evaluation of the
proposed middleware using the prototype and developing a
conceptional framework containing guidelines and rules for
the practitioner how to implement an enterprise system based
on the adaptive middleware for near-time processing

REFERENCES

[1] J. Fleck, “A distributed near real-time billing environment,” in Telecom-
munications Information Networking Architecture Conference Proceed-
ings, 1999. TINA ’99, 1999, pp. 142–148.

[2] S. Conrad, W. Hasselbring, A. Koschel, and R. Tritsch, Enterprise
Application Integration: Grundlagen, Konzepte, Entwurfsmuster, Prax-
isbeispiele. Elsevier, Spektrum, Akad. Verl., 2006.

40Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 48 / 143

[3] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[4] Apache Camel. http://camel.apache.org. [retrieved: March 2014].
[5] D. Chappell, Enterprise Service Bus. Sebastopol, CA, USA: O’Reilly

Media, Inc., 2004.
[6] S.-H. Chang, H. J. La, J. S. Bae, W. Y. Jeon, and S. D. Kim, “Design of

a dynamic composition handler for esb-based services,” in e-Business
Engineering, 2007. ICEBE 2007. IEEE International Conference on,
Oct 2007, pp. 287–294.

[7] X. Bai, J. Xie, B. Chen, and S. Xiao, “Dresr: Dynamic routing in
enterprise service bus,” in e-Business Engineering, 2007. ICEBE 2007.
IEEE International Conference on, Oct 2007, pp. 528–531.

[8] B. Wu, S. Liu, and L. Wu, “Dynamic reliable service routing in
enterprise service bus,” in Asia-Pacific Services Computing Conference,
2008. APSCC ’08. IEEE, Dec 2008, pp. 349–354.

[9] G. Ziyaeva, E. Choi, and D. Min, “Content-based intelligent routing
and message processing in enterprise service bus,” in Convergence
and Hybrid Information Technology, 2008. ICHIT ’08. International
Conference on, Aug 2008, pp. 245–249.

[10] A. Jongtaveesataporn and S. Takada, “Enhancing enterprise service
bus capability for load balancing,” W. Trans. on Comp., vol. 9, no. 3,
Mar. 2010, pp. 299–308. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1852392.1852401

[11] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tam-
burrelli, “Dynamic qos management and optimization in service-based
systems,” Software Engineering, IEEE Transactions on, vol. 37, no. 3,
May 2011, pp. 387–409.

[12] L. González and R. Ruggia, “Addressing qos issues in service based
systems through an adaptive esb infrastructure,” in Proceedings of
the 6th Workshop on Middleware for Service Oriented Computing,
ser. MW4SOC ’11. New York, NY, USA: ACM, 2011, pp. 4:1–4:7.
[Online]. Available: http://doi.acm.org/10.1145/2093185.2093189

[13] R. Friedman and R. V. Renesse, “Packing messages as a tool for boost-
ing the performance of total ordering protocls,” in Proceedings of the
6th IEEE International Symposium on High Performance Distributed
Computing, ser. HPDC ’97. Washington, DC, USA: IEEE Computer
Society, 1997, pp. 233–.

[14] R. Friedman and E. Hadad, “Adaptive batching for replicated servers,”
in Reliable Distributed Systems, 2006. SRDS ’06. 25th IEEE Sympo-
sium on, 2006, pp. 311–320.

[15] P. Romano and M. Leonetti, “Self-tuning batching in total order
broadcast protocols via analytical modelling and reinforcement learn-
ing,” in Computing, Networking and Communications (ICNC), 2012
International Conference on, Jan 2012, pp. 786–792.

[16] D. Didona, D. Carnevale, S. Galeani, and P. Romano, “An extremum
seeking algorithm for message batching in total order protocols,” in
Self-Adaptive and Self-Organizing Systems (SASO), 2012 IEEE Sixth
International Conference on, Sept 2012, pp. 89–98.

[17] “Amazon ec2 auto scaling,” http://aws.amazon.com/autoscaling, [re-
trieved: March 2014].

[18] Auto scaling on the google cloud platform.
https://cloud.google.com/developers/articles/auto-scaling-on-the-
google-cloud-platform. [retrieved: March 2014].

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 49 / 143

Intermittently Updated Simplified Proportionate Affine Projection Algorithm

Felix Albu, Henri Coanda, Dinu Coltuc, Marius Rotaru
Dept. of Electronics

Valahia University of Targoviste
Targoviste, Romania

E-mails: {felix.albu, coanda, coltuc}@valahia.ro; marius.rotaru@gmail.com

Abstract—In this paper, an intermittent update interval for
filter coefficients and a simplified output error vector
computation is proposed for a proportionate affine projection
algorithm. It is shown that the proposed algorithm has good
convergence performance and much smaller computation
complexity than other proportionate-type APAs. Also, the
accuracy of its implementation using the logarithmic number
system was investigated. We demonstrated the performance of
the proposed algorithm for echo cancellation and adaptive
feedback cancellation applications.

Keywords-Proportionate-type algorithms; adaptive filters;
affine projection algorithm; logarithmic number system.

I. INTRODUCTION
There are many adaptive algorithms proposed for

adaptive systems [1][2]. The most used algorithms are: the
Normalized Least Mean Square (NLMS) algorithm, the
Affine Projection Algorithm (APA) [3], and fast versions of
APA for various applications like echo cancellation, hearing
aids and active noise control (e.g., [4]–[9]). It is known that
in echo cancellation systems, the echo paths are often sparse
[1]. An intuitive idea for this case is to exploit the sparseness
of the echo path by updating filter coefficients independently
and proportionally to their estimated magnitude. One of the
first such algorithms was proposed by Duttweiler [10], and it
was called the Proportionate Normalized Least-Mean-Square
(PNLMS) algorithm. Several proportionate algorithms were
designed (e.g., [11], µ- PAPA [12], Improved PAPA
(IPAPA) [13], Memory IPAPA (MIPAPA) [14],

MIPAPA (MMIPAPA) [15], and Approximated
MIPAPA (AMIPAPA) [16]). The latter algorithm is still too
complex, and an approximation for the output error
computation of AMIPAPA was proposed in [17]. It was
termed Simplified AMIPAPA (SAMIPAPA) and the
complexity reduction come at a price of a reduced
performance by several dB, especially when using speech
signals and sparse echo paths. In [18], an algorithm that uses
a combination of recursive filtering, dichotomous coordinate
descent iterations and an approximation of a matrix in order
to further reduce its numerical complexity in terms of
multiplications was also proposed.

law

µ-law

Therefore, a new proportionate algorithm with little
performance degradation that incorporates an approximation
of the output error and an intermittent update of filter
coefficients depending on a computed threshold [19][20] is

proposed in this paper. The algorithm proposed by Albu et
al. in [20] used an intermittent update on an affine projection
algorithm. It is shown that the threshold derived for the
affine projection algorithm by Shin, Sayed & Song in [21] it
is good enough for the proposed proportionate APA. The
new algorithm is termed Intermittently Updated SAMIPAPA
(IUSAMIPAPA). IUSAMIPAPA distinguishes from the
algorithm proposed by Albu et al. in [20], called
Intermittently Updated APA (IU-APA), because it is a
proportionate-type algorithm and uses other steady-state
MSE estimation formula. Also, the update formula of [20] is
related linearly to the logarithm of the estimated variance of
the filter output error. IUSAMIPAPA is different from the
algorithm proposed by Albu in [18] because it does not
include DCD iterations and uses other approximation. The
algorithm proposed in Albu and Kwan [22] is a sign
algorithm without an intermittent weights update unlike the
proportionate algorithm presented in this paper.

The paper is organized as follows. Section 2 presents a
short overview of the proportionate-type algorithms for echo
cancellation. In Section 3, SAMIPAPA is derived and the
proposed intermittently updated SAMIPAPA is
investigated. In Section 4, the proposed algorithm is
compared with AMIPAPA and SAMIPAPA in the context
of echo cancellation and adaptive feedback cancellation.
Also, the accuracy of its simulation using the logarithmic
number system is verified. Finally, the conclusions are
given in Section 5.

II. PROPORTIONATE-TYPE ALGORITHMS
In an echo cancellation system, we consider the far-end

signal x(n), and the reference signal d(n), where n is the time
index. The adaptive FIR filter is given by the coefficients

vector () () () ()0 1 1
ˆ ˆ ˆˆ , ,...,

T
Ln h n h n h n−⎡ ⎤= ⎣ ⎦h , where L is the

length of the adaptive filter and superscript T denotes
transposition. The error signal is given by [1]

 (1) () () () ()ˆ 1Te n d n n n= − −h x

where x(n) = [x(n), x(n–1),…, x(n–L+1)]T is a vector
containing the L most recent samples of the input signal. If p
is the projection order, the error signal vector is given by

42Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 50 / 143

 , (2) () () () ()ˆ 1Tn n n n= − −e d X h

where is the input

signal matrix, is
the reference signal vector, and

 is the error vector.

() () () (), 1 , , 1n n n n p⎡ ⎤= − −⎣ ⎦X x x x… +

⎤

⎦

() () () (), 1 , , 1
T

n d n d n d n p⎡ ⎤= − − +⎣ ⎦d …

() () () (), 1 , , 1
T

n e n e n e n p⎡= − − +⎣ ⎦e …
The coefficients of the proportionate-type affine

projection algorithms (PAPA) are updated as follows [18]

 , (3)
() () () ()

() () () ()
1

ˆ ˆ 1 1

 1 ,T
p

n n n n

n n n n

µ

δ
−

= − + − ×

⎡ ⎤+ −⎣

h h G X

I X G X e

where G(n – 1) is an L x L diagonal matrix, δ is a

regularization constant, µ is the normalized step-size
parameter, and Ip is the p x p identity matrix. In the case of
the improved PAPA (IPAPA) [13], the diagonal elements of
G(n – 1), denoted by gl(n – 1), are evaluated as

 () ()
()
()1

0

ˆ 111 1
ˆ2 2 1

l
l L

ii

h n
g n

L h n
α α ,

ξ−
=

−−
− = + +

− +∑
 (4)

where 1 1α− ≤ < , and ξ is a small positive

constant. Let us denote [14]
0 l L≤ < −1

⎣

P G X

g x g x: … :
 (5)

() () ()
() () () ()

1

 1 1 1 ,

n n n

n n n n p

= −

= − − − +⎡ ⎤⎦

where g(n – 1) is a vector containing the diagonal
elements of G(n – 1) and the operator : denotes the
Hadamard product [14]. is approximated with ()nP

 () () () () ()' 1 ...n n n n p n p= − − − +⎡ ⎤⎣ ⎦P g x g x: : 1 , (6)

 where g(n – k) are the vectors containing the diagonal
elements of the matrixes G(n – k), with k = 1, 2, …, p [14].
We have

 () () () (1' 1 'n n n n−⎡ ⎤= − −⎣ ⎦P g x P:)1 ,

1 ,⎤⎦

)

 (7)

where the matrix

 (8)
()

() () () ()
1' 1

2 1 ...

n

n n n p n p
− − =

⎡ − − − − +⎣

P

g x g x: :

contains the first p – 1 columns of (' 1n −P . The
MIPAPA equations are written as in [16]:

 (9) () () ()'
1

T
pn nδ= +S I X P n

n

n

 (10) () () () () ()' 1
1

ˆ ˆ 1n n n nµ −= − +h h P S e

The coefficients of the approximated MIPAPA
(AMIPAPA) are given by [16]

 (11) () () () () ()' 1
2

ˆ ˆ 1n n n nµ −= − +h h P S e

 where, ()2 nS , is updated by changing both its first row

and column with and adding () ():,1'T nX P n δ to the first

element. ():,1' nP denotes the first column of ()' nP and is

given by () ()1n −g x: n . The bottom-right () ()1 1p p− × −

submatrix of ()2 nS is replaced with the top-left

() ()1p p 1− × − submatrix of [16]. (2 1n −S)

III. INTERMITTENTLY UPDATED SIMPLIFIED AMIPAPA

Firstly, an important numerical complexity reduction is
obtained if () () () (ˆ 1Tn n n n)= −e d X h − is approximated
as in the original fast affine projection algorithm [4]

 () () () (); 1 1 ,
TTn e n nµ⎡ ⎤= − −⎣ ⎦e e (12)

()1n −ewhere represents the first elements of 1p −

()1n −e . The algorithm proposed in [17] used (12) instead
of (2) and was called simplified AMIPAPA (SAMIPAPA).

The numerical complexity of the following algorithms in
terms of multiplications is presented in equations (13)-(15)
(=O(pmP 3) [23] indicates the numerical complexity in terms
of multiplications):

 ()MIPAPA 4 1 mC L p p P= + + + (13)

 ()AMIPAPA 3 2 mC L p p P= + + + (14)

 ()SAMIPAPA 2 3 2 .mC L p p P= + + + (15)

It can be noticed that the complexity of SAMIPAPA is
roughly half of that of MIPAPA for typical echo cancellation
systems where L p� . However, the complexity can be
further reduced using the intermittently updated procedure
proposed in [19]. Thus, the update equation of (11) can be
replaced by

43Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 51 / 143

 () () () () ()
()

' 1
2

ˆ 1 , if m ˆ
ˆ 1 otherwise

nn n n n n i
n

n

µ −⎧ − + =⎪= ⎨
−⎪⎩

h P S e
h

h

od 0

 (16)

 where is the computed update interval at time n.
Starting with an initial update interval of 1, is given by

ni

ni

[] ()
[]

2
1

1

max 1, 1 , if

min 1, otherwise
n

n
n M

i e n
i

i i

γ−

−

⎧ − ≥⎪= ⎨
+⎪⎩

 (17)

 where Mi is the maximum update interval and γ is the
threshold [19] computed as in (18)

2

2 ,
2

v
v

pµσ
γ σ

µ
= +

−
 (18)

 where 2
vσ is estimated during silences [24]. The

numerical savings are important because (11) requires
mLp P+ multiplications and the filter can have hundreds of

coefficients in echo cancellation systems. The update of the
filter coefficients from (16) is performed only when

and not at every iteration like in (11). The new
algorithm is termed Intermittently Updated SAMIPAPA
(IUSAMIPAPA). The algorithm can have a periodic update
if the update interval is fixed to .

 mod 0nn i =

1ni >

IV. SIMULATION RESULTS

Most of the simulations were performed in the context of
echo cancellation, where the input signal is either white
Gaussian noise or speech. The first impulse response from
ITU-T G168 Recommendation [25] is padded with zeros in
order to have 512 coefficients. A white Gaussian noise with
a SNR = 30 dB is added at the output of the echo path. The
performance measure used is the normalized misalignment
(in dB), defined as 20log10(||h – ĥ(n)||2/||h||2), where h
denotes the true impulse response of the echo path. In the
simulations with white noise, the performance curves are
averaged over 10 independent trials. The regularization
constant is δ = 0.01, p = 8 and α = 0. In all the simulations
where the input signal is a white signal, the step size of all
algorithms is 0.11.

Figure 1 shows the misalignment performance of the
periodic SAMIPAPA with fixed periodically updated filter
coefficients. It can be noticed that the larger the update
interval, the lower steady-state error and the slower the
convergence speed. Therefore, similar conclusions as those
of [18] and [19] are obtained and this indicates that a
variable updating interval for SAMIPAPA could lead to a

good compromise between fast convergence and low
steady-state error.

Figure 2 shows the misalignment curves for the
proposed IUSAMIPAPA (), SAMIPAPA, and the
periodic SAMIPAPA with . An abrupt change of the
echo path after 25000 iterations by shifting the impulse
response to the right by 12 samples was introduced in order
to verify the tracking ability of the algorithms. It can be seen
that IUSAMIPAPA has roughly the same initial
convergence as SAMIPAPA and steady-state error of the
periodic SAMIPAPA. The update of the filter weights is
made on average only on a fifth of the number of iterations.
Overall, for the investigated case, IUSAMIPAPA obtains an
impressive 35% complexity reduction over SAMIPAPA in
terms of multiplications (SAMIPAPA has 9884
multiplications, while IUSAMIPAPA has 6495
multiplications).

8Mi =
8i =

Figure 3 shows the misalignment curves for
IUSAMIPAPA for different update intervals.

Figure 1. Misalignment of periodic SAMIPAPA for different update
intervals, white noise, p = 8, L = 512, SNR = 30 dB.

Figure 2. Misalignment of SAMIPAPA, periodic SAMIPAPA, i = 8,
and IUSAMIPAPA 8iM = . Other conditions are the same as in Figure 1.

44Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 52 / 143

 Similar conclusions with those obtained in [18] and [19]
are obtained regarding the influence of Mi . It can be seen
that the time to reach steady-state increases with Mi value.

 For the considered case, the percentage of updates is
about 15% for , 9% for , and 6% for

. The overall number of updates is reduced by
increasing

8Mi = 16Mi =
32Mi =

Mi . The maximum update interval is set to the
projection order in the following simulations. An example
of computed values and their histogram for the case

 (Figure 3) is shown in Figure 4. It can be seen that
during the initial convergence, the updating intervals are
closer to 1, while they are closer to 8 in the steady-state
region.

ni
8Mi =

Figure 3. Misalignment of IUSAMIPAPA with , 8iM = 16iM = and

 respectively. Other conditions are the same as in Figure 1. 32iM =

Figure 4. Computed update interval values (upper); and histogram of
computed values (lower) ni

In Figure 5, the input signal is speech, with p = 8, the
output of the echo path is corrupted by independent white
Gaussian noise SNR = 30 dB and the echo path changes
after 0.5 seconds. The step-size for all algorithms is 0.2 for
the following simulation. It was shown in [16] that
MIPAPA has virtually identical performance with
AMIPAPA at a higher computational cost. Therefore, for
the following simulations, there is no need to plot the
misalignment curves of MIPAPA. Also, the superiority of
MIPAPA to APA for echo cancellation applications has
been proved in previous publications [14]-[16]. Figure 5
shows that the approximation used by SAMIPAPA and the
intermittent update of filter weights lead to slightly reduced
performance (1 to 3 dB for this example) in comparison
with AMIPAPA in case of a speech signal input. However,
IUSAMIPAPA offers a better performance/complexity
tradeoff than AMIPAPA, due to its reduced numerical
complexity by about 42% (7766 multiplications vs. 13460
multiplications).

Figure 5. Misalignment of the AMIPAPA, SAMIPAPA and
IUSAMIPAPA. Speech sequence, p = 8, L = 512, SNR = 30 dB, and echo
path changes at time 0.5s.

The same conclusions can be drawn for results using
colored noise as input signal, different filter lengths or
maximum projection orders.

In the next simulation, the performance of MMIPAPA
[15], AMIPAPA [16], SAMIPAPA [17] and IUSAMIPAPA
is investigated in the acoustic feedback context [26]. The
feedback path and the adaptive filter have 64 coefficients. A
delay of 60 samples and a constant gain of 30 dB in the
forward path were assumed. The sampling frequency was 16
kHz, 8M = , 0.1µ = , and 0.001δ = . The logarithmic
factor of MMIPAPA [15] was 100. It can be seen from
Figure 6, that most of the time, the performance of
IUSAMIPAPA is superior to that of MMIPAPA,
SAMIPAPA and AMIPAPA in case of a coloured input
signal. IUSAMIPAPA obtains a smaller misalignment than
the other algorithms, although has a slower convergence
speed at some moments in time.

45Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 53 / 143

Figure 6. Misalignment of MMIPAPA, AMIPAPA, SAMIPAPA, and
IUSAMIPAPA for an AFC application with coloured input signal, 8M =
and 0.1µ = .

 Figure 7 shows the same behaviour for a speech input
signal. The parameters of the algorithms are the same as
above example. It can be noticed that the performance of
MMIPAPA, AMIPAPA and SAMIPAPA is most of the
time similar. However, MMIPAPA has the highest
numerical complexity from all the investigated algorithms.
MMIP-APSA requires additional L logarithmic functions
and L additions per iteration in comparison with MIPAPA.

Figure 7. Misalignment of MMIPAPA, AMIPAPA, SAMIPAPA, and
IUSAMIPAPA for an AFC application with speech input signal, 8M =
and 0.1µ = .

 We’ve also investigated the performance of the
algorithm using 32-bit simulation using the logarithmic
number system (LNS) and compared with 32-bit floating
point results for the AFC example. The logarithmic number
system is an alternative to floating-point that offers the
potential to perform real multiplication, division and square-
root at fixed-point speed and, in the case of multiply and

divide, with no rounding error at all [27]. The logarithmic
addition and subtraction are performed with the speed and
accuracy equivalent to that of floating-point. The LNS
format compares favorably against its floating-point
counterpart, having greater range and slightly smaller
representation error [27]. Impressive speed-ups were
obtained over conventional floating point implementations
for a wide range of algorithms [28][29]. More details about
the logarithmic number system are available at
http://www.ncl.ac.uk/eece/elm.

We considered the AFC experiment results for both 32-
bit LNS and 32-bit floating point simulations. An accurate
standard for comparison of the outputs was obtained by
considering the corresponding double precision version
results. The corresponding sum of absolute errors was
computed for IUSAMIPAPA. The 32-bit LNS and 32-bit
floating-point simulations have almost identical results. This
confirmed similar conclusions obtained in the past for a
wide range of algorithms. However, the sum of absolute
errors of the 32 bit LNS implementation of IUSAMIPAPA
was about 10% smaller than that of the 32-bit floating point
implementation. Therefore, an LNS implementation could
benefit from an increased accuracy.

V. CONCLUSION AND FUTURE WORK

In this paper, a low complexity proportionate-type AP
algorithm was proposed. IUSAMIPAPA offers an excellent
convergence performance/numerical complexity compromise
in comparison with other proportionate AP algorithms. The
performance was verified on an echo cancellation and
adaptive feedback cancellation applications. Also, an
accuracy investigation of an LNS implementation was
performed. Future work will be focused on investigating the
performance of the proposed algorithm on AFC application
using two microphones in hearing devices [30] and compare
it variable projection order versions [31].

ACKNOWLEDGMENT
This work was supported by a grant of the Romanian
National Authority for Scientific Research, CNCS-
UEFISCDI project number PN-II-ID-PCE-2011-3-0097.

REFERENCES

[1] J. Benesty, T. Gaensler, D. R. Morgan, M. M. Sondhi, and S.
L. Gay, Advances in Network and Acoustic Echo
Cancellation, Berlin, Germany: Springer-Verlag, 2001.

[2] E. Haensler and G. Schmidt, Eds., Topics in Acoustic Echo
and Noise Control, Berlin, Germany: Springer-Verlag, 2006.

[3] K. Ozeki and T. Umeda, “An adaptive filtering algorithm
using an orthogonal projection to an affine subspace and its
properties,” Electron. Commun. Jpn., vol. 67-A, no. 5, May
1984, pp. 19–27.

46Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 54 / 143

[4] S. L. Gay and S. Tavathia, “The fast affine projection
algorithm,” Proc. of IEEE ICASSP, May 1995, pp. 3023-
3026, doi: 10.1109/ICASSP.1995.479482.

[17] F. Albu, “Simplified proportionate affine projection
algorithm,” Proc. of IWSSIP 2012, April 2012, pp. 382-
385.

[18] F. Albu, “New proportionate affine projection algorithm,”
41st International Congress and Exposition on Noise Control
Engineering 2012, INTER-NOISE 2012, (9), Aug. 2012, pp.
7726 – 7733.

[5] A. Gonzales, F. Albu, M. Ferrer, and M. Diego,
“Evolutionary and variable step size affine projection
algorithms for active noise control ”, IET Signal Processing,
vol. 7, (6), Aug. 2013, pp. 471-476, doi: 10.1049/iet-
spr.2012.0213.

[6] S. Lee, I. Kim, and Y. Park, “Approximated affine projection
algorithm for feedback cancellation in hearing aids,”
Computer Methods and Programs in Biomedicine, Vol.
87, (3), Sept. 2007, pp. 254-261, doi:
10.1016/j.cmpb.2007.05.014

[19] K.-H. Kim, Y.-S. Choi, S.-E. Kim, and W. -J. Song, “An
Affine Projection Algorithm with Periodically Evolved
Update Interval,” IEEE Trans on Circuits and Systems-II, vol.
58, no.11, Nov. 2011, pp. 763-767, doi:
10.1109/TCSII.2011.2168023.

[20] F. Albu, M. Rotaru, R. Arablouei, and K.
Dogancay,”Intermittently-updated affine projection
algorithm,” Proc. of ICASSP 2013, May 2013, pp. 585 – 589,
doi: 10.1109/ICASSP.2013.6637715.

[7] A. Gonzalez, M. Ferrer, F. Albu, and M. de Diego, “Affine
projection algorithms: evolution to smart and fast
multichannel algorithms and applications,” Proc. of Eusipco
2012, Bucharest, Romania, Aug. 2012, pp. 1965-1969. [21] H.-C. Shin, A. H. Sayed and W.-J. Song, “Variable step-size

NLMS and affine projection algorithms,” IEEE Signal
Processing Leters, vol. 11, no. 2, Feb. 2004, pp. 132–135, doi:
10.1109/LSP.2003.821722.

[8] F. Albu and A. Fagan, “The Gauss-Seidel pseudo affine
projection algorithm and its application for echo
cancellation,” Conference Record of the Thirty-Seventh
Asilomar Conference on Signals, Systems and Computers,
2003, Vol. 2, 9-12 Nov. 2003, pp. 1303 – 1306, doi:
10.1109/ACSSC.2003.1292199

[22] F. Albu and H.K. Kwan, “New proportionate affine projection
sign algorithms”, in Proc. of ISCAS 2013, pp. 1789 – 1793,
doi: 10.1109/ISCAS.2013.6571895.

[9] F. Albu and H.K. Kwan, “Combined echo and noise
cancellation based on Gauss-Seidel pseudo affine projection
algorithm,” Proc. of IEEE ISCAS 2004, May 2004, pp. 505-
508, doi:10.1109/ISCAS.2004.1328794.

[23] G. H. Golub and C. F. Van Loan, Matrix computation, 3rd
edition. Baltimore, MD: The John Hopkins Univ. Press, 1996.

[24] J. Benesty, H. Rey, L. Rey Vega, and S. Tressens, “A
nonparametric VSS NLMS algorithm,” IEEE Signal
Processing Letters, vol. 13, no. 10, Oct. 2006, pp. 581–584,
doi: 10.1109/LSP.2006.876323.

[10] D. L. Duttweiler, “Proportionate normalized least-mean-
squares adaptation in echo cancellers,” IEEE Transactions on
Speech and Audio Processing, vol. 8, no. 5, Sept. 2000, pp.
508–518. [25] Digital Network Echo Cancellers, ITU-T Rec. G.168, 2002.

[26] M. Rotaru, C. Stanciu, S. Ciochina, F. Albu, and H. Coanda,
“A FPGA Implementation of Prediction Error Method for
Active Feedback Cancellation using Xilinx System
Generator,” Proc. of ADAPTIVE 2013, May 2013, pp. 26-29.

[11] J. Benesty and S. L. Gay, “An improved PNLMS algorithm,”
in Proc. of IEEE ICASSP, 2002, vol. II, May 2002, pp. 1881–
1884, doi: 10.1109/ICASSP.2002.5744994.

[12] H. Deng and M. Doroslovački, “Proportionate adaptive
algorithms for network echo cancellation,” IEEE Transactions
on Signal Processing, vol. 54, no. 5, May 2006, pp. 1794–
1803, doi: 10.1109/TSP.2006.872533.

[27] J.N.Coleman, E.Chester, C.Softley and J.Kadlec "Arithmetic
on the European Logarithmic Microprocessor," IEEE Trans.
Comput. Special Edition on Computer Arithmetic, Vol. 49,
No. 7, Jul. 2000, pp. 702-715, doi: 10.1109/12.863040.

[13] O. Hoshuyama, R. A. Goubran, and A. Sugiyama, “A
generalized proportionate variable step-size algorithm for fast
changing acoustic environments,” Proc. of IEEE ICASSP,
2004, vol IV, May 2004, pp. 161-164, doi:
10.1109/ICASSP.2004.1326788.

[28] F. Albu, J. Kadlec, N. Coleman, and A. Fagan, “Pipelined
Implementations of the A Priori Error-Feedback LSL
Algorithm Using Logarithmic Arithmetic”, Proceedings of
ICASSP 2002, May 2002, pp. 2681-2684, doi:
10.1109/ICASSP.2002.5745200.

[14] C. Paleologu, S. Ciochina, and J. Benesty, “An efficient
proportionate affine projection algorithm for echo
cancellation,” IEEE Signal Processing Letters, vol. 17, no. 2,
Feb. 2010, pp. 165–168, doi: 10.1109/LSP.2009.2035665.

[29] F. Albu, J. Kadlec, C. Softley, and R. Matousek,, A.
Hermanek, A. Fagan, N. Coleman, "Implementation of
(Normalized) RLS Lattice on VIRTEX", Field Programmable
Logic and Applications, Gordon Brebner and Roger Woods
Editors, 2001, Aug. 2001, pp. 91-100, doi: 10.1007/3-540-
44687-7_10.

[15] J. Yang and G.E. Sobelman, “Efficient µ -law improved
proportionate affine projection algorithm for echo
cancellation”, Electronics Letters, vol. 47, Issue 2, Jan. 2010,
pp. 73 – 74, doi: 10.1049/el.2010.7937. [30] C. R. C. Nakagawa, S. Nordholm, F. Albu, W.-Y. Yan,

"Closed-loop feedback cancellation utilizing two microphones
and transform domain processing", ICASSP 2014, in press. [16] F. Albu, C. Paleologu, J. Benesty, and S. Ciochina, “A low

complexity proportionate affine projection algorithm for echo
cancellation,” Proc. of EUSIPCO 2010, August 2010, pp. 6-
10.

[31] F. Albu, C. Paleologu, and J. Benesty, “A Variable Step Size
Evolutionary Affine Projection Algorithm,” Proc. of ICASSP
2011, May 2011, pp. 429-432,
doi: 10.1109/ICASSP.2011.5946432.

47Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 55 / 143

Application Independent Modeling and Simulation Environment for Systems with
Self-aware and Self-expressive Capabilities

Tatiana Djaba Nya, Stephan C. Stilkerich
Airbus Group Innovations

Airbus Group GmbH
Ottobrunn, Germany

Email: {tatiana.djabanya, stephan.stilkerich}@eads.net

Abstract—Self-awareness and Self-expression in computer sys-
tems promise a lot of abilities enabling us to deal with the
problems and challenges caused by their continuously increasing
complex and heterogeneous structures and requirements, and the
unpredictability and changes in their deployment environment.
For this reason, engineering self-awareness and self-expression in
computing systems has become a major research field in the com-
puter science. To fill the gap between research at the conceptional
level and the construction of first proof-of-concept demonstrators,
a novel modeling and simulation environment for self-aware and
self-expressive systems has been implemented. The environment
is the Transaction-Level-Modeling (TLM) description in SystemC
of the reference architectural framework for self-aware and
self-expression systems. Therefore, it enables to simulate any
topology of self-aware and self-expressive systems and deployed
applications. This paper presents the said environment along with
the developed reference architectural framework on which it is
based, as well as an example motivated in the avionic domain.

Keywords-SystemC; Transaction-Level-Modeling; Simu-
lation; Self-awareness; Self-expression.

I. INTRODUCTION
Self-awareness and self-expression, which is adaptive be-

haviour based upon it, have proven to have a lot of benefits for
computing systems [1]. A computing system with self-aware
and self-expressive capabilities is for example able to deal with
unpredictability and changes in its deployment environment;
it is also possible to implement more functionality in such a
system, such that it has the ability to execute the corresponding
functions according to the knowledge it has of itself and its
environment. Therefore, the engineering of self-awareness and
self-expression in computing systems has become an emerging
and major research field over the past years. In that regard,
there are some very important issues or questions like: what are
the requirements of a self-aware and self-expressive computing
systems? How to properly engineer self-awareness and self-
expression capabilities in a computing system? How to ensure
the correctness of a system after self-adaptation operations?
How to ensure and maintain the reliability, the fault tolerance
level in a system after self-expression? [2][3][4].

To be able to address these questions and many others
in this context, a reference architectural framework which
structures the requirements of a self-aware and self-expressive
system has been built. Based on this reference architecture, a
modeling and simulation environment that can serve as support
and test environment for the development and demonstration

of developed concepts has been implemented. An alternative
concept for realizing fault-tolerance in avionic systems using
self-awareness and self-expression that has been developed has
been used to validate the environment.

This paper presents the previous mentioned elements and is
organized as follows: Section II describes the self-aware and
self-expressive architectural framework. Section III presents
the modeling and simulation environment. Section IV presents
an example case of this environment representing a one single
node avionic system and showing the alternative idea of fault
tolerance for avionic systems. Finally, Sections V concludes
the paper.

II. THE REFERENCE ARCHITECTURAL FRAMEWORK
Inspired from the biology and cognitive science, we defined

in the EPiCS project [2] working definitions for self-awareness
and self-expression in the context of a computing node [5][6].
Underlying these working definitions, we then developed the
proposed reference architectural framework for a self-aware
and self-expressive computing node [7]. This framework is
shown here in Figure 1 and represents the conceptual compo-
nents of a computing node with self-ware and self-expressive
capabilities. Here, conceptual means that these components
don’t need to physically exit as separate components within an
application, but provide a logical structure for reasoning about
interactions between parts of a system, where these parts can
have different levels of knowledge, autonomy and distributed
decision making.

A. Self-Awareness
Self-awareness is achieved in this architecture by the sen-

sors, the private and the public self-aware engines. As in agent
architecture, the sensors are used here to collect information.
Two types of sensors can be distinguished: first, the internal
sensors named ”Sensor” in the architecture, which collect in-
formation about the node internal state and second, the external
sensors which collect information about the node’s context.
These are represented in the architecture by the conceptual
components named ”environment” and ”Other nodes”. Both,
the private and public self-aware engines are responsible here
for collection of information from the corresponding type of
sensors and for the processing of this information. Moreover
they will trigger the node’s reaction and adaptation process
after the information processing, if necessary. According to the
working definition, a self-aware system may possess historical
knowledge, predictors of future likely states or contextual

48Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 56 / 143

Figure 1. The conceptual components of a self-aware and self-
expressive node.

information, in addition to purely instantaneous sensor read-
ings. To enable this richer form of self-awareness, the self-
awareness engines may engage in learning or modeling of
information. We therefore introduce the possibility of internal
models (online learning schemes), which are located in the
component called ”Model(s)” and may be introduced as and
when required in enabling the required level of self-awareness.

B. Self-Expression
To achieve self-expression, our architecture includes actu-

ators and a self-expressive engine. The self-expressive engine
has the role of taking decisions about the actions that must be
performed by the node itself in order to adapt its behaviour.
As required by the working definition, this decision making
process always take into account the node’s state, context,
goals, values, objectives and constraints which are available
in the node and later in this engine through the conceptual
component bearing the same name. The actions determined by
the self-expressive engine are passed to the actuators which
execute them. Actuators are represented in this architecture
by the conceptual components called ”Actuator” and the ones
called ”External actions”. As its name suggests, the latter
execute the actions targeting the node’s environment. The
”actuators” for their part executed the chosen actions targeting
the node itself.

C. Meta-Self-Awareness
Meta-Self-awareness is the higher level of self-awareness

in a computing node and represents the ability of the node
to be aware of its own awareness and to choose the level of
awareness suitable to the node situation, to better achieve its
goals. For this purpose, there is on the one hand a concep-
tual component named ”Monitor/Controller” in the reference
architecture of the node. As shown in Figure 2 through the
arrows, this component has access to the node’s goals, values,
objectives and constraints, to the self-aware and self-expressive
engines. In this way, it has a high-level view over the node’s
behaviour and can intervene, when necessary, to lessen or
increase the level of self-awareness and self-expression in the
node.

III. THE MODELLING AND SIMULATION ENVIRONMENT
The modelling and simulation environment has been imple-

mented in SystemC at the transactional level, i.e., Transaction-
Level Modelling (TLM). TLM is a modelling methodology
which is primary concerned with the efficient modelling of
bus systems and their transactions (hence the name TLM). It
reaches a higher abstraction level over the register transfer level

Figure 2. SystemC-TLM graphical view of the environment.

modelling and thus enables to implement virtual prototypes
of systems which can be used to test developed software or
to assess the performance of different system architectures
through simulation. SystemC is a system description language.
It enables both software and hardware description. The above
mentioned properties and advantages of SystemC and TLM
are the reasons which lead our decision to choose them for the
realization of our modeling and simulation environment. The
implemented SystemC TLM model is described in the follow-
ing subsections. The next subsection gives an brief introduction
in SystemC TLM in order to facilitate the understanding of
the subsequent subsections focussed on the detailed proper
description of the environment.

A. Theoretical background
A SystemC TLM Model is mainly composed of compo-

nents which communicate among each other over sockets by
initiating transactions by the means of processes.

A component has a role which can be of three types:
initiator, target and interconnect. An initiator is able to initiate
transactions to communication with other components; a target
cannot initiate transactions and is always the target of a
transaction. As for the interconnect component, it functions
as a bus or a router for the transactions and usually execute
address mapping operations. A component can act as an
initiator for some transactions and as a target for others. In
this case it is called a bridge.

As mentioned above, the communication in a SystemC
TLM model occurs here in form of transactions (method
calls) through which, in its simplest form, an initiator has the
possibility to write or read data to/from its target component.
The details of the transactions such as the size, the address and
the type of data are regulated by the initiator when initiating
the transactions and later by the interconnect components, if
present, to ensure the correct routing of data.

To be able to initiate transactions, initiators need thread
processes. A process describes the functional behaviour of a
TLM component. The SystemC simulator implements a coop-
erative multitasking environment, i.e. some process instances
execute without interruption, only a single process instance
can be running at any time, and no other process instance
can execute until the currently executing process instance has
yielded control to the kernel. A process shall not pre-empt or
interrupt the execution of another process. Each process has
a sensitivity list which is a set of events and time-outs which
can be defined during implementation to determine when it is
executed or resumed by the scheduler.

B. Model description
The objective of achieving the functionality described in

the reference architecture (Section II) of a self-aware and self-

49Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 57 / 143

TABLE I: DESCRIPTION OF THE TLM MODEL

Component Role Equivalent in the architecture Transactions target(s) Process(es) Execution order Transactions type
SenEnv Initiator Sensor, Environment SAE B 3 WRITE

OtherNode Initiator OtherNode SAE B 4 WRITE

GVOC Initiator Goals - Values - Objectives - Constraints Monitor A1 1 WRITESEE A2 2

LModel Bridge Model(s) SAE C1 5 READ
SEE C2 7 WRITE

SEE Bridge Self-expressive Engine Actuator D 9 WRITEExtAction

Monitor Bridge Monitor/Controller LModel E1 6 READSEE E2 8
SAE Target Private and Public Self-aware Engines

Actuator Target Actuator
Extaction Target External actions

IC1, IC2, IC3, IC4 Interconnect
node Module F

expressive node as well as the data flow among its components
in compliance with the rules and mechanisms of TLM lead us
to the model presented in Figure 2. Complementary to Figure
2, Table I clearly listed the TLM components of this model,
their roles, their processes, the transaction types and most
importantly their equivalent in the reference architecture and
the execution chronology of processes or rather transactions
among them.

1) Functional Behaviour of components:
The first component to come into operation inside a node
when the simulation is started is the Goals-Values-Objectives-
Constraints (GVOC) component. As shown in Table I, it
embodies the node’s goals, values, objectives and constraints.
It is an initiator and as such, it forwards the goals, values,
objectives data respectively to the monitor through process
A1 and to the component SEE through process A2. For this
purpose, each of both processes A1 and A2 initiates WRITE
transactions to the corresponding targets. The interconnect
components IC3 placed between the GVOC component and
its targets ensures the data sent by the GVOC components
always reach the intended target.

The second component(s) to come into play are the sensors:
the SenEnv first, then the OtherNodes components. They are
respectively responsible for the gathering of private and public
information inside the node. A node can possess as many sen-
sors as necessary. Each of them has a process B that initiates
WRITE transactions to forward its collected information to
the common target component named SAE. The SAE acts as
a memory on which every sensor possesses a reserved space
for its data with read access only. In other words, the memory
space on the SAE is divided equally between all the sensors
components. The interconnect component IC1 placed between
the sensors and the SAE in the figure ensures the correct
addressing of the memories areas by the different sensors
during transactions as well as the prevention from overwriting
of data by a sensor in its reserved memory area. This is
achieved by the implementation through a linear mapping
function for transactions addresses.

The LModel component is the third initiator component
to come into play after the simulation starts. It is responsible
for the evaluation of sensor data available inside the node, i.e,
in the SAE memory, on the one hand. On the other hand, it
is responsible for the initiation of the self-expressive behavior
of the node. Thus, its has a process C1 which initiates read
transactions to read the sensor data out of the SAE memory

and let them be evaluated. Through its second process C2,
the LModel component finally initiates WRITE transactions
to forward the results or the necessary information to the
SEE component to trigger the self-expression of the node, if
necessary.

After the LModel follows the SEE component. As de-
scribed in the Table I, the SEE component is a bridge com-
ponent which embodies the self-expressive engine. Accord-
ingly, it analyses the information previously received from
the LModel component and selects the action to be taken.
Following this, its process D starts WRITE transactions either
to the actuators embodied here by the target component of
the Model bearing the same name or to the external actuators
embodied here by the target components named ExtActions or
to both.

The monitor, which embodies the Monitor/Controller of
the self-aware and self-expressive node, is here implemented
in its simplest form, which is a monitor of the self-aware and
self-expressive engines’ actions. To this end, it has a process
E1 which initiates READ transactions towards the LModel
component to read the report data of its actions stored in
its internal report memory. This occurs immediately after the
evaluation of the sensor data in C1. It also has a process E2
which, similarly to E1, initiates WRITE transactions to read
the report data in the report memory of the SEE component
right after the actions in the node has been taken. In contrast to
other components, the monitor actions must not be executed
in every transaction cycle. According to its needs, the user
has the possibility to give the period for the activation of the
monitor actions.

After the SEE component or the monitor is activated, the
LModel component operates again. It reads the next available
data out of the SAE memory and the whole process described
above from that point on is repeated. This occurs until all the
sensor data stored on the SAE memory are evaluated. Then,
the whole operation cycle, named here as process-cycle, starts
again. Here, the number of process-cycles inside a node during
the simulation of a model depends on the whole amount of
sensor information to be processed inside the node and in
each process-cycle. The latter is defined by the user before
simulation starts.

All the above described TLM components of a self-aware
and self-expressive node are encapsulated inside a SystemC
module named ”node” as shown in Figure 2. This module
represents the highest hierarchy in the model and is responsible

50Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 58 / 143

Figure 3. The implemented execution chronology of processes.

for the generation and instantiation of the TLM components
inside each node according to the user specifications as well as
for the resulting sockets and port-bindings for the communica-
tion among the components inside the node and between the
system nodes at simulation start. Furthermore it has a process
F that is the last to be executed in the process-cycle. Process
F is just a synchronization process, i.e., it does not initiate any
transactions, it is executed only once in each a process-cycle
and ensures that processes in all node of a multi-node self-
aware and self-expressive system end at the same simulation
time in a process-cycle.

2) Processes:
From the model description above, it appears that there
is a precise execution chronology of transactions and thus
of processes in the environment that is a prerequisite
and must always be maintain during simulation in or-
der to reflect the functionality of a self-aware and self-
expressive node prescribed by the architecture. This is:
A1→ A2→ B→ {C1→ [E1]→ C2→ D→ [E2]}. It rep-
resents the so-called process-cycle previously mentioned. The
processes within the curly brackets, here referred to as process
chain, are executed alternately after each transaction until all
sensor information available in the SAE memory are evaluated.
Finally, the processes E1 and E2 of the monitor in the square
bracket are activated in specific process-cycle intervals. A
more detailed and precise view of the execution chronology of
processes within a node is shown in Figure 3 and the following
explain how this has been ensured through implementation.

For the temporal processes in a TLM Model, SystemC
offers two possibilities [8]: The loosely-timed modeling style,
which just models the start and end times of transactions
but enables fast simulation times. The second one is the
approximately-timed modeling style, which really details the
phases of a transaction but at the cost of simulation perfor-
mance. Giving the fact that the environment has to deal with
industrial size systems, the simulation performance was a main
concern during the implementation and has therefore lead us to
the choice of loosely-timed modeling style. The Loosely timed
modeling style implies the temporal decoupling of processes.
This is implemented by means of the so called global time
quantum tglobQ. The global time quantum is a time values that
defines the synchronization (suspension) times of all processes
tsync. Each process run ahead simulation time and is executed
as many times as possible till the next synchronization point is
reached. The next synchronization point tsync,next of a process

Figure 4. Delta-cycles within each process-cycle.

depends on the latency times of the transactions it executes
after the previous synchronization and the actual simulation
time tsim. Within each process, the latency time ttrans delay

of each executed transaction is added up to the so-called local
time offset toff , which is then used to verify, if the process
has to synchronize, i.e., be suspended. A suspended process
can run again, only when the scheduler has advanced the
simulation time tsim of this same local time offset. So, for
every process of the model the following formulas always hold:

synchronization points: tsync = N ∗ tglobQ, N ∈ N (1)

between 2 subsequent tsync :
n∑

i=1

ttrans delay,i = toff , n ∈ N∗

(2)
synchronization condition: toff ≥ tsync,next − tsim (3)

From the above described behavior of temporal decoupled
processes and their formulas, it results that the execution time
of a process after a synchronization relies on the following
three key parameters, which can be modified during implemen-
tation: The first execution time at simulation start, the global
quantum and the local time offset, which is the sum of the
latency times of the transactions.

In order to fix this execution and obtain the precise exe-
cution chronology illustrated in Figure 3, we, therefore firstly
chose the adequate first execution times of some processes.
Secondly, we determined the value range for the global quan-
tum. Third and finally, with the assumption that all transactions
of a process always have the same latency time, we decided to
let the user input the number of transactions to be executed per
process-cycles and we established formulas for the automatic
calculation of the latency times of the transactions between
the synchronization points during the elaboration and the
generation of the simulation model, such that the local time
offset between two synchronization points always equals the
global quantum.
• The first executions times tbeg:
To fix the first execution times of processes in our envi-

ronment, we make use of time-outs. A time-out occurs when
the method wait(t) is called with a time-object t ∈ Z+ as
parameter. When executed, the running process is suspended
and resumed after the given time period has elapsed.

So, with respect to the prerequisite execution chronology of
processes and independently of the time unit, we respectively
chose the following times tbeg for the processes A2, C1 and
F: 0.1, 0.2, 0.5. For the processes B’s, for a better overview,

51Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 59 / 143

we chose tbeg = 0.2 respectively chose tbeg = 0.3 for the ones
located inside the SenEnv components and tbeg = 0.4 for the
others located in the OtherNodes components. This method
call is executed only once at simulation start in each of these
processes.

To achieve the alternate execution of processes in the
process chain, we make use of time-outs and events. Each
process of the chain notifies an event belonging to the dynamic
sensitivity list of the next process and calls the method wait()
with t = 0 as parameter, after it has executed a transaction (see
Figure 3). This produces a so-called delta-cycle, i.e., a process
is suspended and resumed at the same simulation time, but in
the next delta-cycle. So, the processing of a sensor data set and
the reaction based upon the processing results always happens
at the same simulation time but in different delta-cycles. And
all sensor data set stored in a the SAE in a process-cycle are all
processed by the process chain within the same process-cycle.
• The global time quantum tglobQ:
In [9], it is proved that the global time quantum of a

TLM Model should be determined, in accordance with the
whole simulation time period, so that the number of resulting
synchronizations nsync or delta cycles ndeltacycles doesn’t
exceed a few hundred thousands. So the following inequalities
should hold:

nsync ≤ 100000 (4)
or ndelta cycles ≤ 100000 (5)

Assuming that tsim denotes the whole simulation period, the
number of synchronizations in the model can be calculated
with the following formula:

nsync =

⌊
tsim
tglobQ

⌋
(6)

In our model, the number of generated delta-cycles by the
processes between two synchronization points is always the
same and is illustrated in Figure 4. The temporal decoupled
processes A1, A2, B’s, and F always generate one delta-cycle.
Because of the additional time-outs used in process chain to
ensure the prerequisite alternate behavior, as described in the
previous paragraphs, the process chain always produces two
delta-cycles to complete the evaluation of a single sensor data
set. Given that the process chain has to evaluate all sensor
data set available on the SAE memory within a process-
cycle, the number of generated delta cycles by the process
chain therefore depends on the number of (read) transactions
initiated by process C1 during a process-cycle. Finally there
is an additional delta-cycle generated at the end of the process
chain’s execution for the synchronization of its processes.
Thus, we have:

ndelta cycles = (NT ∗ 2 + 6) ∗ nsync ∗ nnodes nr (7)

where nnodes nr is the number of nodes in the simulated
system and NT is the number of (read) transactions of C1
between two subsequent synchronizations points. The formulas
(4), (5), (6), (7) above lead us to the following formulas for
the value range of the global time quantum:⌊

tsim
tglobQ

⌋
≤ 100000

(NT ∗ 2 + 6) ∗ nsync ∗ nnodes nr
(8)

• The latency times of transactions:

From the given synchronization condition (3) for tempo-
rally decoupled processes, it results that the global quantum
is always less or equal to the sum of the latency times of
all executed transactions between two synchronization points.
Thus, with ttrans delay denoting the latency time of the ith
transaction of a process between two synchronizations points,
we have:

tglobQ ≤
n∑

i=1

ttrans delay,i = toff (9)

Assuming that the value of local time offset is equal to the
global quantum and that all the transactions between the syn-
chronization points have the same latency times ttrans delay,
we were able to derive the formulas below for the number of
transactions of the processes between every two subsequent
synchronization points:

ttrans delay = tglobQ/NT (10)

where NT denotes the number of transactions of each of the
processes per process-cycle . This is given by the user before
simulation start for the processes A1, A2 and B. Given the fact
that process C1 and C2 have to read and evaluate all sensor
information stored inside the node in a simulation cycle within
the same simulation cycle, the number of transactions that they
generate in each simulation cycle is equal to the mathematical
product of the number of transactions nTB

generated by each
sensor and the number of available sensors ns in the system.
Thus,

NTC1,C2
= nTB

∗ ns (11)

This also applies the processes E1, E2 and D of the process
chain, because they run in each simulation cycle as many times
as the processes C1 and C2. Thus,

NTE1,E2,D
= NTC1,C2

(12)

A transaction can be either a single transaction or a burst
and the latency times of a single transaction tsingle delay differs
from the latency times of a burst transaction, which is actually
what formula (10) computes. The interrelation between both
latency times is:

ttrans delay = tsingle delay ∗BL (13)

with BL =

⌈
DLmax

BUSWIDTH/8

⌉
By substituting (11) in (10), we finally obtain the following
formulas for the latency times of the single transactions for
the processes A1, A2, B’s

tsingle delay = tglobQ/(nTB
∗BL) (14)

and for the process chain:

tsingle delay = tglobQ/(nTB
∗ ns ∗BL) (15)

Applying the above computed formulas as well as the
simulation-execution mechanisms as described above enabled
us to meet our objective relative to the execution chronology
of processes during simulation. For each process, we

ti = tbeg + i ∗ tglobQ mit i = n− 1 und i ∈ N (16)

where i denotes the i-th process-cycle in the simulation.

52Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 60 / 143

IV. USE CASE
For test and validation purposes, an avionic subsystem

consisting of a single self-aware and self-expressive node with
an alternative concept of fault-tolerance has been modeled
and simulated using the introduced simulation and modeling
environment. This concrete system is presented in the next
section. Additionally the simulation results are presented and
discussed.

A. Scenario description
The system under investigation is an avionic subsystem

on which an application composed of a safety relevant thread
Cr and two optional, i.e., not safety relevant, threads O1 and
O2 is installed. The safety relevant thread is designed with
triple modular redundancy [10] according to the reliability
requirement standards [11]. This subsystem consists of a single
self-aware and self-expressive node and the idea here is to
make use of the self-aware and self-expressive capabilities of
this node to drive fault tolerance and mitigation strategies.

In details, some physical properties of the system, here in
our exemplary use case scenario the temperature, are measured
by the sensors during service and compared with their known
empirical values. Differently than in today’s traditional fault
tolerance designs, The 1st and 2nd copy of the critical thread,
Cr(1) and Cr(2), are running at the system start. And its
3rd copy, Cr(3) is only generated and turned on in case of
discrepancy between the measured temperature values and the
given empirical values of the temperature. At the same time,
the optional threads are progressively shut down. Both, the
generation and the turn-on procedure of the third copy of
Cr as well as the turn-off procedures of the optional threads
happen progressively. The objective here is to secure the
operation of the critical thread Cr, which execute the safety
relevant operations of the subsystems. If the measured value
of the temperature still hasn’t fall back in the desired value
range after the actions cited above have been taken, then the
system is restarted and the threads are bring back to the start
configuration. But, as soon as the temperature values measured
by the sensors comply with the given empirical values, the
optional threads are progressively turned on while the 3rd
copy of the critical thread is progressively switched back and
deleted.

An example of the modification of the threads’ execution
state according to the monitoring of the system temperature as
described above is illustrated in Figure 5.

B. Prototyp Building
1) The threads:

To model this concrete system, we implement the threads as
classes with a constructor parameter of type string representing
the type of the thread, here typ = {critical, optional} and a
value s of type float representing the state of a thread, here
s ∈ [0, 1]. During simulation, with respect to the results of the
continuously comparison between the measured and empirical
value of the temperature (self-awareness), this state variable is
altered by the actuator of the node (self-expressive behavior)
to model the behavior of the corresponding threads. For the
optional threads, this indicates the progressive switch-on and
off processes. For the critical thread Cr(3), it indicates its
progressive generation, switch-on, switch-off as well as its
deletion. For an optional thread, i.e, typ = critical, s = 0
means that the thread is switched off and s = 1 means that the

Figure 5. Example of the threads’ execution state in the system
according to the comparison results.

thread is switched on or running. For a critical thread, s = 0
means that it is deleted, s = 0.5 means that it is generated and
s = 1 means that it is switched on or running.

2) The functionality of the components:
• The SenEnv component
Due to the fact that, there is only one physical parameter to be
observed, the system’s own temperature, the model only needs
one SenEnv component. The measured temperature values are
given here in a matlab file. Thus, the SenEnv component
reads out the file at program start and stores the data in a
vector. In each process-cycle, the SenEnv component executes
a transaction to transfer a single temperature value t of the
vector to the SAE component.
• The LModel component

The value previously stored in the SAE component by the
sensor is read by the LModel and compared with the given
maximal empirical value Tmax of the system temperature.
Using the given frequency distribution of the temperature
empirical values and depending on the comparison results,
a value v(t), which will help to initiate the self-expressive
behavior of the system, is computed as follows:

v(t) =

{
−1.0 when t > Tmax

N [i] else with i = round(t− Tmax)

(17)
The frequency distribution is given as a matlab file and stored
at simulation start in the LModel component in a vector N .
Here, N [i] denotes the frequency density of this distribution.
The computed value of v(t) is thereupon transferred to the
SEE component by the process C2 of LModel.
• The SEE component

This component uses the received value v(t) to compute a so-
called decision vector E(v). This vector consists of 5 values
and represents the choice of the self-expressive engine of the
node regarding the action to be performed on the threads

53Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 61 / 143

according to the node’s awareness and reasoning.

E(v) = (e1︸︷︷︸ e2︸︷︷︸ e3︸︷︷︸ e4︸︷︷︸ e5︸︷︷︸)
Cr(1) Cr(2) Cr(3) O1 O2

(18)

with ei ∈ [−1, 1]and i ∈ {1, 2, 3, 4, 5}. So, each element of
this vector E is the update value to be used by the actuator to
alter the state of the corresponding thread of the system. In case
that the system must restart, the SEE component will compute
the following decision vector: E(v) = {−1,−1,−1,−1,−1},
else the following formula is used:

ei(v) =

{ −0.01 with v = −1
v −Nmax with v ≤ 0.9 ∗Nmax

v −Nmax + 0.1 else
e3(v) = −1 ∗ ei(v)

(19)
with i ∈ {4, 5} and Nmax maximal value of the frequency
density. After computation, the SEE component finally for-
wards this vector to the actuator of the node.
• The actuator component

As already mentioned above, the actuator component uses the
received decision vector E(v) to update the threads execution
state according to the nodes self-awareness. So, for each of
the threads i we have the following:

snew,i = sactual,i + ei. (20)

During the simulation, the computed values in each process-
cycle are stored in a matlab file.
• The monitor component

Here, the task of the monitor is to read the report data of
the SAE and SEE components and to monitor them, i.e., to
write them in a matlab file that is used to control the values
v(t) and E(v) computed respectively by the SAE and the SEE
components.
• The GVOC component

The only constraint given here is the maximum value Tmax

for the system temperature. So, in each process-cycle, GVOC
just forwards Tmax to the SEE and Monitor components.
• The OtherNode and the ExtActions components

As we have mentioned above, this system under investigation
comprises a single node. Thus, this prototype don’t need any
OtherNode component. In addition, there is no actions to be
performed on the node’s environment. This implies that there
is also no need for ExtActions components in this prototype.

C. Simulation and Evaluation
With a total of 2500 given temperature values to be

processed inside the self-aware and self-expressive node, the
number of temperature value to be process within a process-
cycle set to one, i.e., one transaction of the sensor per process-
cycle, a simulation time period tsim = 5002ms and a global
quantum time of 2ms were chosen according to (8) derived in
section 3. Our model needed exactly 17500 transactions for all
processes, 2001 synchronisations and lasted around 3 minutes.
A total of 16008 delta-cycles were generated, which agrees
with (7).

Figure 6 displays on the top line chart, the run of the given
measured temperature values and, on the bottom line chart,
the run of the threads states values computed over the whole
simulation period according to the temperature values. Here,
the maximal empirical temperature value is Tmax = 87 ◦C.
One can realize from this illustration that the temperature of

Figure 6. Temperature and threads execution state during the
simulation period.

the system is not constant. But the first and last thousand values
remain below the given maximum Tmax while the remaining
five hundred values exceed it. As expected, the state values
s of the threads vary accordingly over the simulation period.
Indeed, the state value of Cr(3), the 3rd copy of the critical
thread, is also not constant but always remains under the value
0.5 when the temperature isn’t to near to the given maxi-
mum. When the temperature continues to rise, approaches,
reaches or exceeds the given maximum, Cr(3) is generated
(sCr(3) = 0.5), progressively switched on and remains in
this state (sCr(3) = 1). Meanwhile, the optional threads are
switched off (sO1,O2 = 0). As soon as the temperature falls
back, the state value of sCr(3) decreases while sO1 and sO2

increase. Some specific points of the simulation have been
captured in Figure 7 and underpin the above statement.

V. CONCLUSION
In this paper, we described a reference architectural frame-

work developed to structure the requirements for the design
of computing system with self-aware and self-expressive be-
haviour. Subsequently, we presented a modelling and simula-
tion environment developed in SystemC using the Transaction-
Level Modelling (TLM) and based on the previous mentioned
framework for the construction of prototype and the tests and
validation of novel concepts developed based on both proper-
ties. The presented environment can be used to build virtual
prototypes of self-aware and self-expressive systems for indus-
trial systems. Moreover, through the clear separation between

54Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 62 / 143

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Threads’s execution state according to the temperature at specific simulation points.

the proper components’ functionalities and the communication
among them on the one hand, the implemented accurate and
reliable execution chronology of temporal decoupled processes
used to encapsulate them, the environment achieves fine timing
resolutions and ensures the functionality described in the
reference architecture. As the third and final part of this paper,
we presented the model was used to build a prototype of a
single-node self-aware and self-expressive system presenting a
novel concept for fault-tolerance in avionics systems could be
built with the model using the test environment. The simulation
results have also been presented and discussed.

Ongoing work is devoted to the optimization of the imple-
mentation of the presented environment and the development
of more novel fault-tolerance concepts and approaches that are
better suitable to the next generation of computing systems,
systems with self-properties, and can lessen the performance
and functionality restraining high redundancy level of safety-
critical systems, most particularly of avionics embedded sys-
tems.

ACKNOWLEDGMENT
The research leading to these results has received funding

from the European Union Seventh Framework Program under
grant agreement no 257906.

REFERENCES
[1] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”

Computer, vol. 36, no. 1, 2003, pp. 41–50.

[2] epics, “EPiCS Project,” Jan 2014. [Online]. Available: http://www.epics-
project.eu/

[3] sapere, “SAPERE Project,” Mar 2014. [Online]. Available:
http://www.sapere-project.eu/

[4] recognition, “Recognition Project,” Mar 2014. [Online]. Available:
http://www.recognition-project.eu/

[5] S. Parsons, R. Bahsoon, P. R. Lewis, and X. Yao, “Towards a better
understanding of self-awareness and self-expression within software
systems,” University of Birmingham, School of Computer Science, UK,
Tech. Rep. CSR-11-03, Apr 2011.

[6] P. R. Lewis et al., “A survey of self-awareness and its application in
computing systems,” in Proc. Int. Conference on Self-Adaptive and Self-
Organizing Systems Workshops (SASOW). IEEE Computer Society,
2011, pp. 102–107.

[7] T. Becker et al., “EPiCS: Engineering proprioception in computing
systems,” in Computational Science and Engineering (CSE), 2012 IEEE
15th International Conference on, 2012, pp. 353–360.

[8] I. C. Society, IEEE Standard for Standard SystemC Language Reference
Manual - IEEE Std 1666TM-2011, 2012.

[9] F. Kesel, Modeling of digital Systems with SystemC: From the RTL-
to the Transaction-Level-Modeling. Oldenbourg Wissenschaftsverlag,
2012.

[10] R. Orsagh, D. Brown, P. Kalgren, A. Byington, C.S. ; Hess, and
T. Dabney, “Prognostic health management for avionic systems,” in
Aerospace Conference, IEEE , 2006, pp. 1213–1219.

[11] M. Pignol, “COTS-based applications in space avionics,” in DATE 2010,
2010, pp. 1213–1219.

55Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 63 / 143

Automated Fault Analysis and Filter Generation for Adaptive Cybersecurity

David J. Musliner, Scott E. Friedman, Jeffrey M. Rye
Smart Information Flow Technologies (SIFT)

Minneapolis, USA
email: {dmusliner,sfriedman,jrye}@sift.net

Abstract—We are developing the FUZZBUSTER system to auto-
matically identify software vulnerabilities and create adaptations
that shield or repair those vulnerabilities before attackers can
exploit them. Adaptive cybersecurity involves efficiently improv-
ing software security to minimize the window of attack, and also
preserving software functionality as much as possible. This paper
presents new tools that have been integrated into FUZZBUSTER
adaptive cybersecurity. These tools produce more general, ac-
curate adaptations, increase the efficiency of FUZZBUSTER’s
diagnoses and adaptation operations, and preserve the software’s
functionality. We report the results of FUZZBUSTER’s analysis of
16 fault-injected command-line binaries and six previously known
bugs in the Apache web server. We compare results over different
configurations of FUZZBUSTER to characterize the benefits of the
new fuzz-testing tools.

Keywords-cyber defense; automatic filter generation.

I. INTRODUCTION

Cyber-attackers constantly threaten today’s computer sys-
tems, increasing the number of intrusions every year [1], [2].
Firewalls, anti-virus systems, and patch distribution systems
react too slowly to newfound “zero-day” vulnerabilities, al-
lowing intruders to wreak havoc. We are investigating ways to
solve this problem by allowing computer systems to automati-
cally identify their own vulnerabilities and adapt their software
to shield or repair those vulnerabilities, before attackers can
exploit them. Such adaptations must balance the safety of the
system against its functionality: the safest behavior might be
to simply turn the power off or entirely disable vulnerable
applications, but that would make the systems useless. To
make a finer-grained balance between security and function-
ality, adaptations must be:

• General enough to shield the entire vulnerability (i.e., not
just blocking an overspecific set of faulting inputs).

• Specific enough to minimize the negative impact on
program functionality (e.g., by causing incorrect results
on valid inputs).

• Efficiently-generated, to minimize the window of expo-
sure to vulnerability over time.

These considerations for adaptive cybersecurity pose several
challenges, including: how faults are discovered and diag-
nosed, with and without direct access to source code or
binaries; how adaptations are generated from the diagnoses;
how the many possible adaptations are assessed and chosen;
and how all of these operations are orchestrated for efficiency.

This paper describes strategies for automatically discovering
vulnerabilities, diagnosing them, and adapting programs to
defend against them. We have implemented these strategies

	������
�����������
��������������

������������
��!!��������

����������������
�������� ��
����������

����������
���������
���������

��������

��������
�������
���� �

�������

��!!
������
� ������!���
�����
���
�������

��������

	����������
�������������������

Fig. 1. FUZZBUSTER automatically finds vulnerabilities, refines its under-
standing of their extent, and creates adaptations to shield or repair them.

within the FUZZBUSTER integrated system for active cyber-
security [3], which includes metrics [4], and metacontrol [5]
for self-adaptative software immunity. FUZZBUSTER uses a
diverse set of custom-built and off-the-shelf fuzz-testing tools
and code analysis tools to develop protective self-adaptations.
Fuzz-testing tools find software vulnerabilities by exploring
millions of semi-random inputs to a program. FUZZBUSTER
also uses fuzz-testing tools to refine its models of known
vulnerabilities, clarifying which types of inputs can trigger a
vulnerability. FUZZBUSTER’s behavior falls into two general
classes, as illustrated in Figure 1:

1) Proactive: FUZZBUSTER discovers novel vulnerabilities
in applications using fuzz-testing tools. FUZZBUSTER
refines its models of the vulnerabilities and then repairs
them or shields them before attackers find and exploit
them.

2) Reactive: FUZZBUSTER is notified of a fault in an ap-
plication (potentially triggered by an adversary). FUZZ-
BUSTER subsequently tries to refine the vulnerability and
repair or shield it against attackers. Reactive vulnerabil-
ities pose a greater threat to the host, since these may
indicate an imminent exploit by an attacker.

FUZZBUSTER’s primary objective is to protect its host by
adapting its applications, but this may come at some cost.
For example, applying an input filter or a binary patch may
create a new vulnerability, re-enable a previously-addressed
vulnerability, or otherwise negatively impact an application’s
usability by changing its expected behavior. This illustrates
a tradeoff between functionality and security, and measuring
both of these factors is important for making decisions about
adaptive cybersecurity.

We begin by outlining FUZZBUSTER’s process of discov-
ering, refining, and repairing vulnerabilities in Section II,

56Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 64 / 143

which motivates our research on adaptation metrics. We then
describe FUZZBUSTER’s novel diagnosis tools for adaptive
cybersecurity in Section III, and we summarize the results of
several experiments in Section IV.

II. BACKGROUND: FUZZBUSTER ACTIVE CYBERSECURITY

FUZZBUSTER tests and adapts multiple applications on a
host machine. When FUZZBUSTER discovers a fault in one
of these applications— or when it is notified of a reactive
fault triggered by some other input source— it represents
the fault as an exemplar that contains information about the
system’s state when it faulted, as shown in Figure 1. Note
that FUZZBUSTER is not responsible for fault detection; we
assume that other security and correctness mechanisms detect
the fault and notify FUZZBUSTER.

An exemplar includes information for replicating the fault,
such as environment variables and data passed as input to
the faulting application (e.g., via sockets or stdin). Some
of this data may be unrelated to the underlying vulnerability.
For instance, when FUZZBUSTER encounters a fault in the
Apache web server in Section IV, it captures all environment
variables (all of which are unnecessary to replicate the fault),
and the entire string of network input that was sent to the
application (most of which is unnecessary to replicate the
fault). FUZZBUSTER uses fuzz-testing tools to incrementally
refine the exemplar, trying to characterize the minimal inputs
needed to trigger the fault. Since time and processing power is
limited, FUZZBUSTER uses a greedy meta-control strategy [5]
to orchestrate these tools.

Refinement is an iterative process, where each task improves
the vulnerability profile that FUZZBUSTER uses to characterize
the vulnerability. The refinement process turns the initial
(often over-specific) vulnerability profile into a more accurate
and general profile. While refining the Apache web server
vulnerabilities, FUZZBUSTER uses an environment variable
fuzzer to test and remove unnecessary environment variables
for replicating the fault, uses input fuzzers to delimit, test,
and remove/replace unnecessary network input, and thereby
develops a more accurate vulnerability profile.

FUZZBUSTER has several general adaptation capabilities,
including input filters, environment variable filters, and source-
code repair and recompilation. These protect against entire
classes of exploits that may be encountered in the future.
FUZZBUSTER uses each of these by (1) constructing the adap-
tation, (2) assessing the adaptation by temporarily applying it
for test runs, and (3) applying the adaptation to the production
application if it is deemed beneficial. FUZZBUSTER may apply
multiple adaptations to an application to repair a single under-
lying vulnerability. In the case of adapting the Apache web
server in Section IV, FUZZBUSTER creates input filters based
on its vulnerability profiles: it extracts regular expressions that
characterize the pattern of faulting inputs, including necessary
character sequences (e.g., “Cookie:”), length-dependent wild-
cards (e.g., “.{256,}?”), and more. FUZZBUSTER then uses
these input filters to identify potentially-faulting inputs and

then discard them or rectify them, based on the application
under test.

A. Assessing Adaptations

FUZZBUSTER cannot blindly apply adaptations, since they
might have a negative impact on functionality or, even worse,
they could create new faults altogether. Thus, FUZZBUSTER
uses concrete metrics to assess the impact of candidate adap-
tations on security and functionality.

FUZZBUSTER’s adaptation metrics are based on test cases:
mappings from application inputs (e.g., sockets, stdin,
command-line arguments, and environment variables) to ap-
plication outputs (e.g., stdout and return code). A faulting
test case terminates with an error code or its execution time
exceeds a set timeout parameter, while a non-faulting test case
terminates gracefully. FUZZBUSTER stores three sets of test
cases for each application under its control:

1) Non-faulting (reference) test cases are test cases that
were supplied with an application for regression test-
ing. FUZZBUSTER tracks which of these have correct
behavior (i.e., output and return code), and which have
different/incorrect behavior, given some adaptations.

2) Faulting test cases include exemplars that caused faults
on their first encounter, and other faulting test cases
encountered while refining the exemplar. FUZZBUSTER
tracks which of these have been fixed by the adaptations
created so far, and which are still faulting. There are two
specific types of faulting test cases:

a) Reactive faulting test cases: encountered by host
notification and subsequent refinement (see Fig-
ure 1). These pose more of a threat, since the
underlying vulnerability may have been caused by
an adversary.

b) Proactive faulting test cases: encountered by dis-
covery and refinement (see Figure 1). These pose
less threat, since they were discovered internally
and FUZZBUSTER has no evidence that an adver-
sary is aware of them.

We can calculate two important metrics from these sets of
test cases over time:

1) Exposure is computed as the number of unfixed fault-
ing test cases over time. This represents an estimated
window of exploitability.

2) Functionality loss is computed as the number of incor-
rect non-faulting (reference) test cases over time. This
represents the usability that FUZZBUSTER has sacrificed
for the sake of security.

Before FUZZBUSTER has discovered faults or been notified
of faults, there are no faulting test cases for any application.
As FUZZBUSTER encounters proactive and reactive faults and
refines those faults (e.g., by experimenting with different
inputs), it will accrue faulting test cases. FUZZBUSTER then
applies and removes adaptations to fix these faulting test
cases. These adaptations ultimately protect the host against
adversaries.

57Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 65 / 143

FUZZBUSTER’s assessment policy allows it to sacrifice
functionality to fix faulting test cases. The exact balance can
be tuned for different applications, but FUZZBUSTER’s default
priorities are:

1) Fixing reactive faulting test cases.
2) Fixing proactive faulting test cases.
3) Maintaining the behavior of non-faulting test cases.

This means that FUZZBUSTER will tolerate functionality loss
(i.e., by changing the behavior of non-faulting test cases) in
order to decrease exposure.

B. Pre-existing Tools for Discovery & Refinement

Since this paper presents new tools for discovery and refine-
ment (Section III), for the sake of comparison we first review
the set of fuzz tools we used in previous work [5], [3], [4].
Those tools included a random string generator for discovering
faults (called Fuzz-2001) and various minimization (i.e.,
unnecessary character removal) tools for refining faults.
Fuzz-2001 quickly constructs a sequence of printable

and non-printable characters and feeds it as input to the
program under test. This is effective for discovering some
buffer overflows, problems with escape characters, and other
such problems.

The minimization tools FUZZBUSTER uses to refine vulner-
abilities include:

• smallify: semi-randomly removes single characters from
the input string.

• line-relev: semi-randomly removes entire lines from the
input string.

• divide-and-conquer: Use a binary search to attempt to
remove entire portions of the input string.

Each of these tools is designed take a faulting test case as
input, and produce smaller faulting test case(s).

Minimization tools can operate in a black-box fashion,
where FUZZBUSTER does not have the source code or even
access to the binary. All they require is an output signal to
determine whether the program faulted.

III. NEW DISCOVERY & REFINEMENT TOOLS

We now discuss several new tools that we have incorporated
into FUZZBUSTER for discovering and refining faults. We
then present empirical results comparing the new and existing
tools to characterize the effects on the host’s exposure to
vulnerabilities.

Both of these tools work with input filter adapations; that
is, program adaptations that remove content from input data
before passing the data to the corresponding program.

A. Retrospective Fault Analysis

We implemented and tested Retrospective Fault Analysis
(RFA), a new tool for vulnerability discovery. RFA works by
finding the most recent faulting test case such that:

• The test case’s input is filtered by the most recent
adaptation applied, so some input data has been removed.

• The test case still faults, despite its input being filtered.

RFA then uses the test case— with filtered input— as an
exemplar. This effectively allows FUZZBUSTER to fix test
cases that still fault, despite incremental adaptations.

To illustrate why this is important, consider the following
simplified example, where a program faults if it receives either
CRASH or fault in an incoming message. Some messages
may have more than one fault within them, e.g.:

• Cookie: foo=...CRASH...fault...
• Cookie: foo=...faCRASHult...

This means that FUZZBUSTER can automatically build a
filter adaptation to address CRASH, but in both of the above
cases, there will still be a fault. Using RFA, FUZZBUSTER
will follow its CRASH adaptation with a retrospective investi-
gation of the remaining fault test case(s). This produces a
more complete analysis of problematic inputs, and it improves
the host’s exposure to vulnerabilities, as we demonstrate in our
experiments.

B. Input Generalization Tools

As described in Section II-B, minimization tools remove
unnecessary characters for a fault. Unfortunately, refining
vulnerabilities based on removal alone will tend to produce
overspecific adaptations.

Consider the example of IP addresses within a packet
header: minimization tools might trim 192.168.0.1 to 2.8.0.1,
which might still produce the fault; however, an adaptation
based on this model will only be effective when 2, 8, 0, and
1 are all present in the address.

FUZZBUSTER’s new generalization tools go the extra step
of replacing characters and inserting characters to generalize
FUZZBUSTER’s regular expression model of the faulting input
pattern. This means that FUZZBUSTER will be able to substi-
tute the IP address’ digits with other digits to develop a more
general, accurate adaptation.

We have implemented the following generalization tools:

• replace-all-chars: replaces all characters with dif-
ferent characters, reruns the test case, and then general-
izes. This determines whether the test case is an instance
of a buffer overflow. For example:
ABCDEFGH ==> .{8,}

• replace-delimited-chars: splits the input into
chunks, using common delimiters, removes and replaces
delimited chunks, and then generalizes. For example:
host: 1.1.1.1\nCookie ==> .{0,}?Cookie

• replace-individual-chars: removes and re-
places individual characters, sensitive to character classes
(e.g., letters, digits, whitespace, etc.), and generalizes. For
example:
GCOJR34A59S94H ==> .*C.*R.*A.*S.*H

• insert-chars: inserts characters in-between consec-
utive concrete characters, to relax adjacency constraints.
For example:
CRASH ==> .*C.*R.*A.*S.*H

58Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 66 / 143

• shorten-regex: removes characters within wildcard
blocks to provide more accurate buffer overflow thresh-
olds. For example:
host: .{951,} ==> host: .{256,}

We conducted experiments on multiple programs to charac-
terize the effect of generalization tools and RFA. We discuss
these experiments and results next.

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fa

ul
tin

g
Te

st
 C

as
es

Time (s)

PA
TC

H
 1

 (0
, 1

7,
 2

7)

PA
TC

H
 2

 (0
, 3

4,
 2

7)

PA
TC

H
 3

 (0
, 5

4,
 2

7)

PA
TC

H
 4

 (0
, 8

0,
 2

7)

PA
TC

H
 5

 (0
, 9

2,
 2

7)

PA
TC

H
 6

 (0
, 1

05
, 2

7)

PA
TC

H
 7

 (0
, 1

20
, 2

7)

PA
TC

H
 8

 (0
, 1

39
, 2

7)

Reference Test Cases
Reference Test Cases Preserved

Faulting Test Cases Fixed
Faulting Test Cases Found

Fig. 2. Results using RFA, minimization, and generalization.

IV. EXPERIMENTS

We conducted an empirical evaluation on different programs
to measure the effect of RFA and the new generalization fuzz-
tools. We divide this into four discussions: (1) a compara-
tive analysis of minimization, generalization, and RFA on a
single program; (2) an example of FUZZBUSTER sacrificing
functionality in order to increase security; (3) a quantitative
comparison of minimization and generalization using FUZZ-
BUSTER to shield a web server against known vulnerabilities;
and (4) adaptation statistics across multiple programs using
FUZZBUSTER with generalization and RFA.

A. Comparative Analysis: Generalization, Minimization, RFA

For this experiment, we used a fault-injected version of
dc, a unix-based, stdin-based desktop calculator program.
The fault in dc was injected within the internal modulo (i.e.,
remainder) operation. This operation is reached by invoking
the % command with at least two numbers on the stack,
printing with a non-decimal output radix, changing the input
radix, or invoking base conversion.

We ran FUZZBUSTER in five settings: with RFA using
both minimization and generalization tools (Figure 2); and
then with and without RFA, under either minimization or
generalization tools (Figure 3).

Each of these plots display the following important data for
adaptive cybersecurity:

• The number of faulting test cases FUZZBUSTER has
identified through discovery and refinement (solid light
red line).

• The number of those faulting test cases that FUZZBUSTER
has fixed (dashed light red line).

• Exposure to vulnerabilities (area between light red lines).
• The number of reference (non-faulting) test cases FUZZ-

BUSTER has for the application (solid dark line).
• The number of those non-faulting test cases whose return

code and output behavior is preserved in the patched
version (dashed dark line).

• Loss of functionality (area between dark lines).
• The patches that have been applied.
The comparison plots in Figure 3 illustrate the trade-

offs of generalization and RFA. Minimization tools (Fig-
ure 3, left) produce quick, overspecific patches. For instance,
PATCH 16 in the Figure 3 upper-left plot filters the pattern
.*9.*5.*%.*. While this is a legitimate example of the
fault, it does not characterize the fault in its entirety. By com-
parison, the generalization patches are slightly more general.

Figure 3 also illustrates the effect of retrospective fault
analysis. In the RFA trials, the exposure (distance between
the light red lines) is significantly reduced. This is because
FUZZBUSTER often deploys a filter that addresses some – but
not all – problems in a faulting input, and then RFA allows
FUZZBUSTER to focus on the remainder of the problematic
input. For instance, if a single test case has both a modulo
operation and a base conversion, filtering out only one of these
operations will not repair the test case.

In the setting with both generalization and RFA, FUZZ-
BUSTER filters against the entire vulnerability within 15 min-
utes; in the other cases, FUZZBUSTER does not level off for
over three hours.

Note that in all settings in Figure 3, FUZZBUSTER did not
lose functionality of the underlying application, as measured
by the correctness of the reference test cases.

Figure 2 shows the results of FUZZBUSTER with both
minimization and genralization enabled. It fixes the entire
vulnerability and levels off in 18 minutes, but it also destroys
the functionality of one of the reference test cases, since its
PATCH 5 was overgeneral.

B. Sacrificing Functionality to Increase Security

We ran another FUZZBUSTER trial on a different fault-
injected version of the dc binary. This version faulted when-
ever an arithmetic operation is invoked on an empty stack,
so for instance, the sequence ‘‘9 5 +’’ would not fault,
but the inputs ‘‘+’’ or ‘‘4 n +’’ would fault due to an
empty stack (and ‘‘n’’ pops the stack).

The results are shown in Figure 4. Using generalization
tools and RFA, FUZZBUSTER isolates individual arithmetic
operations and generates filters for each, ultimately disabling
its arithmetic operations to prevent any faults. Note that
almost every adaptation has an adverse impact on program
functionality, but by design, these are acceptable losses to
increase safety of the host.

C. Adapting a Web Server

We conducted FUZZBUSTER experiments on known Com-
mon Vulnerabilities and Exposures (CVEs) on the Apache web
server. This demonstrates FUZZBUSTER working on larger

59Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 67 / 143

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fa

ul
tin

g
Te

st
 C

as
es

Time (s)

PA
TC

H
 1

 (0
, 1

, 2
7)

PA
TC

H
 2

 (0
, 7

, 2
7)

PA
TC

H
 3

 (0
, 1

4,
 2

7)

PA
TC

H
 4

 (0
, 2

1,
 2

7)

PA
TC

H
 5

 (0
, 2

1,
 2

7)

PA
TC

H
 6

 (0
, 2

2,
 2

7)

PA
TC

H
 7

 (0
, 2

9,
 2

7)

PA
TC

H
 8

 (0
, 2

9,
 2

7)

PA
TC

H
 9

 (0
, 3

9,
 2

7)

PA
TC

H
 1

0
(0

, 3
9,

 2
7)

PA
TC

H
 1

1
(0

, 3
9,

 2
7)

PA
TC

H
 1

2
(0

, 4
6,

 2
7)

PA
TC

H
 1

3
(0

, 4
6,

 2
7)

PA
TC

H
 1

4
(0

, 5
2,

 2
7)

PA
TC

H
 1

5
(0

, 5
8,

 2
7)

PA
TC

H
 1

6
(0

, 6
7,

 2
7)

PA
TC

H
 1

7
(0

, 7
4,

 2
7)

PA
TC

H
 1

8
(0

, 7
6,

 2
7)

PA
TC

H
 1

9
(0

, 7
6,

 2
7)

Reference Test Cases
Reference Test Cases Preserved

Faulting Test Cases Fixed
Faulting Test Cases Found

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fa

ul
tin

g
Te

st
 C

as
es

Time (s)

PA
TC

H
 1

 (0
, 1

3,
 2

7)
PA

TC
H

 2
 (0

, 2
0,

 2
7)

PA
TC

H
 3

 (0
, 2

9,
 2

7)

PA
TC

H
 4

 (0
, 3

6,
 2

7)

PA
TC

H
 5

 (0
, 4

8,
 2

7)

PA
TC

H
 6

 (0
, 5

6,
 2

7)

PA
TC

H
 7

 (0
, 6

8,
 2

7)

PA
TC

H
 8

 (0
, 7

7,
 2

7)

PA
TC

H
 9

 (0
, 8

7,
 2

7)

PA
TC

H
 1

0
(0

, 9
1,

 2
7)

PA
TC

H
 1

1
(0

, 9
7,

 2
7)

PA
TC

H
 1

2
(0

, 1
11

, 2
7)

PA
TC

H
 1

3
(0

, 1
16

, 2
7)

PA
TC

H
 1

4
(0

, 1
24

, 2
7)

PA
TC

H
 1

5
(0

, 1
35

, 2
7)

PA
TC

H
 1

6
(0

, 1
46

, 2
7)

PA
TC

H
 1

7
(0

, 1
51

, 2
7)

PA
TC

H
 1

8
(0

, 1
58

, 2
7)

PA
TC

H
 1

9
(0

, 1
72

, 2
7)

PA
TC

H
 2

0
(0

, 1
84

, 2
7)Reference Test Cases

Reference Test Cases Preserved
Faulting Test Cases Fixed

Faulting Test Cases Found

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fa

ul
tin

g
Te

st
 C

as
es

Time (s)

PA
TC

H
 1

 (0
, 4

, 2
7)

PA
TC

H
 2

 (0
, 1

1,
 2

7)

PA
TC

H
 3

 (0
, 1

7,
 2

7)

PA
TC

H
 4

 (0
, 2

5,
 2

7)

PA
TC

H
 5

 (0
, 3

2,
 2

7)

PA
TC

H
 6

 (0
, 3

9,
 2

7)
PA

TC
H

 7
 (0

, 3
9,

 2
7) PA

TC
H

 8
 (0

, 5
4,

 2
7)

PA
TC

H
 9

 (0
, 6

2,
 2

7)

PA
TC

H
 1

0
(0

, 6
2,

 2
7)

PA
TC

H
 1

1
(0

, 7
2,

 2
7)

PA
TC

H
 1

2
(0

, 8
5,

 2
7)

Reference Test Cases
Reference Test Cases Preserved

Faulting Test Cases Fixed
Faulting Test Cases Found

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fa

ul
tin

g
Te

st
 C

as
es

Time (s)

PA
TC

H
 1

 (0
, 1

0,
 2

7)

PA
TC

H
 2

 (0
, 2

6,
 2

7)

PA
TC

H
 3

 (0
, 3

7,
 2

7)

PA
TC

H
 4

 (0
, 4

5,
 2

7)

PA
TC

H
 5

 (0
, 5

7,
 2

7)

PA
TC

H
 6

 (0
, 6

5,
 2

7)

PA
TC

H
 7

 (0
, 7

8,
 2

7)

PA
TC

H
 8

 (0
, 8

7,
 2

7)

PA
TC

H
 9

 (0
, 9

4,
 2

7)

PA
TC

H
 1

0
(0

, 1
02

, 2
7)

PA
TC

H
 1

1
(0

, 1
08

, 2
7)

PA
TC

H
 1

2
(0

, 1
21

, 2
7)

PA
TC

H
 1

3
(0

, 1
27

, 2
7)

PA
TC

H
 1

4
(0

, 1
39

, 2
7)

PA
TC

H
 1

5
(0

, 1
48

, 2
7)

PA
TC

H
 1

6
(0

, 1
58

, 2
7)

PA
TC

H
 1

7
(0

, 1
69

, 2
7)

PA
TC

H
 1

8
(0

, 1
78

, 2
7)

PA
TC

H
 1

9
(0

, 1
91

, 2
7)

PA
TC

H
 2

0
(0

, 1
95

, 2
7)

PA
TC

H
 2

1
(0

, 2
01

, 2
7)

Reference Test Cases
Reference Test Cases Preserved

Faulting Test Cases Fixed
Faulting Test Cases Found

Minimization Fuzz-Tools Generalization Fuzz-Tools
W

ith
ou

t R
FA

W
ith

 R
FA

Fig. 3. Results comparing the exposure window of Retrospective Fault Analysis and minimization vs. generalization tools.

production-quality applications with real vulnerabilities, and
it shows the generality of FUZZBUSTER and its fuzz-tools.

For each trial, we initialized FUZZBUSTER with the Apache
web server as the only application under test. We then sent
a faulting message to the server— as dictated by the cor-
responding CVE— and FUZZBUSTER detected the reactive
fault and began its fuzzing. Table I reports how many minutes
FUZZBUSTER took to produce an input filter adaptation (from
simulation start to patch time) for the corresponding CVE us-
ing only minimization tools (i.e., “Min.”), only generalization
tools (i.e., “Gen.”), and the speedup provided by generalization
tools.

TABLE I
FUZZBUSTER’S REACTION TIME ON CVES OF THE APACHE WEB SERVER.

CVE RT (Min.) RT (Gen.) Speedup
2011-3192 96 4 24x

2011-3368-1 53 10 5x
2011-3368-2 32 10 3x
2011-3368-3 77 11 7x

2012-0021 36 3 12x
2012-0053 30 7 4x

Reaction times reported in minutes; speedup reported as quotient.

In addition to producing more general patches, the gener-
alization tools also yield a significant speedup factor between
3x and 24x, and on average, produce useful adaptations in an

order of magnitude less time.
For these CVE trials, RFA was not necessary since FUZZ-

BUSTER fixes all faulting test cases with the first patch it
produces.

D. Statistics Across Programs

We now present additional results from using FUZZBUSTER
with the generalization tools and retrospective fault analysis
on 16 fault-injected binaries.

We used GenProg [6], an evolutionary program repair
tool, to create faulty binaries from the source code of unix
command-line applications including dc, fold, uniq, and
wc. We achieved this by modifying the GenProg test cases—
which GenProg uses as a fitness function— to expect a fault on
certain inputs. This way, GenProg would generate selectively-
faulting binaries based on our specifications.

FUZZBUSTER automatically analyzed each faulty binary
for two hours, using a mix of proactive fuzz-tools (e.g.,
Fuzz-2001 and RFA), refinement fuzz tools (e.g., the gen-
eralization fuzz-tools), and adaptation strategies (e.g., input
filters).

Fuzzing leveled off (i.e., FUZZBUSTER patched the entire
injected fault, based on our manual analysis of patches) on
10/16 binaries. Of these leveled-off binaries, FUZZBUSTER
took an average of 5.87 minutes to level off, and it sacrificed
an average of 6% functionality (i.e., by changing the output of

60Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 68 / 143

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700 800 900 1000 1100

Fa

ul
tin

g
Te

st
 C

as
es

Time (s)

PA
TC

H
 1

 (6
, 0

, 3
0)

PA
TC

H
 2

 (6
, 0

, 3
0)

PA
TC

H
 3

 (6
, 0

, 3
0)

PA
TC

H
 4

 (6
, 1

, 3
0)

PA
TC

H
 5

 (6
, 1

0,
 3

0)

PA
TC

H
 6

 (6
, 1

0,
 3

0)

PA
TC

H
 7

 (6
, 4

0,
 3

0)

PA
TC

H
 8

 (6
, 4

0,
 3

0)

PA
TC

H
 9

 (6
, 4

0,
 3

0)

PA
TC

H
 1

0
(6

, 6
2,

 3
0)

PA
TC

H
 1

1
(6

, 6
2,

 3
0) PA

TC
H

 1
2

(6
, 7

8,
 3

0)

Reference Test Cases
Reference Test Cases Preserved

Faulting Test Cases Fixed
Faulting Test Cases Found

Disable
addition

Disable
division

Disable
subtraction

Disable
modulo

Disable
exponentiation

Disable
multiplication

Fig. 4. FUZZBUSTER sacrifices functionality to protect the program against vulnerabilities.

non-faulting reference test cases). FUZZBUSTER retained full
functionality on 7 of the 10 leveled-off binaries.

Over all 16 fault-injected binaries, FUZZBUSTER created
an average of 8.2 adaptations and applied an average of 7.8,
which amounts to a 95% usage of the adaptations it created.
Over all binaries, FUZZBUSTER fixed an average of 82%
of the faulting test cases and sacrificed an average of 10%
functionality during each 2-hour trial. This suggests that when
FUZZBUSTER cannot generate a perfect adaptation, it still
manages to close the exposure window over time.

V. RELATED WORK

As previously noted, the FUZZBUSTER approach has roots
in fuzz-testing, a term first coined in 1988 applied to software
security analysis [7]. It refers to invalid, random or unexpected
data that is deliberately provided as program input in order
to identify defects. Fuzz-testers— and the closely related
“fault injectors”— are good at finding buffer overflow, cross-
site scripting, denial of service (DoS), SQL injection, and
format string bugs. They are generally not highly effective in
finding vulnerabilities that do not cause program crashes, e.g.,
encryption flaws and information disclosure vulnerabilities [8].
Moreover, existing fuzz-testing tools tend to rely significantly

on expert user oversight, testing refinement and decision-
making in responding to identified vulnerabilities.

FUZZBUSTER is designed both to augment the power of
fuzz-testing and to address some of its key limitations. FUZZ-
BUSTER fully automates the process of identifying seeds for
fuzz-testing, guides the use of fuzz-testing to develop general
vulnerability profiles, and automates the synthesis of defenses
for identified vulnerabilities.

To date, several research groups have created specialized
self-adaptive systems for protecting software applications.
For example, both AWDRAT [9] and PMOP [10] used
dynamically-programmed wrappers to compare program ac-
tivities against hand-generated models, detecting attacks and
blocking them or adaptively selecting application methods to
avoid damage or compromises.

The CORTEX system [11] used a different approach, plac-
ing a dynamically-programmed proxy in front of a replicated
database server and using active experimentation based on
learned (not hand-coded) models to diagnose new system
vulnerabilities and protect against novel attacks.

While these systems demonstrated the feasibility of the self-
adaptive, self-regenerative software concept, they are closely
tailored to specific applications and specific representations of
program behavior. FUZZBUSTER provides a general approach

61Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 69 / 143

to adaptive immunity that is not limited to a single class of
application. FUZZBUSTER does not require detailed system
models, but will work from high-level descriptions of com-
ponent interactions such as APIs or contracts. Furthermore,
FUZZBUSTER’s proactive use of intelligent, automatic fuzz-
testing identifies possible vulnerabilities before they can be
exploited.

VI. CONCLUSION AND FUTURE WORK

FUZZBUSTER is designed to discover vulnerabilities and
then quickly refine and adapt its applications to prevent
them from being exploited by attackers. This paper presented
two advances in FUZZBUSTER’s tools — retrospective fault
analysis and generalization fuzz-tools — aimed at improv-
ing the quality and efficiency of FUZZBUSTER’s adaptations.
We presented empirical results of FUZZBUSTER’s automated
analysis of fault-injected programs and real CVEs, using ob-
jective metrics for adaptive cybersecurity such as vulnerability
exposure, functional loss, and reaction time. When analyzing
fault-injected programs, the generalization fuzz-tools and RFA
reduced vulnerability exposure by a factor of five on fault
injected programs, and allowed FUZZBUSTER to filter out
more of the vulnerability in less time. When analyzing the
Apache HTTP server, the fault generalization tools yielded an
order of magnitude speedup in reaction time over the existing
fault minimization tools.

At present, FUZZBUSTER uses a wrapper around the pro-
grams it controls, and its wrapper filters all incoming data
according to the current adaptations (e.g., input filters) before
sending the data to the binary. One next step is to revise
the program’s binary directly, and embed the input filters as
preprocessors.

The generalization fuzz-tools and RFA are all domain-
general strategies, and we demonstrated this by using them
to improve program analysis on command-line filter pro-
grams (e.g., wc), state-dependent standard input programs
(e.g., dc), and grammar-specific web programs (e.g., Apache
HTTP server). The most domain-specific enhancement is the
replace-delimited-chars tool that uses common de-
limiters to analyze portions of data. This tool contributed sig-
nificantly to the speedup of FUZZBUSTER’s analysis of HTTP
headers in the Apache HTTP server experiment. We believe
that we will see additional performance benefits by adding
more domain-specific structures to FUZZBUSTER, including
input grammars (e.g., packet header structure) and deeper
application models (e.g., recording application command-line
options and values).

We anticipate using the adaptive cybersecurity metrics from
this paper (see also [5], [4]) to evaluate future design decisions
for FUZZBUSTER and other active cybersecurity projects.

ACKNOWLEDGMENTS

This work was supported by DARPA and Air Force Research
Laboratory under contract FA8650-10-C-7087. The views expressed
are those of the author and do not reflect the official policy or position
of the Department of Defense or the U.S. Government. Approved
for public release, distribution unlimited.

REFERENCES

[1] T. Kellerman, “Cyber-threat proliferation: Today’s truly pervasive global
epidemic,” Security Privacy, IEEE, vol. 8, no. 3, pp. 70 –73, May-June
2010.

[2] G. C. Wilshusen, “Cyber threats and vulnerabilities place federal systems
at risk: Testimony before the subcommittee on government management,
organization and procurement,” United States Government Accountabil-
ity Office, Tech. Rep., May 2009.

[3] D. J. Musliner, J. M. Rye, D. Thomsen, D. D. McDonald, and M. H.
Burstein, “FUZZBUSTER: A system for self-adaptive immunity from
cyber threats,” in Eighth International Conference on Autonomic and
Autonomous Systems (ICAS-12), March 2012.

[4] D. J. Musliner, S. E. Friedman, T. Marble, J. M. Rye, M. W. Boldt, and
M. Pelican, “Self-adaptation metrics for active cybersecurity,” in SASO-
13: Adaptive Host and Network Security Workshop at the Seventh IEEE
International Conference on Self-Adaptive and Self-Organizing Systems,
September 2013.

[5] D. J. Musliner, S. E. Friedman, J. M. Rye, and T. Marble, “Meta-control
for adaptive cybersecurity in FUZZBUSTER,” in Proc. IEEE Int’l Conf.
on Self-Adaptive and Self-Organizing Systems, sep 2013.

[6] W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” Software Engineering,
International Conference on, vol. 0, pp. 364–374, 2009.

[7] B. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Communications of the ACM, vol. 33, no. 12,
December 1990.

[8] C. Anley, J. Heasman, F. Linder, and G. Richarte, The Shellcoder’s
Handbook: Discovering and Exploiting Security Holes, 2nd Ed. John
Wiley & Sons, 2007, ch. The art of fuzzing.

[9] H. Shrobe, R. Laddaga, B. Balzer, N. Goldman, D. Wile, M. Tallis,
T. Hollebeek, and A. Egyed, “AWDRAT: a cognitive middleware system
for information survivability,” AI Magazine, vol. 28, no. 3, p. 73, 2007.

[10] H. Shrobe, R. Laddaga, B. Balzer et al., “Self-Adaptive systems for
information survivability: PMOP and AWDRAT,” in Proc. First Int’l
Conf. on Self-Adaptive and Self-Organizing Systems, 2007, pp. 332–335.

[11] “Cortex: Mission-aware cognitive self-regeneration technology,” Final
Report, US Air Force Research Laboratories Contract Number FA8750-
04-C-0253, March 2006.

62Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 70 / 143

Sensor-Hub: A Real-Time Data Integration

and Processing Nexus for Adaptive C2 Systems

Jean-François Gagnon, Sébastien Tremblay

School of Psychology

Université Laval

Québec, Canada

e-mail: jean-francois.gagnon.22@ulaval.ca

sebastien.tremblay@psy.ulaval.ca

Daniel Lafond, Martin Rivest, François Couderc

Thales Research and Technology Canada

Thales Canada

Québec, Canada

e-mail: daniel.lafond@ca.thalesgroup.com

martin.rivest@ca.thalesgroup.com

francois.couderc@ca.thalesgroup.com

Abstract—The present paper introduces the Sensor-Hub, a

prototype tool for augmenting the common operating picture

and adaptability of distributed teams in safety-critical

environments. The Sensor-Hub aims to facilitate the

integration and interpretation of data collected directly from

humans augmented with sensing capability involved in the

situation to produce timely and relevant information on the

current functional state of operators, the situation and their

environment. Herein, we elaborate on the development and

validation of the sensing and interpretation framework,

emphasising the key adaptation capabilities that it seeks to

enable. Lastly, this paper illustrates three sectors of application

of the Sensor-Hub: training of safety-critical team operations,

real-time error-prevention and adaptation during operations,

and assessment of inter-agent and human-technology

interactions.

Keywords-Augmenting humans with technology; sensing;

modeling; situation awareness; network centric operations.

I. INTRODUCTION

Sensing technologies have evolved to the point that
valuable information on an evolving operation can not only
be acquired with regards to observable characteristics of the
environment, but also about the functional state of the team
during the accomplishment of its mission [1][2][3].
Advanced human sensing tools provide the opportunity to
increase decision making and situational awareness of
personnel actively engaged in a task and their immediate
environment. Applications exploiting such data have the
potential to significantly improve individual and team
situational awareness, safety, adaptability and performance –
provided that the data is processed by valid and reliable
assessment models.

Situational awareness is defined as the perception of
information pertaining to a situation, the comprehension of
its meaning, and the projection of the situation into a near-
future [4][5]. It is widely posited that situational awareness is
associated with operational success, as it is the basis for a
Common Operating Picture (COP) within the response team.
Unfortunately, the characteristics of many situations severely

hinder the perception of data, its comprehension and
consequently its projection into the future. This is the case,
for instance, during emergency response. Emergency
response is the active phase of emergency management at the
occurrence of an incident. Team members involved in
emergency response must coordinate their effort in order to
perform effectively often in very stressful, life-threatening
environments, despite the challenges of the geographically
distributed nature of their work (e.g., the command center is
frequently delocalized from the incident and first responders
are often dispersed across the area of operations). The
uncertainty and time pressure that characterise emergency
response situations often severely constrains the quality of
the COP, both at the tactical and operational levels.
Moreover, the amount of information to consider is often
considerable, pushing individuals’ cognitive capacities to
their limit. The state of readiness of different team members
can be particularly difficult to assess in such contexts.

Despite these constraints, there is a growing effort to
augment accessibility and reliability of information in these
(or similar) environments [6]. The deployment of multiple
sensors in these environments enables the application of a
network-centric approach to operations. The concept of
Network-Centric Operations (NCO) originates from the
military domain and refers to linking networks of sensors,
decision makers, and individual agents [7][8] to achieve
information superiority. This approach strives to increase
shared awareness, self-synchronization, and performance of
the network as a whole [9]. Concepts pertaining to network-
centric operations can also be applied to emergency
response, as many similarities exist between the two domains
[10]. The objective of this paper is to discuss on how the
developments in human sensing can take the NCO approach
to a new level by enabling adaptive solutions to Command
and Control (C2) in complex, distributed environments. To
serve this purpose, we use the Sensor-Hub concept as a
demonstrator of potential increased capabilities in the
context of C2 and emergency response.

63Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 71 / 143

Emergency response

personnel

Sensors Integration + Interpretation Adaptation

Deployed

In command center

Psychophysiological – EEG,

ECG, EMG, fNIRS, GSR, etc.

Mobile device sensors –

Kinetic sensors, GPS location,

thermal, cameras, etc.

Model of task readiness (for

error prevention)

Models/rules for generating

feedback/alerts

Operator functional state

model

Team management –

Detection of user distress/

readiness

Alerts – Detection of critical

events (e.g., fall, collision,

explosion)

Prevention – Detection of

error-prone user states

Information sharing – Spatio-

temporal coordination

* Data can either be collected

passively (e.g. EEG) or actively (e.g. a

picture taken by the operator)

Figure 1. Sensor-Hub Framework.

This paper is divided into six sections. Section I sets the

general context in which the Sensor-Hub could be deployed
and implemented. Section II describes the potential sensing
capabilities of the Sensor-Hub. Section III is concerned with
the validation and the calibration of the higher-level models
that will interpret the signals from the sensors. Section IV
highlights the key features of the Sensor-Hub and discusses
how these features could facilitate its implementation into
different security and military contexts. Section V describes
how the interpretation of sensors in the context of C2 and
emergency response can trigger adaptive automation such as
cognitive counter-measures. Finally, Section VI summarizes
the critical components of the Sensor-Hub with regards to
the concept of NCO.

II. HUMAN SENSING AND SITUATION MODELING

The Sensor-Hub aims to integrate and interpret data from
multiple sensors mounted on emergency response personnel,
either stationed in command centers or deployed in the field.
Specifically, it integrates data from multiple sensors to
derive metrics pertaining to Operators’ Functional State
(OFS), and passively/actively captures data about the
environment. The main innovative component of the Sensor-
Hub is its ability to model a series of data inputs (e.g., heart
rate variability, velocity, blood pressure, positional data,
temperature, etc.) and output relevant information about the
functional state of the operator or the state of the operator’s
immediate environment. The Sensor-Hub is designed with
built-in models and decision rules (to be calibrated and
validated using experimental data), and allows for specifying
relationships/rules as necessary to adjust to new contexts, or
to different functional state concepts. The Sensor-Hub builds
upon existing sensing technologies by integrating their signal
and interpreting the data to derive higher level concepts.
Below we describe the modeling framework (Fig. 1).

A. Sensing the Environment

Safety-critical environments are rapidly changing,
dynamic and complex, which make them hard to predict.
Although different situations (e.g., a toxic gas leak and a
residential fire) may require different types of information,

the individuals in charge of emergency response will often
be well situated to provide the required information to higher
level decision makers or other responders arriving on site.
Providing sensors to these individuals and allowing the
information of these sensors to be integrated and distributed
across the response team is a key factor to augment Situation
Awareness (SA) in this context and to effectively adapt to
the situation. The Sensor-Hub seeks to facilitate integration
and sharing of environmental information by allowing
tactical operators to capture (either passively or actively)
geotagged pictures, video, sounds, and measurements such
as pressure and temperature. This data can be distributed
across team members, both at the tactical level and command
levels to support decision making and create a more capable
emergency workforce. The capacity to sense the
environment will help provide timely and relevant support
for coordination and collaboration between tactical
responders.

B. Sensing Operator Functional State (OFS)

Considerable amount of effort is put in the development
of systems aiming to monitor OFS – a concept that groups
together the mediators of human performance in a given
context. OFS is a multidimensional concept that represents
the current capacity of an individual to carry out his/her task
without errors. As stated by Hockey and Robert [11], OFS is
intrinsically defined in relation to the task to be carried out
and its associated costs in terms of cognitive and physical
efforts. For instance, in remotely operated vehicle piloting
tasks, OFS involves the capacity of the pilot to re-allocate
his attention between tasks, deemed critical for responding
appropriately to alarms. In this context, OFS may also
involve fatigue and stress as they are all related to piloting
performance. Systems aiming to determine OFS are mostly,
if not all, based on the assessment of the psycho and
neurophysiologic state of the operator and the interpretation
of this signal to derive OFS-related concepts such as fatigue,
mental workload and stress. The major value in OFS
assessment is the ability to anticipate human error (i.e.,
recognize states with high error probabilities), allowing the
user or team to take preventive action. Mobile assessments

64Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 72 / 143

of OFS are becoming increasingly feasible using wearable
sensors. Furthermore, kinetic data and vital signs of
deployed personnel can provide valuable information for
increasing collaboration effectiveness and survivability.

C. Sensing the Situation

The OFS cannot be established solely by monitoring the
operator, but requires information about the interactivity of
the operator and the tasks; and on how efficient and
responsive the operator is at performing his/her tasks [11].
Since there is most often a variety of tasks and sub-task to
be carried out by operators in safety-critical environments,
the accurate assessment of the OFS is directly related to the
capacity to identify ongoing tasks and monitor modulations
in performance. Determining the ongoing task remains a
challenge, however, innovative techniques like dynamic
cognitive task analysis [12] could be used to detect a pattern
in the series of actions carried out by the operator and
consequently infer the actual task being performed.
Although this is not currently implemented in Sensor-Hub,
having such a model capable of sensing the situation is key
to augmenting the COP.

III. EXPERIMENTAL CALIBRATION/VALIDATION

The work in progress for the development of the
integration and interpretation model within the Sensor-Hub
involves several steps. First, an initial OFS model, based on
existing literature, will be developed. This initial model will
specify the filters applied to the incoming sensor data, the
nature of the relationships between the different type of data
generated by the sensors, and the format of the output
generated. For the initial demonstration, the number of
sensors used is restrained and will include heart rate monitor,
global positioning system, and accelerometer. These sensors
are chosen because they can provide several different metrics
that were proven to be good indicators of operators’ state in
previous studies [11]. Heart rate variability, breathing rate,
speed and acceleration will most likely be integrated within

the OFS model. A hybrid architecture for the OFS model is
adopted to allow for flexibility, meaning that it can easily be
adapted to fit a wide variety of data with different properties.
Both logical rules and the general class of regression models
are implemented within the Sensor-Hub. Regression-based
models have a demonstrated capacity to fit highly non linear
data in similar contexts [13], whereas logical rules allow for
quick implementation of disjunctive or conjunctive rules, for
instance, which may be harder to model with regressions.
Disjunctive rules may allow, for instance, one to differentiate
between mental and physical workload based on heart rate.
Second, the OFS model will be empirically calibrated
through the observation of pilot participants completing an
emergency response scenario. The appropriate calibration of
the relationship between the data collected by the sensors
and the various concepts that the Sensor-Hub aims to
monitor (e.g., OFS and critical events in the environment)
requires empirical testing in order to ensure good sensitivity
and specificity. This involves a realistic emergency response
scenario putting together multiple sub-tasks designed to be as
close as possible to the real operational context. This
scenario is divided into multiple phases with varying levels
of mental demand, team coordination demands, physical
demands, and environmental states. Given the live nature of
the scenario (i.e., emphasis on realism rather than
experimental control in simplified conditions), a good deal of
noise in the measurement of the aforementioned concepts is
to be expected. The modeling approach thus focuses on
simplicity and robustness at the cost of raw accuracy. The
scenarios are implemented into the SYnRGY simulation
platform. As illustrated in Fig.2, the Safety-critical scenarios
involving multidisciplinary teams of emergency responders
are scripted and recorded (left). The responders’ interface (in
command centers) is composed of a geographic information
system and multiple panels used for decision making,
communications and displaying mission critical information
(right).

Figure 2. SYnRGY Simulation platform.

65Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 73 / 143

The platform allows for human in-the-loop simulations

of safety-critical situations for both deployed and command

center personnel [14]. These simulations allow the

collection of data for model calibration in this context.

Thirdly, model validity will be tested using different

participants on a similar, but different emergency response

scenario. The participants will be emergency management

experts to improve the validity of the results. The purpose of

this validation is to evaluate the predictive power of the

model. Additionally, volunteers participating in the

validation scenario will be asked (retrospectively) to rate the

level of each of the output concepts at different moments in

time. These added constraints will allow further tuning of

the model. The developed scenario will enable the

calibration and validation of the OFS model, which are

human factors related issues, and to test for scalability and

latency of the system which are technology-related issues.

IV. TOOLSET

A key feature of the Sensor-Hub is its toolset to facilitate
(1) the integration and interpretation of new sensors and (2)
visualisation of its outputs. Since OFS modeling is in its
infancy, the development of each model is tedious and may
represent an important obstacle, especially for non-
specialists. The Sensor-Hub aims to facilitate the
development of the OFS model by providing its users with
pre implemented models and tuning tools. For instance, users
can add or remove logical conditions to increase fit between
inputs (i.e., data from sensor) and outputs (i.e., OFS).
Calibration of the model is also facilitated by the availability
of validated scenarios implemented within SYnRGY. These
scenarios are specifically designed to vary cognitive demand,
teamwork, and physical demand and consequently constitute
an efficient calibrating environment. Moreover, data
collected through the simulation platform constitutes an
important referential database for further model
development. In addition to modeling tools, the Sensor-Hub
provides a component for visualizing the inputs and outputs
of the model which may provide additional insight for model
calibration or for decision makers in operational contexts.

V. ADAPTABILITY

Within the suggested framework, the Sensor-Hub
interprets raw data to create mission-relevant information,
which could serve as critical events for adaptive systems. For
instance, in a safety-critical task training context, the Sensor-
Hub can provide useful feedback to tactical operators during
debriefings or even in real-scale exercises. Real-time
assessment of cognitive load, for instance, has been shown to
be insightful in the improvement of training [16]. From this
point of view, what is adaptive in the system is the team of
responders per se rather than the Sensor-Hub. The latter is
the enabler, and so provides information required for
triggering team adaptation. Adaptive systems, in general,
would benefit from inputs from an assessment of the
situation, OFS and of the environment that the tactical
operators are facing [15]. Such adaptive systems can, for
instance, offer assistance to the operators involved in safety-

critical missions when detecting critical OFS levels that are
likely to lead to critical failures or when detecting an
environmental threat. Moreover, because environmental
information can be assessed by the Sensor-Hub, the adaptive
system could provide tactical operators with additional
informational inputs (i.e., the information flow is bi-
directional). Finally, this human-sensing and analysis
capability may also be useful as an assessment tool for
comprehensive assessments of human-technology
interactions or team interactions in a research and
development context. In the context of NCOs, and
particularly emergency response, the Sensor-Hub can
provide critical information on the OFS of first responders
for real-time adaptation. One of our currently envisioned
applications would use the high-level assessment of the
functional state to suggest task re-allocation to commanders
for timely team management [17]. Task re-allocation is
deemed critical for highly dynamic C2 situations such as
emergency response [11]. The adaptive component of the
system, triggered by the OFS, is not fully automated, leaving
the final decision and responsibility in the hands of the
commanders.

VI. CONCLUSION

The current paper discussed how human sensing can
support the NCO approach to C2 and emergency response by
enabling adaptive solutions in dealing with the challenges of
complex and dynamic distributed environments. We
illustrate how the data from physiological sensors can be
interpreted into higher-level concepts and trigger adaptive
“support” to the commanders. The Sensor-Hub framework
aims to provide an advanced human sensor integration and
modeling capability to support a new and unparalleled
network-centric emergency response capability. The
framework is nonetheless generic and widely applicable to
other domains. Three potential applications of the Sensor-
Hub would provide adaptive capabilities to teams evolving
in safety-critical environments: 1) Training of safety-critical
team operations, 2) Real-time error-prevention and
adaptation during operations, and 3) Assessment of inter-
agent and human-technology interactions. Others have also
developed sensor integration tools relevant to OFS
measurement [1][2][18]. However, the key differentiator in
the development of the Sensor-Hub is its focus on facilitating
the assessment and decision making process by giving a
simple yet flexible toolset for editing and calibrating the
interpretation model, based on psychophysiological theory
and on empirical evidence. Such an empirical evidence is
also greatly facilitated by the scenarios implemented with the
SYnRGY simulation platform.

ACKNOWLEDGMENT

This work was funded by Thales Research and
Technology Canada and by an internship fund granted to
Jean-François Gagnon by the MITACS Accelerate program.

REFERENCES

[1] R. Matthews, N. J. McDonald, P. Hervieux, P. J. Turner, and
M. A. Steindorf, “A wearable physiological sensor suite for

66Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 74 / 143

unobtrusive monitoring of physiological and cognitive state,”
29th Annual International Conference of the IEEE, pp. 5276-
5281, August 2007, doi: 10.1109/IEMBS.2007.4353532

[2] P. Alexandros and N. G. Bourbakis, “A survey on wearable
sensor-based systems for health monitoring and prognosis,”
Systems, Man, and Cybernetics, Part C: IEEE Transactions on
Applications and Reviews, vol. 40, pp. 1-12, January 2010,
doi: 10.1109/TSMCC.2009.2032660.

[3] K. M. Stanney, et al., “Augmented cognition: An overview,”
Reviews of human factors and ergonomics, vol. 5, pp. 195-
224, June 2009, doi: 10.1518/155723409X448062.

[4] M. R. Endsley, “Toward a theory of situation awareness in
dynamic systems,” Human Factors: The Journal of the Human
Factors and Ergonomics Society, vol. 37, pp. 32-64, March
1995, doi: 10.1518/001872095779049543.

[5] R. Rousseau, S. Tremblay, and R. Breton, “Defining and
Modeling Situation Awareness: A Critical Review,” In S.
Banbury and S. Tremblay (Eds), A Cognitive Approach to
Situation Awareness: Theory, Measures and Application,
Aldershot, UK, Ashgate, pp. 3-21, 2004.

[6] S. Vieweg, A. Hughes, K. Starbird, and L. Palen,
“Microblogging during two natural hazards events: What
twitter may contribute to situational awareness,” Proceedings
of ACM Conference on Computer Human Interaction (CHI),
pp. 1079-1088, April 2010, doi: 10.1145/1753326.1753486.

[7] A. K. Cebrowski and J. J. Garstka, “Network-centric warfare:
Its origin and future,” In US Naval Institute Proceedings, vol.
124, pp. 28-35, 1998.

[8] D. Caterinicchia and M. French, “Network-centric warfare:
Not there yet,” Federal Computing Week, vol. 9, 2003.

[9] J. Garstka, “Implementation of Network Centric Warfare,”
Transformation Trends, vol. 28, 2004.

[10] M. Stanovich, “Network-centric emergency response: The
challenges of training for a new command and control
paradigm,” Journal of emergency management, vol. 4, no. 2
pp. 57-64, 2006.

[11] G. Hockey and J. Robert, “Operator functional state: the
assessment and prediction of human performance degradation
in complex tasks,” Amsterdam, NL: IOS Press, vol. 355, pp.
1-383, April 2003.

[12] J-F. Gagnon, P. Jeuniaux, G. Dubé, and S. Tremblay,
“Dynamic cognitive task modeling of complexity discovery A
mix of process tracing and task analysis,” Human Factors and
Ergonomics Society Annual Meeting. vol. 55, pp. 1346-1350
September 2011, doi: 10.1177/1071181311551280.

[13] H. Ayaz et al., “Estimation of cognitive workload during
simulated air traffic control using optical brain imaging
sensors,” Foundations of Augmented Cognition. Directing the
Future of Adaptive Systems, pp. 549–558, January 2011, doi:
http://dx.doi.org/10.1016/j.neuroimage.2011.06.023

[14] J-F. Gagnon, F. Couderc, M. Rivest, S. Banbury, and S.
Tremblay, “Using SYnRGY to support design and validation
studies of emergency management solutions,” Proceedings of
the 10th International ISCRAM Conference, May 2013.

[15] J. Allanson and S. H. Fairclough, “A research agenda for
physiological computing,” Interacting with computers, vol.
16, no. 5, pp. 857-878, October 2004.

[16] J. T. Coyne, C. Baldwin, A. Cole, C. Sibley, and D. M.
Roberts, “Applying Real Time Physiological Measures of
Cognitive Load to Improve Training,” In D. D. Schmorrow, I.
V. Estabrooke, & M. Grootjen (Eds.), Foundations of
Augmented Cognition, Springer-Verlag Berlin Heidelberg,
pp. 469–478, July 2009. doi:10.1007/978-3-642-02812-0.

[17] D. Lafond, H. Irandoust, S. Tremblay, W. Price, and A. R.
Benaskeur, “A Context-sensitive functional model of
teamwork operations,” Proceedings of the 14th International
Command and Control Technology Symposium. Santa
Monica, CA, pp. 2-19, June 2009.

[18] S. Pappada, A. Geyer, K. Durkee, J. Freeman, and J. Cohn,
“Modeling Operational Workload for Adaptive Aiding In
Unmanned Aerial Systems (UAS) Operations,” Aviation,
Space, and Environmental Medicine, vol. 84, no. 4, pp. 331-
332, April 2013.

67Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 75 / 143

HCI Dilemmas for Context-Aware Support in Intelligence Analysis

Daniel Lafond, René Proulx

Thales Research and Technology Canada

Thales Canada Inc.

Quebec City, Canada

e-mail: daniel.lafond@ca.thalesgroup.com

e-mail: rene.proulx@ca.thalesgroup.com

Alexandre Bergeron-Guyard
Command, Control and Intelligence (C2I) Section

 Defence Research and Development Canada – Valcartier

Quebec City, Canada

e-mail: Alexandre.BergeronGuyard@drdc-rddc.gc.ca

Alexis Morris, William Ross

Faculty of Computer Science

University of New Brunswick

Fredericton, Canada

e-mail: alexis.morris@unb.ca

e-mail: william.ross@unb.ca

Mihaela Ulieru
School of Information Technology

Carleton University

Ottawa, Canada

e-mail: mihaela@theimpactinstitute.org

Abstract—The REcommending Cases based on cONtext

(RECON) system is a prototype adaptive technology designed

to support intelligence analysis using dynamic load balancing

and advanced human-machine synergy. RECON combines a

brain-computer interface, machine learning, and simulation in

order to create an innovative case-based recommendation

capability. Several dilemmas emerge when designing joint

cognitive systems endowed with an adaptive capacity. Herein,

we critically discuss these dilemmas related to human modeling

and human-computer interaction.

Keywords-adaptive system; human-computer interaction;

context awareness; case-based recommendation; brain-computer

interface; information relevance; modeling.

I. INTRODUCTION

Human-machine systems involve the often-complex
interplay of human and technological components as
interconnected actors sharing a common goal. These
systems, while found in many domains, are particularly
relevant in the case of defence and security, where
intelligence analysts must make effective use of relevant
information, communication, and logistic systems and
technologies to improve situational awareness. Information
overload is a critical area of concern for intelligence analysts
who must sift through large volumes of data to uncover
trends and make sense of unfolding situations [1].

The day-to-day activities of the intelligence analyst are
driven by the intelligence cycle, illustrated in Figure 1. The
intelligence cycle is defined as “the process of developing
raw information into finished intelligence for policymakers
to use in decision-making and action” [3]. The intelligence
cycle encompasses many sensemaking tasks that the
intelligence analyst must accomplish in an iterative fashion.
Such tasks include: gathering relevant information;
representing and organizing the information in a schematic
way that will ease the analysis process; developing an
understanding of the situation by subjecting the information
to various hypotheses; and producing intelligence packages
and recommendations for courses of action.

Figure 1. The intelligence cycle (adapted from [2])

As described by Pirolli and Card [4], the overall process

is organized into two major loops of activities: (1) a foraging
loop [5] that involves processes aimed at seeking, searching,
filtering, reading and extracting information, possibly into
some schema; and (2) a sensemaking loop [6] that involves
iterative development of a mental model (a
conceptualization) from the schema that best fits the
evidence. This process is illustrated in Figure 2.

 Figure 2. Notional model of sensemaking (from [4])

68Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 76 / 143

The analyst's activities within the intelligence cycle are

subjected to a number of contextual factors (e.g., psycho-

physiological and environmental) that can severely impede

intelligence analysis due to excessive workload, time

pressure, and uncertainty. The paper is organized as follows.

Section II presents a prototype adaptive technology designed

to support intelligence analysis using dynamic load

balancing and advanced human-machine synergy. Section III

discusses important dilemmas in the design of joint cognitive

systems endowed with an adaptive capacity. Section IV

concludes with a discussion of related work and directions

for future work.

II. RECON: CONTEXT-AWARE CASE-BASED

RECOMMENDATION FOR THE INTELLIGENCE VIRTUAL

ANALYST CAPABILITY (IVAC)

The Intelligence Virtual Analyst Capability (iVAC) [7] is
a recent Defence Research and Development Canada
initiative that forms an intricate part of a Future Intelligence
Analysis Capability (FIAC) [8]. iVAC is a knowledge
system with an important human computer interface
component that aims to alleviate the problem of cognitive
overload by conducting a wide-variety of tasks. This
initiative envisions a computerized software assistant
supporting the intelligence analysts in sensemaking, while
ultimately being capable of taking on autonomous analytical
tasks in concert with other analysts (virtual or human).

As part of the research, an identification of iVAC sub-
capability requirements was performed, based on literature
reviews [9] and workshops held with experts from the
military, the industry, and academia. The capabilities of the
iVAC system were classified into seven broad categories:

• Context management;

• Acquisition of data, information, and knowledge;

• Activity monitoring, management, and evaluation;

• Learning of user and task models;

• Supporting complex intelligence tasks;

• Interaction with humans and other systems.

REcommending Cases based on cONtext (RECON) is a
context-aware system being developed for integration with
the iVAC. The central objective of RECON is to assist the
intelligence analysts during the collection, processing, and
analysis phases of the intelligence cycle (see Figure 1), by
alleviating human-cognitive overload in two ways: firstly, by
providing a system capable of sensing the user’s contextual
state using a brain-computer interface; and, secondly, by
adapting the system to the user’s context, identifying other
similar contexts, and recommending relevant information to
the user based on the system’s level of awareness. The
RECON architecture includes the following integrated layer
components:

• Brain-Computer Interface (BCI) layer: Classifies
user state and assesses user attention and interest to
the displayed information;

• Human-Computer Interaction (HCI) layer: Presents
adaptive interface elements and notifications;

• Data layer: Gathers information from multiple
sources;

• Context layer: Transforms information from explicit
and implicit sources into contextual knowledge;

• Case-Based Recommendation (CBR) layer: Provides
case recommendations based on analyst’s context.

The architecture components are conceptually organized
according to the relations illustrated in Figure 3. A more
thorough description of the RECON architecture can be
found in [10]. The context management component of
RECON is central to the adaptive system capability,
combining HCI logs, data, and user-state classification from
real-time analysis of electroencephalogram (EEG) signals to
achieve contextual classification.

Figure 3. RECON components and relations

The system monitors the information being viewed by

the user in real-time and assesses the user’s degree of interest
in regard to that information. This assessment aims to
provide critical feedback to the case-based recommendation
component, helping it provide more relevant
recommendations to the user. Furthermore, EEG signal
monitoring allows an assessment of the user’s state in regard
to the current pressures he/she is facing, which serves to
modulate system behavior in accordance with this context
(e.g., reducing user cognitive load through adaptive
automation and postponing non-critical notifications).

State classification makes use of the Contextual Control
Model [11], which posits that human decision makers can
operate in one of four control modes:

• Scrambled: Planning is limited (or non-existent) and
actions include trial-and-error, reactive or random
approaches with no forward thinking;

• Opportunistic: Planning is limited and actions are
based on salient situation characteristics;

• Tactical: Planning is present but restricted to the
current situation and actions are guided by
procedural or rule-based decision making;

• Strategic: Planning extends beyond the current
situation and actions consider high-level goals and
global context.

 The selection of a control mode is a function of the
subjective estimation of the time required to perform a task
and of the time available [12]. While the human analyst can

69Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 77 / 143

dynamically adapt his or her control mode to cope with
situational constraints, RECON aims to recognize these
changes in control mode and adjust its behavior accordingly.
One major technical and scientific challenge is to derive
effective and reliable classification models using EEG
signals as inputs [13] in the applied context of intelligence
analysis. A two-stage process is employed to achieve this.
First, an experimental training set will provide the critical
human data necessary for initial model comparison and
selection. Secondly, individual user feedback will be
incorporated to allow validation and fine-tuning of the
classification rules for each analyst. Together with the
integrated system components shown in Figure 3, these will
allow RECON to achieve its goal of context-aware, cased-
based recommendation for iVAC.

III. DILEMMAS

Five key dilemmas, relevant to the design of adaptive
systems at large are critically discussed below. These generic
dilemmas are especially relevant to human modeling (model
selection and calibration) and human-computer interaction
(model transparency, user feedback, and explicit vs. implicit
contextual inputs).

A. Model Selection: Statistics vs. Machine Learning

A first dilemma for modeling user state is whether to opt
for statistical analyses based on the General Linear Model
(GLM) or for a Machine Learning (ML) algorithm to
appropriately capture the underlying pattern of cerebral
activity associated with a given state. The GLM approach
traditionally taught to neuroscientists has a proven track
record and comes with robust analysis software [14], yet the
linearity constraint means that complex non-linear relations
cannot be ”discovered” using this method (i.e., the
underfitting problem) [15]. On the other hand, the linearity
contraint makes the GLM very robust to noise (i.e.,
measurement error or intrusions from confounding factors),
thus minimising the overfitting problem. Underfitting means
that the model lacks functional flexibility to capture a
phenonemon, while overfitting means that the model’s
flexibility allows it to “fit” both the true regularities in the
data but also false patterns that are actually noise (leading to
an overestimation of a model’s real accuracy) [16]. ML
algorithms (or “data mining” algorithms) provide highly
flexible models capable of discovering highly complex
patterns in datasets. However, the flexibility of ML
algorithms makes them vulnerable to overfitting.

To resolve this dilemma, the approach proposed here is
to concurrently consider models that differ in their
functional flexibility and compare their predictive accuracy
[17][18]. Indeed, the gold standard in model selection is to
assess a model’s predictive accuracy by using one (or
several) “training samples” for model calibration (i.e., to
learn the pattern in the data) and one (or more) “test
samples” for model validation. Models that tend to overfit to
noise in the data will thus tend to perform worse on the test
sample than on the training sample (i.e., a phenomenon
called shrinkage) [19]. Alternatively, models that start
simple and “grow” to accommodate more complex patterns

in the data (e.g., decision trees and cascade correlation) can
include stopping rules that check when the prediction error
stops improving (i.e., finding the “sweet spot” between
underfitting and overfitting).

B. Individual Calibration vs Collective Calibration

A second dilemma relevant to user-state modeling is
whether to perform model calibration at the group level (i.e.,
resulting in a single model for all potential users) or at the
level of the individual. Clearly, individual modeling has the
disadvantage of requiring a new data collection for each user
in order to extract an individualized model. Nonetheless, this
individualized approach may be necessary in order to reach
high levels of model accuracy, particularly when the average
is the result of idiosyncratic patterns [20][21]. The
alternative is to treat individual differences as noise (leading
to a potential underfitting of the user state).

The solution proposed herein is to focus on
discriminating between broad state categories (as opposed to
continuous scales of the concept of interest), which may not
require individual user modeling to achieve a satisfactory
accuracy. For example, RECON could use a classification
model, such as low, medium, and high, to discriminate
among different categories of “interest toward a type of
information,” instead of using a continuous equal-interval
scale.

C. Model Transparency to the User

A third dilemma, related to human-computer interaction,
is whether or not to display to the user the model’s inputs, its
logic, and its resulting assessment. A transparent model
offers the possibility to increase user trust, but there is also
the risk of a backlash if the user disagrees with the model or
simply does not understand it. Conversely, a “black box”
model may foster doubt and mistrust in the system. This
issue also relates to the classic invisibility dilemma which
involves choosing between minimizing distractions from the
primary task and providing added value through explicit
interaction [22].

The proposed solution to this dilemma is to make only
the model output (e.g., the inferred state) transparent to the
user, thus reducing risks and distractions yet allowing the
user to develop a sense of trust over time as a function of the
tool’s classification accuracy. For example, RECON could
show the analyst the currently estimated control mode (e.g.,
scrambled, opportunistic, tactical, or strategic) without
displaying the current input values and the classification
model.

D. Learning Model Based on User Feedback

A fourth dilemma involves whether or not to collect user
feedback in order to sample the correct state at different
moments in time, at least for an initial model calibration
phase. The alternative is to resort to indirect indicators of
user state such as observer judgments or behavior patterns
associated with each state (note that unsupervised learning
methods are not considered here) [23].

The proposed solution to this dilemma is to use both
approaches in order to combine self-ratings and observer

70Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 78 / 143

ratings into a more reliable metric, with observers being
supported by access to behavioral markers to help
discriminate between the different user states considered.
For example, the classification of the control mode in
RECON could be calibrated based on feedback in a training
phase, using self reports (after the fact) from the
intelligence analysts’ perceived control mode at differents
moments in time, combined with judgments from an expert
observer.

E. Explicit vs Implicit Contextual Inputs

A fifth dilemma involves knowledge about user context,
which is central to system adaptation. Context is what
describes the environment, situation, state, surroundings,
tasks, social settings, and roles, among other things [10].
This context evolves according to events and changes
occurring during system operation either by direct explicit
interactions from the user (e.g., a user manually indicates
current context parameters such as time pressure, psycho-
physiological state, availability, and current interest in
certain types of information) or indirect implicit interactions
based on the situational context (e.g., automatic data
monitoring, HCI monitoring, and sensor-based perception).

Explicitly specifying context affords the user a sense of
control over the system and provides contextual data that
may not be otherwise available. However, a system that
relies too much on explicit context will put a heavier
workload on the user as he or she must provide a larger
amount of information to the system, requiring a more
complex graphical-user interface and a larger number of
manipulations which may interfere with the user's ability to
focus on the task at hand. Conversely, a system that
emphasizes implicit context frees the user from tedious data
input operations, but requires the system to monitor data and
perform reasoning to infer contextual information. This
requires a significant a priori effort to develop effective user-
state and contextual classification models.

The proposed solution to this dilemma is to combine both
explicit and implicit context within RECON. Implicitly,
context will be derived from the BCI, HCI, and Data layers
(Figure 3), while other contextual information such as a
user’s current task will be obtained through explicit user
input.

IV. CONCLUSION

The RECON system, currently in development, aims at
providing an innovative context-aware case-based
recommendation framework for the intelligence virtual
analyst capability (iVAC). This work builds on previous
research in intelligence analysis [7][8], context-aware
systems [9], BCI [13], human factors [11][12] and
classification modeling [15][20]. It is expected that in
situations involving information overload, uncertainty, and
time pressure, the effectiveness of intelligence analysts can
be significantly improved through context-aware adaptive
systems. The approach described in this paper relies heavily
on psycho-physiological measurement to infer the user’s
cognitive state in order to implicitly coordinate the system
and the user. An alternative approach is to focus on explicit

coordination through human-machine teamwork, enabled
through interaction with a virtual assistant [7]. The iVAC
initiative seeks to combine these two complementary
approaches.

This paper presents five HCI dilemmas for context-aware
support in intelligence analysis related to model selection,
calibration, model transparency, user feedback, and
contextual inputs. Moreover, how these are addressed in
RECON is also presented, along with the architecture and
core motivations. While the five HCI dilemmas delimit a
solution space for designing adaptive joint cognitive systems,
the existence of a general optimal configuration is unlikely.
The solutions proposed in the context of RECON may not
provide an ideal cost-benefit tradeoff in other contexts (and
this may also depend on the user). A future design
methodology that could parse various combinations and
determine the optimal configuration for a given context/user
would be very useful. There are also interdependencies
between these dilemmas that need to be better understood.
Finally, it should be noted that this non-exhaustive list of
dilemmas relevant to adaptive systems could be
complemented by additional HCI dilemmas such as those
identified for supervisory control tasks [24].

With its focus on adaptive off-loading and high-relevance
system recommendations, RECON aims to advance the state
of the art in the study of context-management systems, case-
based recommendation, brain-computer interfaces, and
human-computer interaction, through an upcoming proof-of-
concept experiment.

ACKNOWLEDGMENT

Thanks are due to Prof. Amedeo D’Angiulli and Prof.
Michael Fleming for their insights and institutional support.
This work was funded by Defence R&D Canada, by Thales
Research and Technology Canada, and by a research
partnership grant from the Department of National Defence
of Canada and the Natural Sciences and Engineering
Research Council of Canada to Prof. D’Angiulli.

REFERENCES

[1] E. S. Patterson et al., “Aiding the intelligence analyst in
situations of data overload: From problem definition to design
concept exploration,” Institute for Ergonomics/Cognitive
Systems Engineering, ERGO-CSEL 01-TR-01, 2001.

[2] M. Chesbro, “Intel-Cyclopedia: A Guide to Sources of
Information for the Intelligence Community,” Homeland
Security Digital Library. http://www.hsdl.org/ [retrieved:
April 2014].

[3] Central Intelligence Agency, “The work of a Nation,” Library
of Congress, 2009.

[4] P. Pirolli and S. Card, “The Sensemaking Process and
Leverage Points for Analyst Technology as Identified
Through Cognitive Task Analysis,” Proc. IEEE Symp.
Computational Intelligence Analysis, May 2005, pp. 1-6.

[5] P. Pirolli and S. K. Card, “Information foraging,”
Psychological Review, 106, pp. 643-675, 1999.

[6] D. M. Russell, M. J. Stefik, P. Pirolli, and S. K. Card, “The
cost structure of sensemaking, ” Paper presented at the
INTERCHI '93 Conference on Human Factors in Computing
Systems, Amsterdam, Apr. 1993, pp. 1-9.

71Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 79 / 143

[7] D. Gouin, V. Lavigne, and A. Bergeron-Guyard, “Human-
computer interaction with an intelligence virtual analyst,” in
Proc. Knowledge Systems for Coalition Operations,
Pensacola, FL, Feb. 2012, pp. 1-5.

[8] D. Poussart, “Future intelligence analysis capability—towards
a cohesive R&D program definition,” DRDC Valcartier, TM
2012-9999, 2012.

[9] J. Hong, E. Suh, and S. J. Kim, “Context-aware systems: A
literature review and classification,” Expert Systems with
Applications, vol. 36, no. 4, pp. 8509-8522, 2009.

[10] W. Ross, A. Morris, M. Ulieru, and A. Bergeron-Guyard,
“RECON: An Adaptive Human-Machine System for
Supporting Intelligence Analysis,” IEEE International
Conference on Systems, Man, and Cybernetics, Oct. 2013. pp.
782-787, doi: 10.1109/SMC.2013.138.

[11] E. Hollnagel and D. D. Woods, “Joint cognitive systems:
Foundations of cognitive systems engineering.” Boca Raton,
FL: Taylor and Francis, 2005.

[12] M.-E. Jobidon, R. Rousseau, and R. Breton, “Time in the
Control of a Dynamic Environment,” Proc. of the Human
Factors and Ergonomics Society 48th Annual Meeting (pp.
557-561), Sept. 2004, doi: 10.1177/154193120404800360.

[13] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B.
Arnaldi, “A review of classification algorithms for EEG-
based brain–computer interfaces.” Journal of neural
engineering, vol. 4, March 2007, pp. R1-R13.

[14] G. D. Hutcheson and N. Sofroniou, “The multivariate social
scientist: Introductory statistics using generalized linear
models,” Sage, 1999.

[15] M. A. Pitt, W. Kim, and I. J. Myung, “Flexibility versus
generalizability in model selection,” Psychonomic Bulletin &
Review, 10, pp. 29-44, March 2003.

[16] S. Roberts and H. Pashler, “How persuasive is a good fit? A
comment on theory testing. Psychological Review, vol 107,
April 2000, pp. 358–367, doi: 10.1037/0033-295X.107.2.358.

[17] M. Browne, “Cross-validation methods,” Journal of
Mathematical Psychology, vol 44, March 2000, pp. 108–132.

[18] J. R. Busemeyer and Y. Wang, “Model comparisons and
model selections based on the generalization criterion
methodology,” Journal of Mathematical Psychology, vol 44,
March 2000, pp. 171–189.

[19] B. S. Everitt. Cambridge Dictionary of Statistics (2nd
Edition), CUP, 2002.

[20] W. K., Estes and W. T. Maddox, “Risks of drawing inferences
about cognitive processes from model fits to individual versus
average performance,” Psychonomic Bulletin & Review, vol
12, June 2005, pp. 403–408.

[21] P. N. Mohr and I. E. Nagel, “Variability in brain activity as an
individual difference measure in neuroscience?” Journal of
Neuroscience, vol 30, June 2010, pp. 7755-7757; doi:
10.1523/JNEUROSCI.1560-10.2010.

[22] A. Schmidt, M. Kranz, and Paul Holleis. “Interacting with the
ubiquitous computer: towards embedding interaction,” In
Proceedings of the joint conference on Smart objects and
ambient intelligence, October 2005, pp. 147–152.

[23] S. Asteriadis, P. Tzouveli, K. Karpouzis, and S. Kollias.
"Estimation of behavioral user state based on eye gaze and
head pose—application in an e-learning environment."
Multimedia Tools and Applications, vol 41, Feb. 2009, pp.
469-493.

[24] T. B. Sheridan, “HCI in supervisory control: Twelve
dilemmas,” in Human Error and System Design and
Management, Elzer, P., Kluwe, R. & Boussoffara, B. (Eds.),
Springer-Verlag: London, pp. 1-12, 2000.

72Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 80 / 143

Driving Style Recognition for Co-operative Driving: A Survey

Anastasia Bolovinou, Angelos Amditis
I-SENSE group

Institute of Communications and Computer Systems
Athens, Greece

abolov@iccs.gr;a.amditis@iccs.gr

Francesco Bellotti
Dept.of Naval, Electric, Electronic and Telecommunications

Engineering, University of Genoa
Genoa, Italy

franz@elios.unige.it

Mikko Tarkiainen
VTT

Tampere, Finland
Mikko.Tarkiainen@vtt.fi

Abstract—This paper serves as a critical survey for automatic
driving style recognition approaches and presents “work in
progress” ideas that can be used for the development of
intelligent context-adaptive driving assistance applications.
Furthermore, a preliminary specification of a context-adaptive
application that can be described by the following three steps is
provided: at first, driving style is automatically classified into
one out of a set of predefined classes that are learnt through
historic driving and trip data; secondly, based on the driving
style recognition a context-adaptive driving application is
proposed; thirdly, eco-safe and co-operative driving behaviour
can be rewarded by the system by introducing a serious game
theoretic approach. While the focus of this paper lies on
reviewing the state of the art for implementing the first step,
providing the high-level specification of the two other steps
offers valuable insight on the requirements of such
collaborative driving application.

Keywords- driving behaviour; vehicle dynamics; time-series
analysis; supervised learning; classification; co-operative system.

I. INTRODUCTION

Driving is in essence a multi-factor cognition task that
can only be perceived in the context of underlying road
layout, traffic, weather and social behaviour conditions in a
framework where the action of an individual driver is
affected by the actions of other drivers and travellers that co-
exist temporarily: the driver recognizes the road environment
including road layout, traffic conditions, and the behaviour
of nearby vehicles, e.g., distance from the vehicle in front,
and decides actions to take, such as accelerating, braking,
and/or steering. With experience gained each driver develops
an individual behaviour behind the wheel, which could
impact safety, fuel economy, and road congestion, among
other things. For example, a driver, usually, maintains a
comfortable time gap to the leading vehicle by adjusting
his/her own threshold based on traffic conditions.

Being able to dynamically recognize the driving style is
invaluable information for modern Intelligent Transport
Systems and Road Operators. More specifically, being able
to collect contextual information about the driving style

coupled with specific traffic or road characteristics, allows
the road operator to perform reasoning about safety
characteristics of road usage and react upon that information:
for example, Zhang et al. [1] assess vehicle dynamic
information and perform a categorization of drivers’
acceleration patterns in specific road curves. If this
information is compared with speed limit information and
accident statistics in the specific road segment under
investigation, specific adjustments of the road infrastructure
can be proposed in order to minimize the possibility of bad
driving behaviour.

Recognizing the driving style is also important in any
effective Advanced Driver Assistance System (ADAS) that
aims to increase its acceptability by being adaptive to the
driver’s behaviour: One good example is the Adaptive
Cruise Control (ACC) system presented in [1], which adapts
its output before entering a curve based on road context data.
In contrast with a conventional ACC system that simply
maintains the host vehicle speed at a set value if there is no
preceding car regardless of the road conditions, the proposed
system can provide individual drivers with customized
speeds based on their preferred speeds, deceleration rates,
and lateral acceleration. Such an adaptive system is expected
to increase ride comfort and highly decrease the need for
driver intervention in the ACC functionality. More broadly,
future ADAS are expected to rely heavily on driving
intention recognition and driving behaviour prediction, in
order to choose a suitable control strategy to assist and/or
warn the driver or even intervene in an automatic manner
[2].

Within a collaborative mobility concept, the performance
of future ADAS applications can be optimized based on
automatic recognition of driving behaviour: for example, the
suggested headway, from the vehicle in front, in a co-
operative ACC application, can be adapted to the
dynamically changing driving style of the driver of the
vehicle in front. In a broader consideration, categorizing the
driving style of the driver , e.g. as “safe driver”, “aggressive
driver” or “good fuel economy driver”, could be used to
encourage community-friendly driving styles; combined with
driver records and models of ideal driving style, one’s

73Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 81 / 143

driving style could be compared and used, as an immediate
feedback to the driver while driving [3]. In a community
building serious game approach, driver coaching and
rewarding good driving habits could help promote ecological
and safer driving.

In this work, recent approaches that try to automatically
identify driving behaviour by recognizing specific car-
following and pedal/steering wheel operation patterns will be
reviewed in order to identify suitable methods for context-
adaptive and collaborative driving applications as these will
be investigated within the European TEAM project [4]. Note
that approaches that deal with vision-based driver state
monitoring (by tracking the driver’s face or body motions,
see the review of Kang [5]) are not studied here as we want
to focus on an inertial base system that enables a discrete,
unobtrusive, and seamless recognition of the driver’s
behaviour.

The structure of this paper is as follows. In Section II, a
state of the art review is provided that concludes with
observations on the features that appear in the methods under
review. In Section III, the functional architecture of a future
co-operative driving application that can adapt to the
recognized driving style and upon which, a co-operative
game-theoretic approach can be built, is presented.
Conclusions and ideas for future work are included in
Section IV that concludes this work.

II. METHODS FOR AUTOMATIC DRIVING STYLE

RECOGNITION IN THE LITERATURE

A. Related Work

Benavente et al. [6] study three different datasets to
examine the relationship between aggressive driving and
roadway characteristics, such as type of road, speed limit,
number of travel lanes and presence of curbs. Aggressive
driving behaviours include speeding, failure to stop, lane
violations (such as improper passing), and severe violations
(such as operating recklessly). Based on an empirical study
on Automatic Cruise Control use by 118 subjects, Fancher et
al. [7] classified drivers into five categories: flow conformist,
extremist, hunter/tailgater, planner, and ultraconservative.
Depending on their velocity and distance from the vehicle in
front, a simple empirical model, which divided this two-
dimensional feature space into classes of interest by applying
rule-based thresholds, was applied. Since such large-scale
testing with many different drivers are difficult to be
performed while data annotation is too time-consuming and
on the other hand real driving styles can vary a lot
depending on the country’s driving culture and road/weather
condition, machine learning methods for discovering patterns
and classifying driving styles based on them is highly
preferable.

Taking advantage of the recent advancement in machine
learning and data mining algorithms, big multi-dimensional
time-series data can be explored in order to discover
repeating patterns and spatio-temporal relationships among
them [8]. Moreover, based on the software/hardware
advances in communications and automotive on-board

diagnostics units, we are able to record the high-frequency
real-time driving information. In this review we are
interested in works that discover patterns from rich driving
data, which include vehicle signals captured in the context of
a specific trip (terrain, weather, traffic information may be
included).

In the work of Mudgal et al. [9], speed profiles of
different drivers at a roundabout have been modelled, with
average circulating speed and non-linear parameter such as
position of maximum acceleration determined using
Bayesian inference methods. In addition, vehicular emissions
were estimated using past experimental data. It is found that
speed profiles differ significantly across drivers, as do the
mean speeds at the circulating path of the roundabout. The
model provides a second-by-second speed profile that can be
used for deriving acceleration profile, which can be used for
emission hotspots or aggressive driving behaviour
recognition. The average circulating speed can also be used
as a parameter for developing driving cycles for corridors
that include roundabouts. In the work of Spiegel et al. [10], a
Singular Value Decomposition bottom-up algorithm that
identifies, internally homogeneous, time series segments is
adopted. To recognize recurring patterns, the established
time series segments were grouped via agglomerative
hierarchical clustering. Subsequently, recurring sequences of
grouped segments, which can be considered as classes of
high-level driving context, can be retrieved.

Spectral analysis of velocity, following distance (only
simulation data), gas and brake pedal signals is used for
signal representation by C. Miyajima et al. Then, multiple
component Gaussian Mixture Models (GMM), applied on a
0.32-s frame length, are used for data modelling. The model
fits a GMM for each driver and performs driver
identification among a small set of subjects. Targeting at the
same driver identification objective, Ly et al. [12] apply
automatic extraction and classifications of three simple
driving events, defined as brake, acceleration and turn event
(GPS positioning data are ignored). Support Vector Machine
(SVM) and K-means clustering are compared for a 2-class
classification (driver A and driver B), while the classification
performance does not exceed 65%.

Johnson and Trivedi [13] detected and classified driving
manoeuvres using a smartphone’s accelerometer and gyro
sensors mounted in the car. In a similar approach,
Sathyanarayana et al. applied SVM classification in order to
compare the automatic driving maneuver recognition that is
based on signals from smart phones against using the CAN
signals from the vehicles and equal performance of the two
methods is reported.

Amata et al. [15] introduce two prediction models for
driving events’ recognition: the first is based on multiple
linear regression analysis which predicts whether the driver
will steer or ease up on the accelerator, or brake; the second
predicts driver decelerating intentions using a Bayesian
Network. The proposed models predict the three driving
actions with over 70% accuracy when the use cases are split
into 9 categories of intersection classes. Kishimoto and
Oguri [16] also proposed a prediction method that forms an
Autoregressive switching-Markov Model (AR-HMM) in

74Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 82 / 143

order to predict stop probability focusing on a certain period
of past movements.

Although not related only with driving style, similar
works appear in energy consumption prediction for electric
vehicles. In a review of driving behaviour recognition
methods for fuel efficiency in hybrid vehicles, Wang and
Lukic [17] divide driving styles into three categories: mild
drivers (calm driving or economical driving style), normal
drivers (medium driving style) and aggressive drivers
(sporting driving style). A spine regression model for
predicting gasoline consumption rate from speed,
acceleration and heading degree information is applied on
real driving data (a box-cox transformation to the response
variable gives improved modelling) by Nie et al. [18].
Similarly, Quek and Ng [19], train SVM and multinomial
logistic regression models but the model is evaluated only
for a small set of categories. A last example from the electric
vehicles field is the work of Ferreira et al. [20], where a
Naïve Bayes classifier was used to classify driver behaviour
in several pre-defined classes with respect to electric energy
consumption (classes are defined based on percentage of the
state of charge level decreasing from the ideal driver). As
input data, discretized weather information (temperature and
raining information), average speed, traffic information, road
type, EV age and type, drive mode (work or leisure) and
drive period (morning, afternoon, night) were utilized but no
evaluation of the method is presented.

Although the majority of the works presented deal with a
classification problem, i.e. [9-14][16][20], formulating the
problem as a regression problem i.e. [15][18][19], is
considered very useful as it gives valuable insights in the
recognition problem in hand, by providing estimation of each
factor contribution to the event that we wish to recognize.

In all the previous works and independently of the
underlying data model (GMMs, Bayesian inference such as
HMM) or its absence (SVMs, SVD), a significant correlation
of the low-level data being observed and the classes that
represent the driver behaviour is assumed. This might be true
for classes that represent low-level information such as
speed, acceleration or stopping profile, as in [9][10][16], or
even some specific manoeuvre detection as in [13 - 15].
However, when higher level behaviour recognition is
required, such as driver intention recognition, the existence
of contextual information related to the surrounding
conditions needs to be taken into account despite the absence
of relevant clues. To overcome this problem, Taniguchi et al.
[21] assume that contextual information has a double
articulation statistical structure. The underlying assumption
is that since a concrete value of driving behaviour cannot be
easily predicted, an alternative task can be to predict
contextual information, i.e., hidden states of these
probabilistic models. Following the above line, Fox et al.
[22] use an extension of the Hierarchical Dirichlet Process
Hidden Markov Model (HDP-HMM), appropriate for
dynamic time series modelling, called sticky HDP-HMM. By
using this model, the analyser can estimate segments and
obtain sequences of hidden state labels (letters) without
fixing the number of hidden states. Similarly, in the work of
He et al. [23], a double-layer Hidden Markov Model (HMM)

is developed for driving intention recognition and behaviour
prediction using manoeuvring signals and vehicle state
measured by a driving simulator. Each multi-dimensional
Gaussian HMM bank in the lower layer corresponds to nine
short- braking/acceleration manoeuvres and three steering
driving behaviour HMMs while upper-layer multi-
dimensional discrete HMMs are built for long-term driving
intention in a combined working case. Finally, a semi-
supervised time-syntactic pattern recognition approach (by
discretizing the values of on-board sensors into simple
brake/steering events) is applied for learning models of the
driving behaviour of truck drivers by Verwer et al. in [24].

B. Notes on Feature Representation Appopriate for
Automatic Driving Style Recognition

Although it is difficult to directly compare the methods
presented due to lack of shared common datasets, one
element that differentiates this set of methods is the feature
representation used. Since this a factor that may judge the
power of the overall method, in the followings, we proceed
with some observations and we draw some directions for
future work in the field.

In terms of driving cycles characteristics, the research has
started since as early as 1978 when Kuhler and Karstens [25]
introduced 10 aggregate driving behaviour parameters:
average speed, average speed excluding stop, average
acceleration, average deceleration, mean length of a driving
period, average number of acceleration deceleration changes
within one driving period, proportion of standstill time,
proportion of acceleration time, proportion of deceleration
time, and proportion of time at constant speed. More
recently, Huang [26] study the influence of 11 parameters on
driving cycle recognition and argue that by using 4 of them
the prediction result is satisfactory. Higher level features for
driving style recognition could be provided if a feedback
loop with an advanced driver assistance application is
established so that for instance the reaction time from the
changing of the signal light to the actual movement of the car
is measured, as proposed in [19] and also envisioned in
TEAM applications [4].

Feature selection and their representation is critical in the
applicability and the discriminative power that a machine
learning algorithm can demonstrate for a specific problem in
hand. Since the extraction of contextual information for
dynamic events like driving requires high computational
demanding statistical models (like the ones used in [21-24])
which may not be easily adapted for real-time systems, the
robust representation of low-level data is considered
necessary since:
- As noted by Liu [27], instantaneous accelerator or brake

pedal positions are very noisy signals in the sense that
the moment-to-moment position of the pedals do not
reveal the actual vehicle speed (due to vehicle dynamics
history).

- There is noise in vehicle sensors’ measurement and
dynamics estimation (even if filtering is applied, e.g.,
Kalman filter).

While most of the works presented in Section II.A, deal
directly with time-series data, without performing a

75Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 83 / 143

quantization of the signal, there are also some works that
choose to work on a histogram-based representation of
aggregated data. For example in the work of Ly et al. [12],
“histogramming” of the extracted time series vector into 5
bins seems to help: “Using 5 bins histogram reduces the
feature vectors size and helps alleviate over fitting when
learning with limited data size. Typical signal statistics such
as the min, max, mean, and variance are included in the
feature vector. Additionally, the duration of the event is also
included”. The feature vectors for turning activity
recognition include the histograms of both the angular
velocity and the longitudinal acceleration. An
acceleration/deceleration histogram by fitting a 3rd order
polynomial curve to the speed data only at the regions where
significant acceleration / deceleration was observed is
obtained by Quek and Ng [19].

The advantage of this latter approach is that they can
proliferate by the big progress in histogram-based feature
vector processing in the fields of text (initially) and image
processing where impressive results have been obtained by
using a dimensionality reduction technique known as bag of
features [28]. A different interesting approach, that handles
time-series driving data as a two-dimensional grey-scale
image data, has been presented by Griesche in [29].
Converting time-series data into histograms has also been
proposed recently by Lin and Li [30] with promising results.

III. A FUTURE APPLICATION: COLLABORATIVE-DRIVING

APPLICATION THROUGH GAMING

Gamification can be a solution to the challenge of long
term involvement of drivers in cooperative driving. In the
agent-based approach of Rossetti et al. [31], the authors
focus on driving behaviour elicitation by promoting
synergies in a simulated artificial society on a participative
basis. In the recently started TEAM integrated European
project [32], the goal of the next generation cloud enabled
co-operative elastic mobility is pursuit through the
development of adaptive transport and driving applications
used by a community of users. Part of the preliminary
specification work on a Serious Gaming and Community
building application which requires a driving style
classification component is presented hereafter.

In TEAM, a cloud-based architecture is assumed where
intelligent algorithmic components, which are considered as
enablers for TEAM applications, run on a distributed cloud
server system that also stores local dynamic map information
and drivers/travellers history of trips. Moreover, a social
network management enabler stores information that the
users are willing to share with their co-commuters through
smartphones. As a mean of involving the user in a
collaborative driving task in order to achieve more fluid and
ecological behaviour the TEAM Serious Game and
Community Building (SG-CB) application is specified. SG-
CB vision is to implement a travelling game based on
participation of a community of users where the system
provide drivers with “virtual community currency” related
with eco-safe driving behaviour (e.g., driver gets a virtual
coin if he/she keeps correct headway, he/she can spend the
virtual coin later).

The game targets in essence, in coaching the driver
towards obtaining a better community performance. For this
reason, the SG-CB application should be able to recognize
typical driving behaviours such as: headway profile,
stopping profile in intersections, longitudinal and lateral
acceleration profile. Therefore, a multi-class classification of
the driving style that is dynamically updated is proposed as
an enabler called “Driving Style Classifier”.

As shown in Figure 1, driving style classification is
expected to run online and its output will be assessed by the
SG-CB application in order to present to the driver, through
HMI, messages relative with the game objectives. The inputs
of this component are based on vehicle and context data
available from the cloud (like traffic conditions or terrain
characteristics based on geo-position). For recognizing
different driving styles, several driving indicators are
envisioned to be defined using mass past driving data and the
classifier will be responsible for assigning a weight
corresponding to the similarity of the real time driving event
with each of these available indicators.

An appropriate dynamic data representation selected
based on the directions derived in section II.B and a robust
machine learning algorithm like SVM will be the internal
components of the classifier component. For training the
classifier, the project plans to create driving reference
databases by integrating driving data for safety analysis by
previous TeleFOT [33], in European level, and national
Tele-ISA [34] and Trafisafe [35] field trials. Using
aggregates over these data, driving indicators reference
database for highway and urban scenarios will be built.
Examples of such indicators are the percentage of kilometres
driven at more than 10 km/h over the speed limit, the number
of hard longitudinal and lateral accelerations/decelerations,
high yaw rate angles, hard braking events per 100km, high
acceleration/deceleration combined with rain or darkness
conditions per 100km.

IV. CONCLUSIONS AND FUTURE WORK

Requirements and methods for automatic driving style
recognition from vehicle and trip data have been studied.
Emphasis has been given in the feature selection strategy and
a novel promising method for bag of patterns classification,
based on time series data turned to histogram-based features,
has been identified by combining clues from the literature
and the recent advances in the European automotive research
projects. Future implementation of a driving style
classification module in the terms of a gaming collaborative
driving application was drafted based on three categories of
driving style: safe, eco-friendly and fluid-promoting in the
ACC context.

ACKNOWLEDGMENT

This work was also supported by the European
Commission under TEAM integrated project (FP7-ICT-
2011-8). The authors would like to thank all partners within
TEAM for their cooperation and valuable contribution.

76Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 84 / 143

REFERENCES
[1] D. Zhang, Q. Xiao, J,Wang and K. Li, “Driver curve speed

model and its application to ACC,” International Journal of
Automotive Technology, 2013, vol. 14, no. 2, pp. 241−247.

[2] Mauro Da Lio, Francesco Biral, Marco Galvani and Andrea
Saroldi, “Will Intelligent Vehicles Evolve into Human-peer
Robots?,” 2012 IEEE Intelligent Vehicles Symposium,
Conference proceedings, pp. 304 – 309.

[3] S. Rass, S. Fuchs, and K. Kyamakya, “A Game-Theoretic
Approach to Co-operative Context-Aware Driving with
Partially Random Behavior, Smart Sensing and Context,”
Lecture Notes in Computer Science, vol. 5279, 2008, pp. 154-
167.

[4] A. Amditis, P. Lytrivis, I. Karaseitanidis, M. Prandtstädter,
and I. Radusch, “Tomorrow´s Transport Infrastructure: from
Static to Elastic Mobility,” Proc. of the 20th ITS World
Congress 2013, Tokyo, 14-18 October 2013.

[5] H. Kang, “Various Approaches for Driver and Driving
Behavior Monitoring: A Review,” Computer Vision
Workshops (ICCVW), 2013 IEEE International Conference
on, pp. 616-623, Dec. 2013, doi: 10.1109/ICCVW.2013.85.

[6] M. Benavente, M. A. Knodler, and H. Rothenberg, “Analysis
of the Relationship between Aggressive Driving and
Roadway Characteristics Using Linked Data,” Institute of
Transportation Engineers Annual Meeting and Exhibition,
2007, Pittsburgh, PA.

[7] P. Fancher et al., “Intelligent Cruise Control Field Operational
Test,” Technical report, vol. I, U.S. Dept. of Transportation
NHTSA, 1998.

[8] J. Lin, S. Williamson K. Borne, and D. DeBarr, “Pattern
Recognition in Time Series,” book chapter in Advances in
Machine Learning and Data Mining for Astronomy”, Eds.
Kamal, A., Srivastava, A., Way, M., and Scargle, J. Chapman
& Hall, Mar 2012.

[9] A. Mudgal, S. Hallmark, A. Carriquiry, and K. Gkritza,
“Driving behavior at a roundabout: A hierarchical Bayesian
regression analysis,” Transportation Research Part D:
Transport and Environment, vol. 26, January 2014, pp. 20-26,
ISSN 1361-9209, doi: 10.1016/j.trd.2013.10.003.

[10] S. Spiegel, J. Gaebler, A. Lommatzsch, E. De Luca, and S.
Albayrak, “Pattern recognition and classification for
multivariate time series,” Proceedings of the Fifth
International Workshop on Knowledge Discovery from
Sensor Data (SensorKDD '11). ACM, NY, USA, pp. 34-42.

[11] C. Miyajima et al., “Driver Modeling Based on Driving
Behavior and Its Evaluation in Driver Identification,”
Proceedings of the IEEE , Feb. 2007, vol. 95, no. 2, pp.427-
437, doi: 10.1109/JPROC.2006.888405.

[12] M. V. Ly, S. Martin, and M. M. Trivedi, “Driver
Classification and Driving Style Recognition using Inertial
Sensors,” IEEE IV2013, June 23-26, 2013, pp. 1040-1045,
Gold Coast, Australia.

[13] D. A. Johnson and M. M. Trivedi, “Driving Style Recognition
Using a Smartphone as a Sensor Platform,” 14th International
IEEE Conference on Intelligent Transportation Systems,
October 5-7, 2011, pp. 1609-1615, Washington, DC, USA.

[14] A. Sathyanarayana, S. O. Sadjadi, and J. H. Hansen.,
“Leveraging sensor information from portable devices
towards automatic driving maneuver recognition,” IEEE 15th
International Conference on Intelligent Transportation
Systems (ITSC), 2012, pp. 660–665.

[15] H. Amata, C. Miyajima, T. Nishino, N. Kitaoka, and K.
Takeda, “Prediction model of driving behavior based on
traffic conditions and driver types,” IEEE 12th International
Conference on Intelligent Transportation Systems, 4-7 Oct.
2009, pp. 1-6.

[16] Y. Kishimoto and K. Oguri, “A Modeling Method for
Predicting Driving Behavior Concerning with Driver’s Past
Movements,” Proc. IEEE International Conference in
Vehicular Electronics and Safety, Sept. 2008, pp. 132 – 136,
doi: 10.1109/ICVES.2008.4640888.

[17] R. Wang and S.M. Lukic, “Review of driving conditions
prediction and driving style recognition based control
algorithms for hybrid electric vehicles,” IEEE Vehicle Power
and Propulsion Conference (VPPC) , 6-9 Sept. 2011, pp. 1-7.

[18] K. Nie, L. Wu, and J. Yu, “Driving Behavior Improvement
and Driver Recognition Based on Real-Time Driving
Information,” technical report in CS229 Project, Stanford
university, 2013.

[19] Z. F. Quek and E. Ng, “Driver Identification by Driving
Style,” technical report in CS 229 Project, Stanford university
2013.

[20] J. Ferreira, V. Monteiro, and J. L. Afonso, “Data Mining
Approach for Range Prediction of Electric Vehicle,”
Conference on Future Automotive Technology - Focus
Electromobility, 26-27 March 2012, Munich, Germany, pp. 1-
15.

[21] T. Taniguchi, S. Nagasaka, K. Hitomi, N. P. Chandrasiri, and
T. Bando, “Semiotic Prediction of Driving Behavior using
Unsupervised Double Articulation Analyzer,” 2012 Intelligent
Vehicles Symposium, Alcalá de Henares, Spain, June 3-7,
2012, pp. 849 - 854, doi: 10.1109/IVS.2012.6232243.

[22] E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky,
“The sticky hdp-hmm: Bayesian nonparametric hidden
markov models with persistent states,” Tech. Rep. 2777, MIT
Laboratory for Information and Decision Systems, 2007.

[23] L. He, C. Zong, and C. Wang, “Driving intention recognition
and behaviour prediction based on a double-layer hidden
Markov model,” Journal of Zhejiang University Science C,
Issue 13, 2013, vol 3, pp. 208-217.

[24] S. Verwer, M. de Weerdt, and C. Witteveen, Learning
“Driving Behavior by Timed Syntactic Pattern Recognition,”
In Proc. of the Twenty-Second international joint conference
on Artificial Intelligence, 2011, vol. 2, pp. 1529-1534, doi:
10.5591/978-1-57735-516-8/IJCAI11-257.

[25] M. Kuhler and D. Karstens, “Improved Driving Cycle for
Testing Automotive Exhaust Emissions,” SAE Technical
Paper Series 780650, 1978, doi:10.4271/780650.

[26] X. Huang, Y. Tan, and X. He, “An Intelligent Multifeature
Statistical Approach for the Discrimination of Driving
Conditions of a Hybrid Electric Vehicle,” IEEE Transactions
on Intelligent Transportation Systems, Dec. 2010, pp. 1-13.

[27] A. M. Liu, “Modeling Differences in Behavior Within and
Between Drivers, Human Modelling in Assisted
Transportation (Models, Tools and Risk Methods),” 2011, pp.
15-22, doi: 10.1007/978-88-470-1821-1_3.

[28] J. C. van Gemert, C. G. M. Snoek, C. J. Veenman, A. W. M.
Smeulders, and J. Geusebroek, “Comparing Compact
Codebooks for Visual Categorization,” Computer Vision and
Image Understanding, 2010, vol. 14, iss. 4, pp. 450-462.

[29] S. Griesche, “Images in mind – Design metaphor and method
to classify driver distraction in critical situations,” DLR
presentation in interactIVe project final event,
http://www.interactive-ip.eu/publications, retrieved April,
2014.

[30] J. Lin and Y. Li, “Finding structurally different medical data,”
Proceedings of the Twenty-Second IEEE International
Symposium on Computer-Based Medical Systems, August 3-
4, 2009, pp.1-8, Albuquerque, New Mexico, USA.

[31] R. Rossetti, J. Almeida, Z. Kokkinogenis, and J. Goncalves,
“Playing Transportation Seriously: Applications of Serious
Games to Artificial Transportation Systems,” IEEE Intelligent
Systems, July-Aug., 2013, vol. 28, no. 4, pp. 107-112.

77Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 85 / 143

[32] TEAM IP, Deliverable D1.0, “TEAM users, stakeholders and
use cases,” www.collaborative-team.eu, retrieved: April,
2014.

[33] TeleFOT project, Seventh FP, co-funded by the European
Commission DG Information Society and Media within the
strategic objective “ICT for Cooperative Systems”, 2008-
2012, http://www.telefot.eu/pages/index/?id=43, retrieved
May 2014.

[34] Field experiment on intelligent speed adaptation (Tele-ISA),
VTT research project, 2009,
http://www.lintu.info/hanke_TeleISA.htm, retrieved: May
2014.

[35] Trafisafe, ITS safety project,
http://www.trafi.fi/turvallisuus/trafisafe, retrieved May 2014.

Figure 1: Functional concept diagram for a collaborative driving serious gaming application based on driving style classification

78Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 86 / 143

A Dynamic Service Module Oriented Framework for
Real-World Situation Representation

Peter Halbmayer and Gerold Hoelzl and Alois Ferscha
Institute for Pervasive Computing
Johannes Kepler University Linz

Linz, Austria
{halbmayer, hoelzl, ferscha}@pervasive.jku.at

Abstract—The maintenance of context information for real-
world environments contains several challenges when it has to
be computationally observed. Any event that is observable in the
real-world has to be registered and may lead to transitions in the
digital system. Therefore, a representation of the environment,
the affected users, their whereabouts and their interactions with
the system is required. A software framework is presented that
provides a generic set of methods to collect information from mul-
tiple, heterogeneous sensors deployed within the environment. A
non-deterministic communication topology is established, which
handles a distributed version of a system state on a best effort
basis. The system is designed to be potentially applied within
various environments and the primary application scenario is
represented by the implicit energy management in single-family
homes. There the practical deployment of the system proves the
usability and sustainability of the presented approach.

Keywords—Dynamic Device and Service Discovery; Dynamic
Context Recognition; Adaptive System Behavior; Flexible Power
Management; Opportunistic Sensing.

I. INTRODUCTION

The PowerIT system [1][2] is a development that provides
implicit energy management in households on the behalf of
users living in the environment. For this purpose, different
aspects need to be handled in real-time like the activities users
perform, the situations they are in, the energy that is drawn
by household gadgets and also the interaction with notification
and services is an important aspect.

The main contribution of the system is the processing of
dense context information for practical and ubiquitous digital
system operation without explicit user interaction. An impor-
tant aspect in this sense is to provide unobtrusive operation in
the background for optimal and convenient system utilization.
Thus the digital system moves to the background and the users
focus is directed to actual every day tasks at hand instead of
being concerned with system maintenance.

The deployment diagram depicted in Figure 1 presents
a schematic overview of how the system is generally setup.
A base infrastructure that is comprised of a Home Server
(HS) that is connected to a set of energy meter and control
devices, build the core of the system. The energy meter and
control devices are implemented as wall plug outlets that are
used to connect any household gadgets, measure their energy
consumption and switch their state on or off. The user is
integrated into the system by collecting and evaluating data
from the mobile devices that are carried along. A typical
system installation consists of 20 wall plug outlets, a single

HS, and a smart watch - smartphone/tablet combination for
every participant which lies around four.

Figure 1. Deployment Diagram

The connection of mobile devices (e.g., smartphone or
smart watch) to the base infrastructure is of a dynamic nature
as users enter and leave the environment in an unpredictable
way. This is also true for interconnections between mobile
devices themselves (e.g., user take smartphone away and grabs
it later). Therefore, such cases have to be handled with special
precautions. The corresponding underlying network has to
adapt itself automatically for seamless service provision.

From this description, the main aspects the system has to
handle in software can be drawn. They are:

(i) Activity and context recognition
(ii) Opportunistic sensor and actuator management

(iii) A rule engine for implicit control.

Dynamic and adaptive sensor and actuator management
builds the base for context recognition and implicit control.
When an event is sensed (e.g., a user leaving the house),
control mechanisms have to trigger to switch the state of
devices (e.g., turn off all lights). To achieve the transport of
corresponding messages and commands, the communication
topology must be available to guarantee the successful delivery
of messages. The dynamics of users have to be maintained
in the system by unregistering users when leaving and (re-)
registering them when they return.

As the practical usability of the system was one of the
main interests in our project, it was necessary to determine
the most important aspects to obtain an implementation that
can withstand real-world conditions. In a previous project [3],
where similar studies were conducted on a smaller scale than
in PowerIT, it has been seen that certain characteristics need

79Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 87 / 143

to be regarded to ensure the success of such a system. This
was learnt from user questionnaires as well as practical system
application in real-world sites.

Qualitative requirements that are necessary in such a sys-
tem are

(i) The recoverability and fault tolerance of the system,
(ii) The unobtrusive operation and minimization of configu-

ration and maintenance steps and
(iii) The organized reporting of failure in case of unrecover-

able states entered.

A software model that addresses these aspects is required
for practical realization of the system. Functionalities to build
up basic communication streams, analyze collected data in
real-time and forward control commands to dedicated end-
points are required. Therefore, in the following sections, first,
related work is reviewed which is followed by a detailed sys-
tem architecture description comprised of a system overview,
system dynamics regarding the roles of devices and temporary
registration, as well as activity recognition for system control.
The final conclusion evaluates the results found in this work.

II. RELATED WORK

The requirements mentioned in the last section are of vital
importance for the realized system. Existing work already
covers the core technology that is necessary to let devices
exchange information between each other on an ad-hoc basis.
Here, part of this technology is used in a practical context and
concerned with the application of the implemented methods in
real-world deployments. Building up on this base, a dynamic
middleware was developed that (i) is platform independent and
(ii) autonomously reconfigures itself dependent on actual states
of subsystems and events in the current environment.

The base infrastructure in a household provides the back-
bone regarding the energy management concerned for the
particular installation site. System dynamics are mainly repre-
sented by inhabitants appearing and disappearing throughout
the day and the sensor traces they leave. These events are reg-
istered, and system components will get adapted accordingly
(e.g., switching off unneeded devices currently in standby).
It is common nowadays that a user is equipped with more
than one personal device (e.g., smartphone and smart watch)
where device interactions have to be defined. The influence
of the developed system goes further in the way that part of
these dynamics will also get reflected on the mobile devices
the user carries around whether at home, at work or in times
when any leisure activities are performed.

Therefore, the essential aspects the system is concerned
with, are multi platform capability (to enable widespread
deployment), different interconnection constellations (given by
dynamic system behaviour over time), as well as general
adaptation over time by recognizing and mapping behaviour
and preferences of users.

A. Dynamic Module Systems and Service Platforms

At the core of the system it was required to enable
system execution on different end devices. This ranges from
conventional desktop systems to mobile smartphone and tablet
devices. A modular component setup was specified for which

the OSGi framework reference implementation Felix [4] was
used. Modular system specifications have been addressed in
various literature where multi-layered, service oriented soft-
ware has been developed for application in different domains
like telematics [5], web technology [6], cloud services [7],
health and elderly care [8], vehicular network management [9]
or context computing [10], in general.

B. Device and Service Discovery

Device and service discovery is of major interest in all
cases where distributed entities have to exchange information
on behalf of an unreliable and dynamic connection infrastruc-
ture. In the PowerIT system, the dynamic part mainly consists
of the interactions of the mobile devices (e.g., smartphone and
smart watches of a user) amongst each other, and with the
infrastructure. Also, the change of a user between multiple
infrastructures (e.g., from home to work) has been considered
as an extension.

Depending on the connectivity to the system, the state of
users and present and upcoming interactions, the system needs
to adapt to these conditions. Although the main infrastructure
stations might be known in advance, for mobile entities, this
is not the case throughout the whole lifetime of the system.
Therefore, device and service discovery has been utilized much
in the manner of [11][12] where standard internet protocol (IP)
services are applied for this purpose.

C. Opportunistic sensor configuration, activity recognition
and decision making

For automatic control, the activities of users get observed
and are distributed accordingly in the system to enable the
switching of devices or groups of gadgets. For this purpose
results found in [13][14][15] can be utilized by establishing
recognition chains for every sensor data input stream that is
of interest and importance for the system functionality. This
issue is addressed in more detail in the architecture technology
section. After activities, or a change of activities has been
observed from sensor data, this information is forwarded to
the system where it gets decided if it will eventually lead
to any state change or not. This is achieved by putting the
results of Kurz et al. [16] into practical application. Within our
first test setups it has been shown that this approach already
shows positive impact although it was deployed only for a
controlled part of the system to prevent a degradation of overall
system usability. The decision module that is responsible to
determine if any input data will lead to an actual actuator
control command is reused from the work in [17]. A generic
set of rules that is capable of integrating arbitrary sensor inputs
dynamically to build up statements about the system state was
realized and successfully brought to practical application.

III. SYSTEM ARCHITECTURE

The intention for the system was to have an unobtrusive
setup of personal information and communication technologies
(ICT) services that allow the recognition of user centered
activities of daily living to control the electrical system in its
surroundings. It has soon been detected by the authors that
for a system that has to provide its functionality in a 24/7
fashion, special precautions needed to be taken to serve the

80Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 88 / 143

Figure 2. System Architecture Diagram

given requirements. The system needed to be implemented in
a way, so that failures on a long term basis (e.g., unforeseen
bugs in rarely called functions or accumulated and never freed
memory) will be recovered automatically, unrecognized by the
user in the optimal case.

From this description it is clear that the system depends
on several parameters that can be divided into options that
are static throughout the lifetime of the system, and others
that change over time dependent on various parameters like
the time of day, location and activity of a user, but also the
intentions of a user with respect to electric device usage,
convenience functions and real-world situation context (e.g.,
times when system automatisms are unwanted).

The specified system architecture results in a generic
framework that can be executed on various devices (like smart
watches, smartphones, tablet computers or desktop systems)
running different operating systems. It is implemented in the
Java programming language, and is, therefore available for all
environments capable to execute a Java Runtime Environment
(JRE) [18]. By relying on the OSGi middleware framework, a
better separation and modularization of system components is
reached. This supports the execution of the framework under
different role settings that are addressed below in Section III-B.

A. System Overview
<config>
(a) <system>

<devicename>MotoACTV</devicename>
<is-log>true</is-log>
<is-act-rec>true</is-act-rec>
<local-sensor>true</local-sensor>

</system>
(b) <fwds>

<fwd>
<name>GGPH</name>
<type>feat</type>
<conn>bt</conn>
<mac>AC:22:0B:A4:22:93</mac>
<uuid>00001101-0000-1000-8000-00805F916001</uuid>

</fwd>

</fwds>
(c) <rcvs>

<rcv>
<name>HS</name>
<type>feat</type>
<conn>ip</conn>
<ip>10.0.0.1</ip>
<port>16001</port>

</rcv>
</rcvs>

(d) <snks>
<snk>

<name>GGPH-ctrl</name>
<type>ctrl</type>
<conn>bt</conn>
<uuid>00001101-0000-1000-8000-00805F918001</uuid>

</snk>
</snks>

(e) <srcs>
<src>

<name>GGPH-cnt</name>
<type>cnt</type>
<conn>ip</conn>
<port>22001</port>

</src>
</srcs>

(f) <loggers>
<logger>

<name>wws</name>
<type>file</type>

</logger>
<logger>

<name>feat</name>
<type>file</type>

</logger>
</loggers>

</config>

Figure 3. Main configuration sections

The system architecture is divided into three main cate-
gories that are enlisted below. A graphical representation of
the system architecture is shown in Figure 2. There, the system
components available locally on a host node are depicted.

1) The base functions like configuration handling, message
passing and thread pools.

2) Communications including device and service discovery
and transmission of different message types.

3) Activity recognition, locally and remotely.

The system core consists of a structure for managing the
runtime environment of the framework which also includes
a listener pool to which elements interested in any specific
messages register. To forward and distribute messages within
the system a producer - consumer pattern is specified where

81Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 89 / 143

producers offer data to the system from local or remote sensor
sources and consumers forward data to remote hosts or are
responsible for local persistence. Activity recognition is de-
fined in terms of a task chain that contains data segmentation,
feature extraction, training and testing of classification models.
Multiple task chains can be handled concurrently on a single
host.

Depending on the configuration of every host node, an
end device can take a different role, which is explained in
the following subsection. A simple example configuration is
presented in the listing in Figure 3.

Initially, a communication system that allows the propaga-
tion of sensor data from low power embedded devices up to
full-blown server installations to access the data at different
device instances with varying computation performance was
designed and developed. The system implements general pat-
terns that allow the execution of the same software on different
host nodes with varying configurations.

Starting with an extendable configuration, devices have
the capability to re-configure themselves dependent on other
devices found in the environment and the role the local device
has to full fill dependent on the global system state.

The configuration depicted in Figure 3 represents a default
configuration that illustrates possible settings. It is used as
example to enlist the main configuration items that will get
deployed across the nodes included in the system. The first
section of the listing, named (a) system, defines general system
properties which inform if local sensors (if available), file
logging and activity recognition are enabled. This already par-
tially defines the role (cf. Section III-B) of the host, on which
this configuration item is deployed. Without any connection
configurations only local operation would be possible but for
full adaptive participation in the system the corresponding
communication channels need to be stated. The relevant items
for this purpose in the configuration file are found under the
sections (b) fwds, (c) revs, (d) snks and (e) srcs, respectively.
Although it is not shown in the listing, it is possible to
setup several connections of every type together to form the
different roles required in the system. Additionally, as depicted
in Figure 3, it is possible to drive different connection types
simultaneously which even extends the number of possibilities
how system parts can be connected together.

Section (f) loggers enables the corresponding logging ca-
pabilities where the subsections determine which types of
messages are logged. In the above example, raw data (for
later offline analysis) as well as feature data derived from
raw data are logged. It is possible to log other data types
like preprocessed raw data or activities retrieved from the
recognition functionality.

By using this definition for system entities, a message
passing system in the style of a Model-View-Controller (MVC)
[19] design pattern has been specified. To evaluate this design,
but also to serve as a workhorse for data acquisition, the
implemented system has been deployed and put in operation in
three installation sites. From the configuration items presented
in the listing, it can be seen that IP, as well as bluetooth based
connections are possible (as depicted in configuration sections
(b) and (c)).

B. Dynamic Device Roles

a) Sensor Endpoint

b) Proxy Node

c) Home Server
Figure 4. Dynamic Device Roles

The system provides multiple sub services on different
end devices. With this approach, services can be offered that
optimizes system utilization regarding the resources of the
runtime device. This way it is possible to keep the data source
on the smart watch device while interaction and control can
be handled over to a remote device like a smartphone. An ac-
companying advantage of this design is that the same software
packages can be reused on different end devices to provide
different services corresponding to the used configuration.

Device roles are tightly dependent on the functionality
that an entity in the system will perform and the type of
connection required for data exchange. Communication is set
up in a server - client fashion and dual roles for servers as
well as clients exist to form proxy devices. One type is the
sink server to which a corresponding forward client pushes
data. The other server type is called source that that provides
data to be fetched by receiver clients. By this approach, any
device in the system can flexibly be configured to play any
role, which is autonomously reconfigured during runtime if

82Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 90 / 143

the purposes of a device changes (i.e., switching from an end
device configuration to a proxy configuration as another end
device requests this feature temporarily).

The general idea is that temporal unreachability or failure
of one device will get detected by the system and another
device in the system formation will be adapted to take over
the role of the failed device. This was one reason for the
unified software implementation as it can be guaranteed that
the replacement device is able to handle the same functionality.
The roles that are relevant in our setting are:

1) Sensor endpoint
2) Proxy
3) Local (installation site) server, Home Server
4) Global server

Corresponding schematics are depicted in Figure 4. In our
system, sensor endpoints (Figure 4a)) are the energy meter
devices and smart watches. Smartphones are utilized as proxy
devices (Figure 4b)) and the central access point is represented
by the Home Server (Figure 4c)). The functions that are
necessary on the corresponding type of device are depicted
in bold in the respective subfigure, the illustration concerned
with activity recognition is omitted there.

C. Activity Recognition

The dynamic nature of system connections turned on the
requirement that the system component performing activity
recognition and tracking has to be capable of these dynamics
as it was necessary to rapidly switch devices that are executing
recognition chains. For example, when a smartphone performs
activity recognition for the local sensor, as well as for data
from a remote smart watch sensor and the user leaves the
smartphone back while keeping the watch on, then, globally
this task has to be split to both devices performing its own
activity recognition each. If afterwards the user returns to
the smartphone this needs to be detected by the system and
recognition chains can be processed on the smartphone again.

Also, for practical reasons, the resources on a smart watch
are much more limited than on a smartphone or on the Home
Server especially regarding battery lifetime. As the activity
recognition is a computationally expensive task, it might be
convenient to outsource parts of this task from the device
where the sensor data acquisition is performed. These cases
are depicted in the upper third of Figure 2.

Activity recognition is defined in terms of task chains,
where a single task chain is set up for every type of sensor and
device. A task chain performs raw data segmentation, feature
extraction, the classification of featured training data, and the
evaluation of new data according to a set up classification
model. Besides classification of raw sensor data, corresponding
statistics are collected for every sensor of how long and how
much a device is used for which purpose. This information
is used to continuously update the corresponding background
context to offer system services according to their utilization
within the actual application scenario.

D. Registration, Un-Registration and Re-Registration

In a smartphone/smart watch or smartphone/smart
watch/HS constellation, communication is always preceded

with a discovery stage dependent on the actual states of
devices. If, for example, active communication is ongoing, no
discovery is necessary and can therefore be disabled at this
time. If connections break suddenly, or the activity state of
a user indicates a change within the network topology (e.g.,
because of change in location), a re-scan of the environment
will become necessary. Therefore, occasion based device and
service discovery is implemented to execute the process only
when the system is in a certain state and disabled in all other
cases. The main intention for this approach is to save battery
lifetime of mobile devices.

When device and service discovery is processed, potential
remote nodes get detected and their supported services regis-
tered. On initial system startup a device and service discovery
is performed where found nodes and their capabilities are
put into a local cache. At subsequent connection attempts,
this cache is first iterated over to reestablish well-known
connections. Only if this is not possible new device and service
scans are started. This process is depicted in the diagram in
Figure 5. For this purpose, JMDns [20] is utilized as it has
proven to be a simple, efficient and reliable solution that is
able to provide this functionality at a sufficient degree.

After the temporal topology is determined the self descrip-
tions of newly found nodes are exchanged. The configuration
exchange function is a service every device supports to be
able to participate in system communication. The configuration
items can also be cached to avoid the explicit exchange for this
item. After remote configurations are known, any required re-
configuration is handled.

To determine which device is responsible for which task,
preferences are defined. If two devices share the same pref-
erence for a certain function, a default preference is given
by the device roles in the order of their enlisting. Depending
on the specific task the preference for a role is higher as for
another. Practically, it is better to perform calculations locally
and only transmit results than forwarding raw data in a stream
like fashion which has severe implications on the battery life
times in case of mobile devices.

IV. CONCLUSION

In this work, it has been shown that the existing problem of
integrating heterogeneous technical entities in digital environ-
ments can be replied by (i) the establishement of conventions
regarding the definition of concerned items, (ii) specification
of communications, and (iii) information representation within
its actual context. A generic architecture approach has been
presented that allows the execution on a variety of platforms
and maps platform features (i.e., present sensors, actuators
or processing units) onto corresponding input and output
channels. This way, device interaction can be achieved to
perform information exchange for a variety of purposes in an
adaptive manner.

The necessity of scaling up the number of items and
involved people will appear when the system is going to be
installed in broader context environments like workplace (e.g.,
office or factory) or leisure sites. These cases are considered in
the framework implementation and need deeper research under
practical real-life conditions.

83Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 91 / 143

Figure 5. Device and Service Discovery Sequence Diagram

The requirements identified in the introduction section
were shown to be solved by the implemented methods. The
developed approach is empirically tested to gain real-world
evidence within the PowerIT project at the moment. Utilizing
the test installations, it turned out that the implemented ser-
vices and modules are performing as expected. The real world
installations are an ongoing and evolving process yielding
to new findings for future enhancements of the developed
framework. Consequently, it was shown that the application of
our dynamic system for context and situation representation
heads in the right direction.

ACKNOWLEDGMENT

The project PowerIT acknowledges the financial support of
the FFG FIT-IT under grant number: 830.605.

REFERENCES

[1] G. Hoelzl, P. Halbmayer, H. Rogner, C. Xue, and A. Ferscha, “On the
utilization of smart gadgets for energy aware sensitive behavior,” in The
8th International Conference on Digital Society, ICDS 2014, March 23
- 27, Barcelona, Spain, March 2014, pp. 192–198.

[2] G. Hoelzl et al., “Locomotion@location: When the rubber hits the
road,” in The 9th International Conference on Autonomic Computing
(ICAC2012), San Jose, California, USA, September 2012, pp. 73–78.

[3] A. Ferscha, J. Erhart, P. Halbmayer, M. Matscheko, and M. Wirthig,
“Powersaver - activity-based implicit energy management,” in 15th
International Symposium on Wearable Computers (ISWC2011), June
2011.

[4] “Apache Felix,” http://felix.apache.org/, [retrieved: 05, 2014].
[5] Y.-L. Chu et al., “An integrated java platform for telematic services,”

in Genetic and Evolutionary Computing (ICGEC), 2010 Fourth Inter-
national Conference on, 2010, pp. 590–593.

[6] D. Carlson, B. Altakrouri, and A. Schrader, “Ambientweb: Bridging
the web’s cyber-physical gap,” in Internet of Things (IOT), 2012 3rd
International Conference on the, 2012, pp. 1–8.

[7] F. Houacine, S. Bouzefrane, L. Li, and D. Huang, “Mcc-osgi: An
osgi-based mobile cloud service model,” in Autonomous Decentralized
Systems (ISADS), 2013 IEEE Eleventh International Symposium on,
2013, pp. 1–8.

[8] K. C. Kang, S. U. Heo, and C. S. Bae, “Android/osgi-based mobile
healthcare platform,” in Advanced Information Management and Ser-
vice (ICIPM), 2011 7th International Conference on, 2011, pp. 125–126.

[9] T.-W. Chang, “Android/osgi-based vehicular network management sys-
tem,” in Advanced Communication Technology (ICACT), 2010 The
12th International Conference on, vol. 2, 2010, pp. 1644–1649.

[10] D. Carlson and A. Schrader, “Dynamix: An open plug-and-play context
framework for android,” in Internet of Things (IOT), 2012 3rd Interna-
tional Conference on the, 2012, pp. 151–158.

[11] R. Klauck and M. Kirsche, “Bonjour contiki: A case study of a dns-
based discovery service for the internet of things,” in Ad-hoc, Mobile,
and Wireless Networks, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, vol. 7363, pp. 316–329.

[12] R. N. Lass, J. Macker, D. Millar, and I. J. Taylor, “Gump: Adapting
client/server messaging protocols into peer-to-peer serverless environ-
ments,” in Proceedings of the 2Nd Workshop on Bio-inspired Algo-
rithms for Distributed Systems, ser. BADS ’10. New York, NY, USA:
ACM, 2010, pp. 39–46.

[13] D. Roggen, K. Förster, A. Calatroni, and G. Tröster, “The adarc pattern
analysis architecture for adaptive human activity recognition systems,”
Journal of Ambient Intelligence and Humanized Computing, 2011, pp.
1–18.

[14] G. Hoelzl, M. Kurz, and A. Ferscha, “Goal processing and semantic
matchmaking in opportunistic activity and context recognition systems,”
in The 9th International Conference on Autonomic and Autonomous
Systems (ICAS2013), March 2013, pp. 33–39.

[15] ——, “Goal oriented recognition of composed activities for reliable
and adaptable intelligence systems,” Journal of Ambient Intelligence
and Humanized Computing (JAIHC), July 2013, p. in Press.

[16] M. Kurz, G. Hoelzl, and A. Ferscha, “On the utilization of hetero-
geneous sensors and system adaptability for opportunistic activity and
context recognition,” in Fifth International Conference on Adaptive and
Self-Adaptive Systems and Applications (ADAPTIVE 2013), May 27 -
June 1, 2013, Valencia, Spain, May 2013, pp. 1–7.

[17] “JRuleEngine - OpenSource Java Rule Engine,”
http://jruleengine.sourceforge.net/, [retrieved: 05, 2014].

[18] “Java Standard Edition,” http://java.oracle.com/, [retrieved: 05, 2014].
[19] G. E. Krasner and S. T. Pope, “A cookbook for using the model-view

controller user interface paradigm in smalltalk-80,” J. Object Oriented
Program., vol. 1, no. 3, Aug. 1988, pp. 26–49.

[20] “Java Multicast DNS,” http://jmdns.sourceforge.net/, [retrieved: 05,
2014].

84Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 92 / 143

Performance Evaluation of Reconfiguration Algorithms for the Reconfigurable Network
on Chip Architecture RecMIN

Alexander Logvinenko, Dietmar Tutsch
University of Wuppertal

Emails: alexanderlogv@gmail.com, tutsch@uni-wuppertal.de

Abstract—The Reconfigurable Multi-Interconnection Network
(RecMIN) is a new network architecture that reduces inefficiency
and increases the throughput of the network on chip. The
RecMIN topology adapts itself to traffic flow by reconfiguration.
Three reconfiguration algorithms are employed, in order to take
advantage of the capabilities of the RecMIN architecture. The
η-algorithm, the minimal queues algorithm and the pattern
identification algorithm allow the network to adapt itself to differ-
ent traffic distributions. Furthermore, an observation technique
that notes changes in traffic pattern is presented, in order to
avoid infinite reconfiguration processes. The performance of the
algorithms is presented.

Keywords-Network on Chip; Reconfiguration Algorithms; Re-
configuration Architecture.

I. INTRODUCTION

Modern Systems on Chip (SoC) are built so that they
consist of many independent individually designed units (Intel-
lectual Property cores or IP- cores), e.g., cache memory, I/O
controllers, audio/video interfaces, etc. Buses were used up
to now in order to enable communication among these units.
Today, however, designers prefer Networks on Chip (NoC) for
efficient interaction among IP-cores. Therefore, the speed and
efficiency of modern SoC depend not just on the speed of
single units of IP but also on the properties of the NoC used
[1]. The main properties of the NoC are source output, target
throughput and packet delay. The latter ones depend not just on
topology of the network, routing algorithm, buffering strategy,
packet switching but also on how efficiently network operates
in case of bottlenecks during the packet traffic flow.

The popular solution to solve the problem of a partially
overloaded network (bottlenecks) due to inefficiency, is to
implement a complex algorithm that reroutes data flow in NoC.
The complexity of such algorithms usually grows exponen-
tially with the size of network. So, as an alternative to the re-
routing algorithms, some works from the academic community
have been focusing on the possibility of adopting NoC by
reconfiguration.

For instance, Tutsch and Lüdtke [2][3][4] and Al Faruque
[5][6] suggest that the directions of data flow should be
changed in order to optimize the NoC for special traffic
profiles. Unlike them, this paper continues the previously
[7][8][9] introduced topic of the RecMIN architecture. In this
article, however, we present three different algorithms for the
optimization of a network that uses the RecMIN architecture.

The paper is structured as following: Section 2 introduces
the reconfiguration architecture RecMIN. Section 3 deals with
the η-function, which enables to evaluate of the network-
on-chip performance. In most important Section 4, three al-
gorithms are presented and compared: η algorithm, minimal
ques algorithm, pattern identification algorithm. Section 5
concludes.

II. RECONFIGURATION ARCHITECTURE RECMIN

The main problem of NoC as compared to the full con-
nection of all inputs/outputs is the chance of bottlenecks to
arise given certain traffic structures. In this work, Multistage
Interconnection Metwork (MIN) architecture is used, which
is built out of 2 × 2 routers [10]. An example of this kind
of network is shown in Fig. 1. The technical realisation of
MIN topology is given, e.g., in [11] and [12]. One of the
characteristics of MIN is that all the traffic loads have to pass
through all the stages of the MIN. Especially for asymmetrical
traffic, the connection wires between the stages can lead to
tailbacks.

Figure 1. MIN architecture with 8x8 inputs/outputs built out of 2x2 routers

Reconfiguration architecture RecMIN solves the problem
of bottlenecks in two out of three possible cases. The proposal
is to create the MIN not from the 2x2 routers, as usual, but
from specific reconfiguration half cells - Reconfiguration Half
Cell (RecHC). The architecture of this cell is given in Fig. 2.

RecHC has 8 inputs and 8 outputs. In front of each input,
one buffer element is located. Each half-cell can be used in
one of these two possible modes: In the first mode (Mode A),
the RecHC consists of four independent 2x2 routers. In the

85Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 93 / 143

RecHC0

Figure 2. The architecture of reconfiguration half cell - RecHC

second mode (Mode B), there is however just one 4x4 router
in the upper part of the cell, and four simple wire connections
without any logic in its bottom part. If a RecHC changes the
mode from A to B (Fig. 3), then packets which arrive in the
upper part of the Half Cell are distributed correctly without
problems. Though, in the bottom part of the RecHC problems
may arise, since in the mode B no redirection takes place,
and the packets are transferred straight forward (Fig. 3). For
example, after switching from mode A to mode B some packets
in buffer of input i4 that are addressed to output o5 have no
possibility to arrive at their targets (e.g., IP-cores). Therefore,
usage of two half cells simultaneously is to be preferred.

R

R

R

a b

R

R

i0
i1
i2
i3

i4
i5
i6
i7

i0
i1
i2
i3

i4
i5
i6
i7

o0
o1
o2
o3

o4
o5
o6
o7

o0
o1
o2
o3

o4
o5
o6
o7

Figure 3. RecHC in two modes. a: mode A, b: mode B

The two RecHCs are put together (the second one upside
down), to form one reconfiguration cell - RecCell (Fig. 4).
If both of RecHCs that build RecCell are put into the Mode
A, then the construction leads to two independent MINs (Fig.
4a), with 4x4 inputs-outputs and 2x2 routers each. If the two
RecHCs are put in mode B, then two independent 4x4 routers
emerge (Fig. 4b). The other two combinations (AB and BA)
are meaningless and therefore are not used. So, a full cell has
two possible reconfigurations: folded (BB) and unfolded (AA).

With RecCells, it is possible to build a MIN. The resulting
structure is called RecMIN. If the number of 2x2 switches

R

R

R

R

R

R

R

R

R

R

RecHC0 RecHC1 RecHC0 RecHC1

a b

Figure 4. RecCell in two modes. a: unfolded mode, b: folded mode

in MIN is divisible by 16, the entire network can be built
from reconfiguration cells. Otherwise, it is necessary to use
two non-reconfigurable 2x2 switches in order to connect the
reconfiguration cells. Therefore, RecMIN with an arbitary
number of 2x2 routers can be implemented.

C0

C1

C2

C3

Figure 5. RecMIN with 16 inputs/outputs

In this paper, the RecMIN with 16 inputs outputs is used
as an example for RecMIN architecture (Fig. 5). This RecMIN
can be build out of four RecCells: C0, C1, C2 and C3.

If we compare our architecture (Fig. 6) with the one of
the non-reconfigurable MIN with 2x2 routers, we will see that
the dotted line marked router connection (between the first
and the second stage of the 2x2 routers) can be reconfigured.
So, if the traffic in the network generates bottlenecks in these
places, the NoC can reconfigure its topology according to the
adaptation of the architecture to the traffic load, and so increase
the throughput of the network and decrease the packet delay.

It can be said that if the traffic unfortunately generates
a bottleneck in one of the non-reconfigurable wires, the re-
configuration will not help. But, usually, the designer of the
NoC knows the application for which the network is to be
designed, and so can pre-arrange the most expected bottleneck-
wires inside the reconfiguration cells.

The other way around, the 4x4 router would have less
throughput than a 2x2 router [13]. So, for the symmetrical high
load (more than 0.63 flits per clock cycle), the 4x4 routers will
automatically become NoC bottlenecks. In this case, a back

86Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 94 / 143

Figure 6. RecMIN with 16 inputs/outputs

reconfiguration of the RecCells to unfolded mode is necessary
(see [13]).

The other disadvantage of the architecture is that two
independent routers of the NoC are now bonded together. If
one of the 4x4 routers of RecCell ”decides” to change mode
(from unfolded to folded or other way around), it has to check
if the other router of the same RecCell will ”agree” to change
the mode as well.

III. EVALUATION OF NETWORK PERFORMANCE

The network performance of asymmetrical NoC for asym-
metrical load is measured by three main parameters: through-
put of network sources (ςi, where i is a number of the source in
NoC), throughput of network targets (τi, where i is a number
of the target in NoC), and packet delay for each target (δi,
where i is a number of the target in NoC). To evaluate network
efficiency dependent on the packet load, we use η-function:

η =

N−1∑
i=0

(ςi ∗ Cςi + τi ∗ Cτi + δi ∗ Cδi) (1)

where N is the number of sources/targets in NoC and
constants Cςi , Cτi , Cδi are priority weights for throughput
and delay defined by SoC designer. By setting the priorities
the designer specifies how important the corresponding NoC
parameter is.

For example, for specific NoC the throughput for sources
and targets may be not as important as a minimal delay.

Furthermore, packet delay is especially important for the
targets T4 and T5. In this case, the constants Cςi , Cτi , Cδi
can be adjusted as follows:

Cςi = Cτi = 0 [clock cycles/flit] for i ∈ {0, .., N − 1}
Cδi = −1 [clock cycles]−1 for i ∈ {0, .., N − 1}n{4, 5}
Cδ4 = Cδ5 = −2 [clock cycles]−1 .

(2)

The parameter ςi, τi, δi depend on the topology of the
network, and are calculated using simulation. By simulating
the different network reconfigurations, designer is able to
compare the performance of different network topologies for
specified traffic. Table 1 gives an example for a network with
16 inputs and 16 outputs consisting of four RecCells (Fig. 6).
Constants of priorities are chosen according to (2).

In Table 1, Gi is the notation for each source (generator)
i; Ptr (Gi) is the probability that the source i sends a packet
per clock time unit; Prec (Tx) is the probability that the target
node x receives a packet from the generator i (Gi) per clock
time unit.

-500

-400

-300

-200

-100

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
e
tw

o
rk

E
v
a
lu
a
ti
o
n

Topology No.

etaη

Figure 7. η-function for 16x16 RecMIN loaded with traffic from Table 1

The simulation results are presented in Fig. 7 (Simula-
tion parameters for all simulations presented in this paper
are: buffer size 16 phits for each buffer, conflict resolution
algorithm for each router is ”random choice”, each packet
consists of one flit, a flit equals the size of a phit). It shows
the evaluation of different RecMIN reconfigurations, resulting
from all possible RecCell modes. The used NoC consists
of 4 RecCells each of them can be used in two possible
modes, so, for this kind of network there exist 24 = 16
possible topologies. As is shown in Fig. 7, η-function has the
highest rates for topologies with an odd number (1,3,5 etc.),
and the lowest rate for topology 10. Thus, for the optimal
communication of NoC components by traffic defined in Table
1, RecMIN must be reconfigured to topologies 1,3,5,7,9,11,13,
or 15.

IV. RECONFIGURATION ALGORITHMS

It is not sufficient only to offer a reconfigurable architecture
when considering the reconfiguration of NoC as an opportunity
to improve its efficiency and performance. A second step is
required in order to take advantage of the capabilities of the
architecture: employing algorithms that allow the network to

87Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 95 / 143

TABLE I. LOAD IN RECMIN

Generator Ptr(Gi) Prec(T10) Prec(T11) Prec(T12) Prec(Trst)
G0, G1 0.4875 0.2/16 0.3 0.2/16 0.2/16
G2, G3 0,3875 0.2/16 0.2/16 0.2 0.2/16
G4 - G7 0,55 0.1 0.2/16 0.2/16 0.2/16
G8 - G15 0.2 0.2/16 0.2/16 0.2/16 0.2/16

adapt itself to different traffic distributions. In this paper, we
propose several algorithms that were developed for RecMIN
architecture: the η-algorithm, the minimal queues algorithm
and the pattern identification algorithm.

A. General requirements for algorithms

The tasks of the algorithm responsible for the reconfigura-
tion of the network can be divided into the following steps:

• Monitoring the trigger: tracking events or sequences of
events, after which the algorithm has to decide about
the reconfiguration of the network topology.

• Looking for bottlenecks: finding parts of the network
that need to be changed due to reconfiguration

• Looking for alternative structure: finding a topology
to substitute the previous one

• Processing the reconfiguration

Each of these steps should avoid high time consumption
and should require simple calculation wherever possible. (Im-
plementation of complex calculations in hardware, requires
expensive chip area). Another key issue is the question of
stability. It is necessary to avoid a situation where the al-
gorithm constantly tries to optimize the network. Doing so
the algorithm continually conducts endless reconfiguration
processes, hence preventing the network from operating in
normal mode. For example, such a problem can occur if
reconfiguration algorithm is unable to find an unambiguously
best network topology. Thus, after checking different network
reconfigurations the found topology is still not optimal. This
state directs to the retriggering of the algorithm thereby starting
a new reconfiguration process. Therefore, no reconfiguration
process should be started, if the algorithm is unable to find
a better NoC topology for the traffic flow unless the network
traffic changes. Consequently, it is essential not only to have
a trigger to reconfigure the network, but also to implement an
observation technique that notes changes in traffic pattern.

-1000

-500

0

500

1000

0 1 2 3 4 5

N
e
tw

o
rk

E
v
a
lu
a
ti
o
n

Traffic No

worst eta for the traffic
best eta for the traffic

η
η

Figure 8. η-functions for different traffics in 16x16 RecMIN

This paper proposes to monitor the traffic flow by changes
of queue lengths in the NoC buffers, in order to solve the

problem of instability. Assume, each traffic corresponds to a
vector ~θ. Thus, change in the traffic flow is observed by ~∆θ,
the difference between two previous calculated ~θ-vectors:

~∆θ = ~θ2 − ~θ1 =


θ0,2
θ1,2

...
θN−1,2

−


θ0,1
θ1,1

...
θN−1,1

 (3)

where θi,j is the length of the queue in the buffer j caused
by traffic number i. In the more general case the system records
the combination of topologies and corresponding traffic vectors
in memory registers. Then, the reconfiguration algorithm can
immediately change the NoC to the optimal topology, if the
network traffic pattern repeats after some time.

B. The η-Algorithm

The η-algorithm uses the η-function for the evaluation
and improvement of the network effectiveness. The algorithm
receives the mean values for the network settings (throughput
and delay) every 1000 cycles (number of cycles can be changed
by the network designer). It calculates the value of η based on
these means. If η-value falls below the specified threshold, the
algorithm starts the reconfiguration.

Looking for an alternative structure is a typical global
optimization problem of locating a good approximation to
the global optimum of a given function. We used an ex-
haustive search of all possible topology reconfigurations, to
find the optimal one. It is a reasonable alternative for small
networks. (We used 16× 16 RecMIN, where only 24 − 1=15
reconfigurations are possible (the original configuration is not
a reconfiguration). For networks with the higher number of
RecCells, we recommend the usage of simulated annealing,
genetic algorithms or other heuristic algorithms). Once all pos-
sible topologies for RecMIN have been iterated, the algorithm
chooses the one with the maximum η-value.

The η-algorithm written in pseudo-code is shown below:

INPUT: RecMIN, traffic;
OUTPUT: RecMIN_topology;

best_calculated_η:= calculate η;
BEGIN
IF η<η_threshold THEN

IF no reconfiguration is running THEN
FOR i:=0

TO i<all_possible_reconfigurations - 1
DO

simulate topologyi;
calculate η;
IF calculated η>best_calculated_η
THEN
best_calculated_η:=calculated_η;

88Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 96 / 143

best_topology:=sim_topology;
END IF;

END FOR;
END IF;

END IF;
RETURN best_topology;

END;

Advantages and Disadvantages of the η-Algorithm: The
main advantage of the η-algorithm is the possibility of finding
the optimal network topology for any traffic. Fig. 8 shows
the analysis of six NoC traffics (in 16×16 RecMIN consisting
of four RecCells) using the η-algorithm. The chosen priority
weights are Cςi = Cτi = 50 [clock cycles/flit] and Cδi = −1
[clock cycles]−1 for all i ∈ {0, .., N−1}. For each traffic, Fig.
8 shows two values: the minimum and maximum value of η,
which can be achieved by reconfiguring the network with the
η-algorithm.

Fig. 8 shows the result of six chosen traffics given by
the η-algorithm. It can be seen that for some traffic flows
(e.g., traffic nos. 1 and 5) it is possible to achieve a good
improvement of network performance by reconfiguration. On
the other hand, some traffics exist (e.g., traffic nos. 2 and 3), for
which reconfiguration does not lead to distinct enhancements.
Therefor, the usage of the η-algorithm with exhaustive search
is not reasonable for this kinds of traffics.

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5

N
e
tw
o
rk
E
v
a
lu
a
ti
o
n

Traffic Nr

eta for topology found by MQA
best eta

η
η

o

Figure 9. Comparison between the MQA and the η-algorithm for different
traffics in 16x16 RecMIN

The additional disadvantages of the η-algorithm are:

1) The algorithm requires constant conduct of statistics
of throughput and delay for the sources and targets in
NoC. More sophisticated IP-cores (responsible for the
collection of statistical data) have to be integrated in
the network interfaces, to accomplish this task. This
increases the chip area occupied by the network. Ac-
cordingly, the entire SoC production cost increases.

2) The algorithm deals with a large search space, when
dealing with big NoCs consisting of many RecCells.
This problem can be solved by using, e.g., simulated
annealing. However, there is no guaranty of finding
the optimal solution by the η-algorithm.

The η-algorithm is not very suitable for implementation
in SoC, due to the disadvantage 1. However, it can be used
in simulations. The designer can evaluate the effectiveness of
other reconfiguration algorithms, comparing their results with
the η-algorithm outcome.

C. The Minimal Queues Algorithm

Analysis of the various NoCs shows that the more effec-
tively the network works, the shorter are the queues in the
network buffers. Bottlenecks cause the queues in buffers on the
respective network sections to rise. Subsequently, this effect
generally leads to an increase of the length of the buffer queues
in the entire network.

The idea of Minimal Queues Algorithm (MQA) is to
react on increases of the lengths of the buffer queues in the
network, and thereafter minimize these using reconfigurations.
Observing the length of the buffer queues in a real SoC is
much easier than keeping statistics of throughput and delay
for sources and targets. Thus, the MQA is more suitable for
implementation in SoC than the η-algorithm.

The trigger condition for the MQA is that the total number
of packets in the network buffers exceeds some threshold
specified by the developer. After that the MQA performs
k reconfiguration steps. In each step, the MQA looks for
switching the mode of one single RecCell that clearly shortens
the lengths of the buffer queues in the entire NoC. Thereby,
the MQA begins at the RecCell with the longest buffer queues.
(The number k is specified by the developer. We set k equal
to half of the amount of RecCells used in a network, i. e., if a
network consists of four RecCells k = 2). The reconfiguration
process requires neither to stop the operation of the NoC nor to
release it entirely from packets, according to technique shown
in [9].

The MQA written in pseudo-code is given below:

INPUT: RecMIN, traffic;
OUTPUT: RecMIN_topology;

best_calculated_buffer_sum:= calculate(buffer_sum)
BEGIN
IF buffer_sum>buffer_sum_threshold THEN

IF no reconfiguration is running THEN
FOR i:=0 TO i<k - 1 DO
list_of_tried_cells:={};
FOR each RecCell DO

switching_cell:= search for
RecCell with
the highest buffer_sum_in_cell;

IF switching_cell
/∈ list_of_tried_cells THEN

switch RecCell mode (swisching_cell);
simulate topology;
calculate(buffer_sum);

#if the buffer queues does not decrease
IF NOT (calculated buffer_sum <<

best_calculated_buffer_sum)
THEN

step back to previous topology;
add switching_cell to

list_of_tried_cells;
END IF;

END FOR;
END FOR;

END IF;
END IF;
RETURN actual_topology;

END;

89Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 97 / 143

Advantages and Disadvantages of MQA: As mentioned,
the MQA is more suitable for real SoC than the η-algorithm,
because it uses information of buffer occupation, instead of
throughput and packet delay values. Furthermore, the MQA
does not use an exhaustive search of all possible reconfigu-
rations. In worst case k ∗ N reconfiguration steps have to be
performed.

The main disadvantage of the MQA is that it does not
provide the optimal solution. (The MQA is an empirical
algorithm). Fig. 9 presents the comparison of the network
performance between the η-algorithm and the MQA. Only in
one of six cases, the MQA did not find the global, but the
local optimum (traffic 5).

D. The Pattern Identification Algorithm

Generally, the occurrence of a bottleneck in RecCell can
be identified by the occupation of its buffers. So, if such a
situation arises in a particular RecCell, the overloaded channel
can be diagnosed by a pattern of the buffer queues in the
RecCell. Accordingly, if one of those patterns is recognised
during an operation of the NoC, the RecCell has to be
reconfigured.

A Pattern Identification Algorithm (PIA) can be imple-
mented. It monitors bottleneck occurrence by recognition of
buffer occupation patterns in each RecCell and performs the
required reconfiguration. If more than one pattern is identified,
the PIA gives priority to RecCells according to the distance of
their position to the targets.

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5

N
e
tw
o
rk
E
v
a
lu
a
ti
o
n

Traffic No

eta for topology found by PIA
best etaη

η

Figure 10. Comparison between PIA and η-algorithm for different traffics
in 16x16 RecMIN

The PIA written in pseudo-code is given below:

INPUT: RecMIN, traffic;
OUTPUT: RecMIN_topology;

BEGIN
FOR i:=stage_number -1 DOWNTO 0 DO
FOR each stage in RecMIN

beginning from stage[i] DO
FOR each RecCell in this stage DO
IF no reconfiguration is running THEN

IF is one of the patterns found THEN
reconfigure the cell according to the found pattern
END IF;

END IF;
END FOR;

END FOR;

END FOR;

RETURN actual_topology;
END;

Advantages and Disadvantages of PIA: An important ad-
vantage of the algorithm is that it does not search for a
new topology by traversation of possible solutions. The PIA
performs a reconfiguration only if it clearly improves the
network efficiency. In worst case the PIA would do 2n ∗ k
(where n is the index of stages in RecMIN, and k is the
number of RecCells in each RecCell). But, in normal cases,
the PIA is more efficient than the MQA comparing the number
of reconfiguration steps.

Furthermore, a pattern search algorithm like the PIA uses
buffer states as trigger information. This makes the imple-
mentation of the PIA in SoC simple. Also, the PIA performs
reconfiguration steps for RecCells of the same RecMIN stage
simultaneously so increasing the speed of the reconfiguration
process.

The disadvantage of the PIA is that it requires implemen-
tation of additional memory registers in order to store the pat-
terns in the NoC. Also, in case of miscarrying implementation
of patterns, the RecMIN can become instable. Thus, the PIA
will constantly detect one of the implemented patterns and
fulfil infinite reconfiguration processes.

The PIA is the best of three algorithms proposed in this
paper, for hardware realisation in SoC (in case that the patterns
for the PIA are well implemented). So, for all of the six
traffic flows that were used to test the performance of the three
proposed algorithms, the PIA found an optimal NoC topology
(Fig. 10).

V. CONCLUSION

In this paper, three reconfiguration algorithms were em-
ployed and evaluated, in order to benefit from the special
capabilities of the Reconfigurable Multi-Interconnection Net-
work (RecMIN) architecture. The η-algorithm, the minimal
queues algorithm (MQA) and the pattern identification al-
gorithm (PIA) allow the network to adapt itself to different
traffic distributions. We evaluated the performance of the
proposed reconfiguration algorithms with six chosen traffic
flows and discussed the advantages and disadvantages of each
algorithm. Finally, the η-algorithm is the best one for simula-
tion. Therefore, the designer can evaluate the effectiveness of
other reconfiguration algorithms, comparing their results with
the η-algorithm outcome. However, the pattern identification
algorithm is the most suitable reconfiguration algorithm for
hardware realization in SoC.

REFERENCES

[1] J. Owens, W. Dally, R. Ho, D. Jayasimha, S. Keckler, and L.-S. Peh,
“Research challenges for on-chip interconnection networks,” Micro,
IEEE, vol. 27, no. 5, Sept.-Oct. 2007, pp. 96 –108.

[2] D. Lüdtke, D. Tutsch, A. Walter, and G. Hommel, “Improved perfor-
mance of bidirectional multistage interconnection networks by recon-
figuration,” in Proceedings of 2005 Design, Analysis, and Simulation
of Distributed Systems (DASD 2005); San Diego. SCS, Apr. 2005,
pp. 21–27.

90Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 98 / 143

[3] D. Lüdtke and D. Tutsch, “Lossless static vs. dynamic reconfiguration of
interconnection networks in parallel and distributed computer systems,”
in Proceedings of the 2007 Summer Computer Simulation Conference
(SCSC’07); San Diego. SCS, Jun. 2007, pp. 717–724.

[4] ——, “The modeling power of CINSim: Performance evaluation of
interconnection networks,” Computer Networks, vol. 53, no. 8, 2009,
pp. 1274–1288.

[5] M. Al Faruque, T. Ebi, and J. Henkel, “ROAdNoC: Runtime observabil-
ity for an adaptive network on chip architecture,” in Computer-Aided
Design, 2008. ICCAD 2008. IEEE/ACM International Conference on,
Nov. 2008, pp. 543–548.

[6] ——, “Configurable links for runtime adaptive on-chip communica-
tion,” in Design, Automation Test in Europe Conference Exhibition,
2009. DATE ’09., april 2009, pp. 256 –261.

[7] A. Logvinenko and D. Tutsch, “A reconfiguration technique for area-
efficient network-on-chip topologies,” in Performance Evaluation of
Computer Telecommunication Systems (SPECTS), 2011 International
Symposium on, June 2011, pp. 259 –264.

[8] ——, “Recsim - a simulator for reconfigurable network on chip topolo-
gies,” in Proceedings of the 26th European Simulation and Modelling
Conference (ESM 2012). Essen, Germany, October 2012, pp. 144–151.

[9] A. Logvinenko, C. Gremzow, and D. Tutsch, “RecMIN: A recon-
figuration architecture for network on chip,” in Reconfigurable and
Communication-Centric Systems-on-Chip (ReCoSoC), 2013 8th Inter-
national Workshop on, 2013, pp. 1–6.

[10] D. Tutsch, Performance Analysis of Network Architectures, 1st ed.
Berlin: Springer Verlag, 2006.

[11] P. C. Wong and M. S. Yeung, “Design and analysis of a novel fast
packet switch–pipeline banyan,” IEEE/ACM Transactions on Network-
ing, vol. 3, no. 1, Feb. 1995, pp. 63–69.

[12] T.-Y. Huang and J.-L. C. Wu, “Alternate resolution strategy in multistage
interconnection networks,” Parallel Computing, vol. 20, 1994, pp. 887–
896.

[13] N. Boot, “Throughput and delay analysis for a single router in networks
on chip,” Master’s thesis, Technische Universiteit Eindhoven, Nether-
lands, 2005.

91Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 99 / 143

Self-Adaptive Containers:
Functionality Extensions and Further Case Study

Wei-Chih Huang and William J. Knottenbelt
Department of Computing, Imperial College London

{wei-chih.huang11, wjk}@imperial.ac.uk

Abstract—As the number of execution environments and appli-
cation contexts rises exponentially, ever-changing non-functional
requirements can lead to repeated code refactoring. In addition,
scaling up software to support large input sizes may require
major modification of code. To address these challenges, we
have previously proposed a framework of self-adaptive containers
which can automatically adjust their resource usage to meet
Service Level Objectives and dynamically deploy the techniques
of out-of-core storage and probabilistic data structures. A pro-
totype with limited functionalities was implemented and applied
to explicit state space exploration to prove the viability of our
framework. In this paper, we broaden the library’s functionalities
through support for the important container class of key-value
stores and integration of priority queues’ functionalities into our
previously-developed container class. We then utilise them in a
new case study centred on route planning, adopting Dijkstra’s
shortest path algorithm. For this, a graph representing the full
USA road network, which contains approximately 24 million
nodes and 58 million arcs, is input to the algorithm so as to find
the shortest paths from a random node to all the other nodes. The
experimental results have shown that, under particular Service
Level Objectives our library reduces update time by 21.4%,
primary memory usage of node storage by 85.3%, and primary
memory consumption required by the priority queue by 78%,
compared with the Standard Template Library.

Keywords-Self-Adaptive Systems; Containers; Standard Tem-
plate Library; Probabilistic Data Structures.

I. INTRODUCTION

Traditional software engineering methodologies are facing
a new challenge – a rapidly growing number of system
environments, where software is executed (e.g., tablets, servers,
smartphones, laptops, routers). The applications may operate
under different resource constraints and Quality of Service
(QoS) requirements [1], based on the environments in which
they are executed. Adapting software to each possible execu-
tion environment and application context in order to maintain
QoS requirements is not a trivial job, especially in the situation
where bursty and/or high-intensity workloads may frequently
exhaust system resources [2] [3]. Further, this may take months
or years of programmer effort to modify the majority of pro-
gram code and may entail considerable programmer expertise
[4][5]. These new challenges cannot be dealt with simply
through use of traditional software engineering techniques [6–
8], which results in either one of the two possible scenarios:
a small code base which cannot guarantee QoS or multiple
manually-optimised code bases which are difficult to maintain.

We have previously presented a framework of self-adaptive
containers [9], which attempts to tackle the above-mentioned
challenges via change of data structures. Instead of manu-
ally choosing a container and its underlying data structure,
our self-adaptive containers provide two classes which au-
tomatically take such actions and dynamically change their
underlying data structures in accordance with programmer-
specified Service Level Objectives (SLOs) and the required
functionalities. The former aims to easily satisfy ever-changing
QoS requirements through modification of SLO specification,
and the latter intends to provide a greater scope for efficiency
optimisation. Conventional standardised container libraries are
built for general purpose contexts, where all functionalities are
always ready to be supplied, which restricts the possibility of
optimisation. Through tighter functionality specification, our
containers are able to exploit the techniques which can only be
utilised when certain functionalities are entailed, including out-
of-core storage and probabilistic data structures. To illustrate
the viability of our framework, a prototype that fulfilled
partial functionalities, highlighted in yellow in Figure 1, was
implemented and utilised by the breadth first search algorithm,
which explored up to 240 million states. The experimental
results showed that our containers could not only dynamically
boost their performance but save substantial memory space.
Further, the containers’ behaviour varied according to assigned
SLOs, indicating that the self-adaptive containers could easily
adapt to different execution environments.

Our framework with limited functionalities has been im-
plemented to prove that it is feasible. In this paper, we add
support for key-value stores (IKeyValue) and priority queues
into our previously-built container class (ICollection). As
described more fully in Sections IV and V, both of these
data structures are widely-used in industry and are fundamen-
tal to many core computer science algorithms. IKeyValue
supports commonly used member functions such as insert
and the direct access operator. The functionalities of priority
queues are supported by ICollection, which provides the
required member functions and automatic deployment of out-
of-core storage. The instances of either ICollection or
IKeyValue can be assigned SLOs specified in the standard
Web Service Level Agreement (WSLA) [10] format, which
allows programmers to clearly and easily define resource
constraints and QoS requirements. When currently-consumed
resources violate the SLOs, our library’s self-adaptive mecha-
nism will determine if an adaptation action is needed in order
to either satisfy the violated SLOs or reduce the degree to
which the SLOs are contravened.

92Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 100 / 143

Our library is applied to a new case study, route planning,
which adopts Dijkstra’s algorithm, in order to show its en-
hanced functionalities. The experimental results suggest that
our containers can effortlessly be adopted and considerably
enhance both performance and memory efficiency. They also
illustrate that the containers are capable of responding to
programmer-specified SLOs.

This paper yields the following contributions:

• The functionalities of our self-adaptive container li-
brary are broadened through support for the funda-
mental container class of key-value stores and im-
plementation of the functionalities of priority queues
in our previously-developed container class, which
expands application areas where our library may be
applied.

• A new case study is investigated to illustrate our
library’s applicability. It shows how a naïve implemen-
tation of a core computer science algorithm in combi-
nation with our library can become resource-efficient
and can achieve different programmer-specified Ser-
vice Level Objectives.

The remainder of this paper is organised as follows.
Section II introduces self-adaptive systems, reference models
for building such systems and resource-aware systems. Sec-
tion III describes our library’s architecture and self-adaptive
mechanism. While Section IV presents the design and imple-
mentation of key-value stores, Section V describes the out-of-
core priority queue’s implementation. Section VI presents the
case study. Section VII concludes this paper and points out
possibilities of future work.

II. SELF-ADAPTIVE SYSTEMS, REFERENCE MODELS,
AND RESOURCE-AWARE SYSTEMS

The foundation of the research regarding modern self-
adaptive systems arose in the late 1990s and early 2000s, when
IBM coined the term of autonomic computing [11], derived
from human autonomic nervous systems, which could un-
consciously control human bodies (e.g., heart rate, salivation,
perspiration). A system adopting autonomic computing should
involve the properties of self-configuration, self-healing, self-
optimisation, and self-protection. To be equipped with these
properties, a system should contain a self-adaptive cycle com-
posed of an observation phase, an analysis phase, and an
adaptation phase [12]. The observation phase is responsible
for monitoring and collecting required data. The analysis
phase determines if an adaptation action should be taken in
accordance with the data reported from the observation phase
and chooses a suitable adaptation action. The adaptation phase
performes the adaptation action selected in the analysis phase.

After autonomic computing is introduced, a reference
model for building self-adaptive systems, MAPE-K (monitor,
analyse, plan, execute, and knowledge), is put forward [13] and
implemented in several projects [14–16]. MAPE-K contains a
cycle formed by the five functions, which are used to observe
and collect data from managed resources, analyse the data,
plan an adaptation action, perform the adaptation action to
adjust managed resources, and store managed resources’ goals,
respectively. Garlan et al. [17] present another framework,

Rainbow, which utilises an external approach for building self-
adaptive systems.

To adapt to execution environments with different resource
constraints, software should have the ability to detect its
current resource usage. Sumatra [18], introduced by Acharya
et al., is a Java extension, which provids four programming
abstractions for monitoring resources and building resource-
aware programs. In their work, they also suggest the aware-
ness requirement, the agility requirement, and the authority
requirement should be satisfied in the context of mobile agent
software. However, the programmer overhead is relatively high
in terms of adapting existing code to a tightly-specified mobile
software architecture.

Among approaches automatically changing data structures
to save resources is SILT [19] , which is a flash-based key-
value store system featuring several underlying candidate data
structures with data being converted between them according
to the size of key fragments at run time. However, it only fo-
cuses on memory usage. Other QoS metrics (e.g., performance
or reliability) are not taken into account. Indeed, there is no
mechanism for sepcifying any Service Level Objectives, which
leads to difficulties in adapting software to each execution
environment and application context.

III. LIBRARY ARCHITECTURE AND SELF-ADAPTIVE
MECHANISM

This section will briefly introduce our library’s framework
and self-adaptive mechanism. For full details, please refer to
our previous publication [9]. As can be seen in Figure 1, the
library consists of two major components, Application Pro-
gramming Interface (API) and Self-Adaptive Unit (SAU). The
API provides programmers with two template classes covering
most functionalities of the Standard Template Library (STL)
[20]: ICollection, which has been partially implemented
in our previous prototype, and IKeyValue, supporting key-
value stores. The member functions of ICollection and
IKeyValue can be divided into operation interfaces and
configuration interfaces. The former is a group of commonly-
used operations. The latter acts as the means through which
functionality requirements, SLOs, and the frequency with
which the SLO compliance should be checked are imparted
to the library.

The SAU, which performs operations and manages the
self-adaptive mechanism, is composed of an Execution unit,
a SLO store, an Observer, an Analyzer, and an Adaptor. The
Execution unit performs container manipulation commands
given by operation interfaces. The SLO store holds all SLOs
laid down by configuration interfaces. The Observer monitors
per operation response times, computes memory consumption,
and calculates reliability when a probabilistic data structure
is exploited. These operation profiles are then reported to
the Analyzer, which determines whether an adaptation action
should be taken. If an adaptation action is required, the Adaptor
will be invoked to perform an adaptation action.

The self-adaptive mechanism of our library is a classical
self-adaptive cycle [12], which is formed by the Observer,
the Analyzer, and the Adaptor. The mechanism starts working
when the Observer monitors the Execution unit to obtain

93Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 101 / 143

operation profiles (e.g., per operation response times, mem-
ory usage, and, where appropriate, reliability). The operation
profiles are then sent to the Analyzer, which compares them
with SLOs to determine if any SLOs are violated. If a certain
SLO is violated, the Analyzer will decide if an adaptation
action (e.g., the subdivision of the underlying data structure,
the activation of out-of-core technique, or the deployment of
probabilistic data structures) is required based on the following
rules: (a) the adaptation action is expected to result in either
the satisfaction of the SLO or a reduction in the degree to
which the SLO is flouted and (b) the adaptation action is not
expected to violate a currently-satisfied SLO of higher priority.
We design these rules for two reasons. First, it may not be
possible to meet all (or any) of the SLOs within resource
constraints. Second, an adaptation action taken to address one
violated SLO may cause the violation of another SLO. To solve
these issues, each SLO is assigned a distinct priority according
to its declaration sequence. The Analyzer addresses each SLO
in priority order. If the SLO being addressed is satisfied, no
adaptation is necessary. If the SLO is violated, the Adaptor is
called in for an adaptation action.

IV. KEY-VALUE STORES DESIGN AND IMPLEMENTATION

Key-value stores, which represent data stored in pairs
of keys and values, have been adopted in many industries
managing large-scale data (e.g., Amazon [21], Facebook [22],
Twitter [23][24], Linkedin [25]). As stored data accumulate,
relational databases, which offer general purpose data stores,
are incapable of providing acceptable data manipulation time.
Many programming language data structures (e.g., map of the
STL, HashMap of Java, and the dictionary data type in Python)
and libraries (sparkey [26], LevelDB [27], YDB [28]) can
be used to implement key-value stores and of course, recent
years have seen the rise of persistent counterparts in the form
of NoSQL databases (e.g., Cassandra [29], Riak [30], Tokyo
Cabinet [31], Aerospike [32]). Our library supports the func-
tionalities of key-value stores in IKeyValue, which chooses
either a tree data structure, e.g. red black tree or AVL (Adelson-
Velskii and Landis) tree or, where appropriate, a sparse Bloom
filter [33], which transforms larger-sized elements into smaller-
sized keys via hashing techniques to save considerable memory
space, as the underlying data structure. As can be seen in
Figure 1, IKeyValue API contains configuration interfaces
and operation interfaces. The operation interfaces support
the member functions which are needed to manipulate key-
value stores, and the configuration interfaces including the
constructor and setAdaptationFrequency are used for
management purposes. The usage of IKeyValue’s construc-
tor is illustrated as follows:

IKeyValue<K,V >(op_desc, SLO_file[, freq])

where op_desc specifies the required set of functionalities (so-
called operation descriptors), SLO_file shows a path to an XML
file containing a description of SLOs in WSLA format, and
freq is an optional parameter defining the frequency with which
the self-adaptive mechanism is activated.

IKeyValue is also capable of dynamically and auto-
matically adjusting its underlying data structure through the
SAU in order to meet SLOs. If its performance has to be
improved, the underlying data structure will be subdivided. For

example, when a sparse Bloom filter, which utilises a forest
of AVL trees, is selected as the currently-used data structure,
the number of AVL trees is increased to reduce the number
of comparisons. If the reliability of IKeyValue needs to be
increased, its underlying data structure will be subdivided as
well. When the consumed memory space exceeds resource
constraints, out-of-core storage may be activated. However,
when the activation commences, some of the stored elements
may be allocated to external memory, which makes the direct
access operator (i.e., operator[]) unable to return a reference
to the mapped value. To solve this issue, IKeyValue’s direct
access operator will return a reference to a proxy class, which
overloads the assignment operator (i.e., operator=) and the
cast operator (i.e., operator()) to satisfy the functionalities of
assignment and retrieval, respectively.

V. OUT-OF-CORE PRIORITY QUEUE

Priority queues, whose underlying data structures are
heaps, provide push operations as well as pop and top opera-
tions, which manipulate the largest (or smallest) element. As
the number of stored elements increases, primary memory may
be unable to store new elements, which leads to the utilisation
of external memory. Because the performance of external
memory is orders of magnitude slower than that of internal
memory, out-of-core priority queues require I/O efficient algo-
rithms [34–36]. In our library, the functionalities of priority
queues specified by operation descriptors are embedded in
ICollection, which now accepts a custom comparison
operator as an optional template parameter, which defaults to
less-than operator, to decide that either the largest or smallest
element should be manipulated. When the internal memory
limit has not been reached, ICollection behaves like the
STL’s priority_queue. Once the self-adaptive mechanism com-
putes the memory consumption and sees it exceeds the primary
memory limit, the mechanism will then take the following
actions. First, it will sort the priority queue in primary memory
and move the sorted elements to external memory. Next, the
priority queue’s largest (or smallest) element is inserted into a
max (or min) heap which is intended to reduce response times
of pop and top operations. These actions may be performed
many times to keep memory consumption lower than the
primary memory limit. When out-of-core storage is activated,
pop and top operations should access not only the priority
queue in internal memory but the root of the heap. If the root
of the heap has to be removed, it will be deleted and the next
larger (or smaller) element is then inserted into the heap.

Some researchers have proposed implementations of out-
of-core priority queues (e.g., Standard Template Library for
Extra Large Data Sets [37]), which considerably enhance I/O
efficiency. However, they cannot dynamically determine when
to trigger out-of-core storage, which deteriorates the perfor-
mance of priority queues when in-core memory is sufficient.
We have seen this drawback and aimed for our library to act
as a controller which decides when to make use of out-of-core
priority queues.

VI. CASE STUDY

The case study chosen to illustrate our library’s applica-
bility is Dijkstra’s shortest path algorithm, which has been
extensively applied to route planning [38] and social network

94Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 102 / 143

Application Programming Interface

Self-Adaptive Unit

Implemented in previous work Implemented in this work Still to be implemented

ICollection
Configuration interfaces

setAdaptationFrequency

Container constructors

Operation interfaces

…

insert

push pop

search remove

IKeyValue
Configuration interfaces

setAdaptationFrequency

Container constructors

Operation interfaces

insert search remove

operator[] …

SLO store

Analyzer

Observer Adaptor

Execution unit

AVL Tree list sparse Bloom filter heap … queue vector

operator*

Figure 1. The highlight components of the library

analysis [39]. A naïve implementation of this algorithm is
shown in Figure 2. Figure 3 displays the same algorithm
via use of our library. As can be seen, the only difference
between the two programs is the declaration of the key-value
store variable, Distance (which stores the shortest distances
from a given random node to all the other nodes), and of
priority queue variable, PQ (which is used to locate the node
with the shortest distance). To observe the library’s behaviour
under different SLOs, the following SLOs were assigned to
Distance:

1) 80% of insertion times should be less than 1350 ns,
and 90% of search times should be less than 500 ns.

2) Reliability should be higher than 0.995.
3) Memory use should be no more than 500 MB.

The above-mentioned SLOs were stored in DistanceS-
LOs.xml in WSLA format. An example of how to express
SLOs fit for our self-adaptive containers in WSLA format
is shown in [9]. Similarly, an SLO that requires the primary
memory consumption of PQ to remain below 300 KB was
assigned to PQSLO.xml. For Distance, the value of the
optional parameter, AdaptationFrequency, was 100. In
other words, the Analyzer was triggered every 100 opera-
tions. Naturally, the value of AdaptationFrequency may
affect response times. In our previous case study, we have
assigned different values to see the influence, which shows
that when values of AdaptationFrequency are small,
response times are lessened on account of a reduction in the
Analyzer’s activation times. As values rise, response times
begin to increase due to delay of adaptation actions.

In this case study, a graph depicting the full USA road net-
work [40], which contains approximately 23 million vertices
and 58 million edges, was input. The performance and memory
consumption from a given random node to all the others were
compared, using the STL’s class and our library. The SLOs of
Distance were then input to different sequences to observe
the library’s behaviour. Finally, the memory consumed by
both the STL’s priority_queue and our library were displayed,
showing improvement of memory efficiency.

A. Comparison with STL’s map

To evaluate our library’s effectiveness, Dijkstra’s shortest
path algorithm utilised to compute the shortest paths from a
random node to all the other nodes was executed using the
STL’s map and our library. Figures 4 and 5 display average
insertion and update times for Distance. The insertion time
consumed by our library was close to that consumed by the
STL’s map. That was because our library spent extra time
performing adaptation actions when elements were inserted.
The sudden rises in insertion times indicated that our library
changed its underlying data structures to boost performance
or reliability. Although adaptation actions initially added to
insertion times, they considerably improve scalability going
forward. Indeed, insertion time and update time SLO are both
subsequently maintained with only occasional adaptations.

Figure 6 depicts the memory space consumed by the STL’s
map and our library. Our library used an order of magnitude
less memory space than the STL’s map.

B. Influence of SLO priority

Figures 7 and 8 illustrate the performance-related SLOs
and the time spent by our library under different priority
orderings. For example, PerRelMem means that performance is
the highest in order of priority, reliability has the next highest
priority, and memory consumption’s priority is the lowest.
These figures indicate that when the given SLOs specified
performance has higher priority over memory consumption,
our library expends considerably less insertion time and update
time. This phenomenon can be seen in the following orders
of SLO metrics: PerMemRel, PerRelMem, and RelPerMem.
When their performances cannot achieve the performance-
related SLOs, the library still improves performance even if
it means violating the memory limit. By contrast, when the
memory-related SLO is the highest in order of priority, it
causes our library to consume substantial insertion time and
update time due to frequent out-of-core memory access.

The library’s memory consumption conditions under the
six priority sequences are depicted in Figure 9, which shows
two different types of behaviour in accordance with priority in

95Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 103 / 143

void Dijkstra_algorithm(Graph G, Node s)

{

 priority_queue< pair<Node, double>, compare > PQ;

 map<Node, double> Distance;

 Node u, v ;

 double cost;

 for (Node *w = G.start_node() ; w != G.end_node() ; w = G.next_node()) {

 Distance.insert(pair<Node, double>(*w, numeric_limits<double>::infinity()));

 }

 Distance[s] = 0;

 PQ.push(pair<Node, double>(s, Distance[s]));

 while (!PQ.empty()) {

 u = PQ.top().first;

 PQ.pop();

 pair<Node, double> *z = G.first_edge(u);

 for (; z ; z = G.next_edge(u)) {

 v = (*z).first ;

 cost = (*z).second;

 if (Distance[v] > Distance[u]+cost) {

 Distance[v] = Distance[u] + cost ;

 PQ.push(pair<Node, double>(v, Distance[v]));

 }

 }

 }

}

Figure 2. The naïve shortest-path algorithm

void Dijkstra_algorithm(Graph G, Node s)

{

 ICollection< pair<Node, double>, compare > PQ(OP_P QUEUE, “PQSLO.xml”);

 IKeyValue<Node, double> Distance(OP_INSERT|OP_INDE X, “DistanceSLO.xml”, 100);

 Node u, v ;

 double cost;

 for (Node *w = G.start_node() ; w != G.end_node() ; w = G.next_node()) {

 Distance.insert(pair<Node, double>(*w, numeric_limits<double>::infinity()));

 }

 Distance[s] = 0;

 PQ.push(pair<Node, double>(s, Distance[s]));

 while (!PQ.empty()) {

 u = PQ.top().first;

 PQ.pop();

 pair<Node, double> *z = G.first_edge(u);

 for (; z ; z = G.next_edge(u)) {

 v = (*z).first ;

 cost = (*z).second;

 if (Distance[v] > Distance[u]+cost) {

 Distance[v] = Distance[u] + cost ;

 PQ.push(pair<Node, double>(v, Distance[v]));

 }

 }

 }

}

Figure 3. The resource-aware algorithm using self-adaptive containers

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

A
v
e
ra

g
e
 i
n
se

rt
io

n
 t

im
e
 (

n
s)

Number of stored nodes

STL Map
Our Library

Insertion Time SLO

Figure 4. Average insertion time

 0

 200

 400

 600

 800

 1000

 1200

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08

A
v
e
ra

g
e
 u

p
d
a
te

 t
im

e
 (

n
s)

Number of updates

STL Map
Our Library

Update Time SLO

Figure 5. Average update time

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

M
e
m

o
ry

 c
o
n
su

m
p
ti

o
n
 (

b
y
te

)

Number of stored nodes

STL Map
Our Library

Memory SLO

Figure 6. Memory consumption

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

A
v
e
ra

g
e
 i
n
se

rt
io

n
 t

im
e
 (

n
s)

Number of stored nodes

PerRelMem
RelMemPer
MemPerRel
PerMemRel
MemRelPer
RelPerMem

Insertion Time SLO

Figure 7. Average insertion times under different SLO priorities

96Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 104 / 143

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

A
v
e
ra

g
e
 u

p
d
a
te

 t
im

e
 (

n
s)

Number of updates

PerRelMem
RelMemPer
MemPerRel
PerMemRel
MemRelPer
RelPerMem

Update Time SLO

Figure 8. Average update times under different SLO priorities

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

M
e
m

o
ry

 c
o
n
su

m
p
ti

o
n
 (

b
y
te

)

Number of stored nodes

PerRelMem
RelMemPer
MemPerRel
PerMemRel
MemRelPer
RelPerMem

Memory SLO

Figure 9. Memory consumption under different SLO priorities

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

R
e
lia

b
ili

ty

Number of stored nodes

PerRelMem
RelMemPer
MemPerRel
PerMemRel
MemRelPer
RelPerMem

Reliability SLO

Figure 10. Reliability under different SLO priorities

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

N
u
m

b
e
r

o
f

n
o
d
e
s

in
 p

ri
m

a
ry

 m
e
m

o
ry

Number of explored nodes

Naive Queue
Intelligent Queue

Figure 11. Memory consumptions of the naïve priority queue and the intelligent
queue

memory consumption. When memory consumption is lowest
in order of priority, more memory space is consumed to
enhance performance or reliability. By contrast, when memory
consumption has the highest priority (MemPerRel and Mem-
RelPer), the consumed memory space is the least. This figure
also indicates that when MemPerRel and MemRelPer reach the
memory limit, our library, whose currently-used data structure
is an improved sparse Bloom filter, reduces the number of AVL
trees to save memory space. Once the number of AVL trees
cannot be reduced, out-of-core storage is activated.

The variation in our library’s reliability is depicted in
Figure 10. As can be seen, when reliability has the highest
priority (RelPerMem and RelMemPer), the reliability is kept
at a desirable level – over 0.995. According to the two rules
of our self-adaptive mechanism, when reliability is the highest
in order of priority, it can be boosted without consideration
of the side effects – most notably the increase in memory
consumption. As a result, RelPerMem and RelMemPer re-
bound several times when reliability is equal to or lower
than 0.995. But when reliability is lower in order of priority,

the library’s reliability descends as the number of inserted
elements increases. Take MemRelPer for example. Memory
consumption has higher priority than reliability, which implies
that reliability cannot be improved once the memory limit
is reached. Further, the reliability sharply deteriorates after
adaptation actions which reduce the number of AVL trees
are taken. While PerRelMem keeps reliability over 0.995,
PerMemRel does not enhance reliability when the number of
inserted elements is approximately one million. That is because
for PerMemRel’s memory consumption has higher priority
than reliability. Consequently, when the current reliability is
lower than the desired reliability, PerMemRel does not enhance
reliability so as to prevent consumed memory exceeding the
memory quota.

C. Out-of-core Storage for Priority Queue

As mentioned, the memory limit of the variable, PQ,
was 300 KB. The primary memory consumptions using our
library and the STL’s priority_queue are shown in Figure 11.
It indicates that our library consumed 300 KB, which was

97Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 105 / 143

a mere 78% of the memory space consumed by the STL’s
priority_queue.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have broadened the functionalities of our
self-adaptive container library, which now supports the funda-
mental container class of key-value stores and enhances our
previously-developed container class with the functionalities
of priority queues. The new functionalities can dynamically
exploit probabilistic data structures and out-of-core storage in
an effort to meet different QoS requirements. Their efficacy
has been proven in a case study, which illustrates how a
naïve implementation of an algorithm utilising our library
becomes scalable and resource-efficient by swift library-driven
adaptations which successfully maintain programmer-specified
Service Level Objectives in order of priority. Simultaneously,
programmer overhead is kept low in terms of adapting software
to a new environment. This can be easily achieved by means of
redefining SLOs which are suitable for the resource constraints
of a new environment.

So far, the library’s self-adaptive mechanism follows a strict
order of priority, which can be further extended to multi-
objective optimisation methods such as a weighted product or
a weighted sum of multiple SLOs. Another future direction
of the library entails the cooperation with other container
frameworks. Integrating them into our library can increase
flexibility of the library in terms of its ability to meet SLOs
in resource-constraint environments.

REFERENCES

[1] A. Hervieu, B. Baudry, and A. Gotlieb, “Managing execution environ-
ment variability during software testing: an industrial experience,” in
Proceedings of the International Conference on Testing Software and
Systems (ICTSS), 2012, pp. 24–38.

[2] D. Perez-Palacin, J. Merseguer, and R. Mirandola, “Analysis of bursty
workload-aware self-adaptive systems,” in Proceedings of the 3rd
ACM/SPEC International Conference on Performance Engineering, ser.
ICPE ’12, 2012, pp. 75–84.

[3] I. Boutsis and V. Kalogeraki, “Radar: Adaptive rate allocation in dis-
tributed stream processing systems under bursty workloads,” in SRDS,
October 2012, pp. 285–290.

[4] R. Weiss, K. Krogmann, Z. Durdik, J. Stammel, B. Klatt, and H. Kozi-
olek, “Sustainability guidelines for long-living software systems,” in
Proceedings of the 2012 IEEE International Conference on Software
Maintenance (ICSM), ser. ICSM ’12, September 2012, pp. 517–526.

[5] J. Greenfield and K. Short, Software Factories: Assembling Applications
with Patterns, Frameworks, Models and Tools. John Wiley and Sons,
2002.

[6] A. Mili, R. Mili, and R. Mittermeir, “A survey of software reuse
libraries,” Annals Software Eng., vol. 5, 1998, pp. 349–414.

[7] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[8] E. Gamma, R. Helm, J. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

[9] W.-C. Huang and W. J. Knottenbelt, “Self-adaptive containers: Building
resource-efficient applications with low programmer overhead,” in Pro-
ceedings of the 8th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, 2013, pp. 123–132.

[10] A. Keller and H. Ludwig, “The WSLA framework: Specifying and mon-
itoring service level agreements for web services,” Journal of Network
and Systems Management, vol. 11, 2003, pp. 57–81.

[11] P. Horn, “Autonomic Computing: IBM’s Perspective on the State of
Information Technology,” 2011, presented at AGENDA 2001, Socttsdale,
Available via http://www.research.ibm.com/autonomic/.

[12] M. Rohr et al., “A classification scheme for self-adaptation research,” in
Proc. International Conference on Self-Organization and Autonomous
Systems In Computing and Communications (SOAS’2006), September
2006, p. 5.

[13] IBM Corp., An architectural blueprint for autonomic computing. IBM
Corp., Oct. 2004.

[14] IBM. Autonomic computing toolkit. [Online]. Available:
http://www.ibm.com/developerworks/autonomic/r3/overview.html [re-
trieved: April, 2005]

[15] J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N. Mills, and Y. Diao,
“Able: A toolkit for building multiagent autonomic systems,” IBM Syst.
J., vol. 41, no. 3, Jul. 2002, pp. 350–371.

[16] G. E. Kaiser, J. J. Parekh, P. Gross, and G. Valetto, “Kinesthetics
extreme: An external infrastructure for monitoring distributed legacy
systems,” in Active Middleware Services, 2003, pp. 22–31.

[17] D. Garlan, S.-W. Cheng, A.-C. Huang, B. R. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture,” IEEE Computer, vol. 37, no. 10, 2004, pp. 46–54.

[18] A. Acharya, M. Ranganathan, and J. Saltz, “Sumatra: A language for
resource-aware mobile programs,” in Mobile Object Systems. Springer-
Verlag, 1997, pp. 111–130.

[19] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky, “Silt: A memory-
efficient, high-performance key-value store,” in Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, ser.
SOSP ’11, 2011, pp. 1–13.

[20] D. R. Musser, G. J. Derge, and A. Saini, STL Tutorial and Reference
Guide: C++ Programming with the Standard Template Library. Boston,
Mass. Addison-Wesley, 2001.

[21] G. DeCandia et al., “Dynamo: Amazon’s highly available key-value
store,” in Proceedings of Twenty-first ACM SIGOPS Symposium on
Operating Systems Principles, 2007, pp. 205–220.

[22] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Work-
load analysis of a large-scale key-value store,” in Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE Joint International Conference
on Measurement and Modeling of Computer Systems, 2012, pp. 53–64.

[23] B. Fitzpatrick, “Distributed caching with memcached,” Linux J., no. 124,
Aug. 2004, p. 5.

[24] J. Petrovic, “Using memcached for data distribution in industrial envi-
ronment.” in ICONS, 2008, pp. 368–372.

[25] Linkedin. Project Voldemort. [Online]. Available: http://www.project-
voldemort.com/voldemort/ [retrieved: January, 2014]

[26] M. Bruggmann. Sparkey. [Online]. Available:
https://github.com/spotify/sparkey-java [retrieved: March, 2014]

[27] Google. leveldb. [Online]. Available: http://code.google.com/p/leveldb/
[retrieved: December, 2013]

[28] M. Majkowski. Ydb. [Online]. Available: http://code.google.com/p/ydb/
[retrieved: October, 2010]

[29] Cassandra. Apache Cassandra. [Online]. Available:
http://cassandra.apache.org/ [retrieved: February, 2014]

[30] Basho. Riak. [Online]. Available: http://basho.com/riak/ [retrieved:
February, 2014]

[31] F. Labs. Tokyo Cabinet. [Online]. Available:
http://fallabs.com/tokyocabinet/ [retrieved: August, 2012]

[32] Aerospike. Aerospike. [Online]. Available: http://www.aerospike.com/
[retrieved: February, 2014]

[33] W. Knottenbelt, “Performance analysis of large Markov models,” Ph.D.
dissertation, Imperial College of Science, Technology and Medicine,
February 2000.

[34] Chiang et al., “External-memory graph algorithms,” in Proceedings of the
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 1995,
pp. 139–149.

[35] U. Meyer, P. Sanders, and J. F. Sibeyn, Eds., Algorithms for Memory
Hierarchies, Advanced Lectures [Dagstuhl Research Seminar, March 10-
14, 2002], ser. Lecture Notes in Computer Science, vol. 2625. Springer,
2003.

[36] N. R. Zeh, “I/O-efficient algorithms for shortest path related problems,”
Ph.D. dissertation, Carleton University, April 2002.

[37] R. Dementiev, L. Kettner, and P. Sanders, “STXXL: Standard Template
Library for XXL data sets,” Software: Practice and Experience, Aug
2007.

[38] D. Delling, P. Sanders, D. Schultes, and D. Wagner, “Engineering route
planning algorithms,” in Algorithmics of Large and Complex Networks.
Lecture Notes in Computer Science. Springer, 2009.

[39] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of
Mathematical Sociology, vol. 25, 2001, pp. 163–177.

[40] 9th DIMACS Implementation Challenge. Shortest paths. [Online]. Avail-
able: http://www.dis.uniroma1.it/challenge9/download.shtml [retrieved:
June, 2010]

98Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 106 / 143

An Adaptive Approach to Self-Healing in an Intelligent Environment

Guanitta Brady, Roy Sterritt, George Wilkie

School of Computing and Mathematics

University of Ulster

Jordanstown, Northern Ireland

brady-g6@email.ulster.ac.uk, {r.sterritt, fg.wilkie}@ulster.ac.uk

Abstract— In this paper, we address the management of sensor

faults in an intelligent environment. Our proposed approach

aims to introduce self-healing as a method of fault

management. This approach is based on the use of adaptive

finite state machine automata which handle suspicious sensor

behavior. These state machines communicate with a mobile

robot which investigates the error states detected through the

sensors in the environment in order to learn from the

anomalies and adapt to the changes in sensor behaviors.

Additionally, we have determined that two types of fault may

arise: systemic faults which the system may learn from and

adapt to, and random faults which the system may compensate

for through the use of a mobile robot as a sensor substitute.

Keywords-fault tolerance; self-healing; sensor substitution;

intelligent environment.

I. INTRODUCTION

Since the introduction of the concept of intelligent
environments, we have seen an increase in the applications
of the sensor technologies synonymous with these
environments. A promising application of those technologies
is within the smart home for the delivery of pervasive care
[1]. These environments aim to facilitate the monitoring of
elderly occupants who suffer from cognitive impairments or
degenerative conditions, such as dementia [2], and to support
independent living [3]. In order for these environments to
function effectively they must be tolerant of faults. The
efficient functionality of sensor technologies in care homes
for the elderly is crucial to ensuring the safety of the
environments occupant. Those who suffer from dementia are
often prone to wandering behavior [4]. As a consequence,
there is great potential that those who leave their homes
undetected may place themselves in danger [2]. For this
reason, this research focuses on the monitoring of activity
about a door in an intelligent environment. This work is
motivated by the widespread instances of dementia patients
who have left their care homes undetected [5] [6].

The prevalence of sensor technologies coupled with the
increasing complexity of information systems is leading us
to the need for systems that are capable of self-management
and self-adaptivity [7]. Our approach aims to take the initial
steps in introducing the first of four key properties of an
autonomic system: self-healing. This research aims to
achieve this through the introduction of sensor substitution
and adaptivity to the sensor technology about a door in an
intelligent environment in order to provide the self-healing
and self-management of sensor faults and anomalous

behavior respectively. The proposed approach makes use of
multiple finite state machines coupled with the use of a fuzzy
logic rule base and adaptive learning techniques in order to
provide intelligent adaptive fault management. This is
achieved through the systems own investigation of its error
states from which the system may learn new behaviors and
adapt its policies accordingly.

The remainder of this paper is organized as follows:
Section II provides an overview of related work. In Section
III we present our design. Section IV discusses some
preliminary results. We conclude with Section V in which
our future work is outlined.

II. RELATED WORK

A comprehensive summary of the use of finite state
automata in the design of reliable software is presented by
Wason et al. [8]. Whilst the use of finite state machines for
the purpose of introducing fault tolerance is not a new
concept [9], there exists a research gap in terms of the need
to further explore the extent to which a system may be made
autonomic through the use of state machines so that a system
may investigate and learn from its error states [8], in order to
create a stronger awareness of the conditions under which
the system is expected to perform. In order to achieve this, a
system must be both self-aware and environment aware [10].

A popular approach to the management of faults is the
use of redundancy [11]. These approaches focus on the use
of additional hardware as a fail over mechanism when their
counterparts degrade. These sensors are capable of
measuring identical or closely related values. This approach
does not resolve the underlying fundamental problem that
hardware is subject to failures and even redundant
components have the potential to be subject to a fault or
failure; particularly if their data is only incorporated into the
monitoring process periodically. For this reason, we propose
that the use of adaptable software to compensate for the
shortcomings of hardware devices as their behavior degrades
is a practical and cost-efficient approach. Indeed, the large
volume of research that is undertaken in the area of robotics
for pervasive care suggests that in the future robots will have
a more prevalent role [12], particularly in care home
environments. We can utilize these robots to not only assist
in the delivery of pervasive care, but to also assist in
ensuring fault tolerance in an intelligent environment by
providing a mobile means of delivering sensor substitution
and the investigation of anomalous sensor behavior at the
point of need.

99Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 107 / 143

III. DESIGN

In this section, we will describe the design of our system
in terms of both the hardware and software topologies.

A. Hardware Topology

In our previous work [13], we investigated the viability
of using an ultrasonic array mounted on a mobile robot as a
means of substituting for a radio-based door mounted contact
sensor. From this work, we concluded that two door states,
opened and closed, could reliably be determined by the
mobile array. Previously, our topology consisted of a radio
contact sensor, pressure mat and the mobile robot Pioneer 3-
DX from Adept Mobile Robots [14]. We extended this to
include an additional pressure mat in order to detect when a
person had passed through the door threshold. Our hardware
topology is depicted in Figure 1.

1) Static Sensors: Based on our observations of the

sensor data generated by the static sensors, we determined

that these sensors may be viewed as “black and white”

sensors as their readings dictate one of two states; the radio

door contact sensor can return a “door opened” or a “door

closed” value. Similarly, the pressure mats can return a true

or false binary value to denote their activation or dormancy.

2) Mobile Sensors: In contrast to the static sensors the

mobile sensors with which the robot is equipped, which

include an ultrasonic array and an infrared sensor, may be

viewed as “grey” sensors. This stems from the fact that

whilst the static sensors can provide a simplistic piece of

information depicting that they are in one of two possible

states, the mobile sensors require pre-processing in order to

derive information from their data about their perception of

the world.

Figure 1. Hardware topology in experimental environment.

B. Software Topology

A high-level conceptual overview of the software system
structure is presented in Figure 2. It is made up of two
communicating finite state machines and two feedback
loops. Each of the state machines communicates with the
static sensors and mobile sensors respectively. It is through
this continuous feedback that the states in the machines are
driven. This is discussed in the following sub-section.

Figure 2. High-level overview of self-healing system structure.

1) Finite State Machines: We have designed two finite

state machines based on our physical topology. It was

determined that two state machines were required in order to

allow for the concurrent monitoring of normal activity and

the investigation of anomalous sensor behaviour. By

designing the state machines to facilitate concurrency,

effective monitoring can be delivered irrespective of the

detection and investigation of anomalous behavior.

a) Normal Activity State Machine: The first finite state

machine is the Normal Activity State Machine (NASM).

This machine handles the expected pattern of static sensor

activations about a door. It was determined that based upon

the combinations of the static black and white sensors that

eight possible states could exist, given that each sensor

could be determined to be in one of two states, which denote

normal activity about a door. The number of possible sensor

events is: 2^3= 8 possibilities, where there are two possible

events which may fire for each of the three sensors and no

event may be repeated in the course of a normal traversal of

a doorway. The states in the NASM are:

 S0 Door closed

 S1 Door opened

 S2 Person inside & closed

 S3 Person outside & closed

 S4 Person inside & outside & closed

 S5 Person inside & open

 S6 Person outside & open

 S7 Person inside & outside & open

The states S2, S3, S5 and S6 correspond to a single person

approaching the door. The states S4 and S7 correspond to

the possible presence of another person on the outside

100Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 108 / 143

pressure mat in addition to the presence of a person on the

indoor pressure mat. These states are driven by seven

events: six of these events are the static sensor events and

the seventh is a reset event which may restore the state

machine to a specified state. The Reset event may only be

generated by the Error Handling State Machine (EHSM).

b) Error Handling State Machine: The second state

machine; the EHSM, consists of nine states and ten events

which drive those states. The states in this machine are

derived from the combinations of the environment sensors

which may exhibit anomalous behaviour. The events in this

state machine stem from two sources. The first source is the

NASM from which events are generated via its actions to

the EHSM upon the receipt of anomalous sensor readings.

The second source of the events in the EHSM is the mobile

robot. Upon the detection of anomalous behaviour the

mobile robot is deployed to the site of the sensor failure

where its role is twofold: in the first instance the robot must

deliver feedback of its sensor readings. This data is

processed in order to provide a corresponding value for the

sensor it is investigating so that normal monitoring of

activity about a door can continue whilst the anomaly is

being investigated. The results of this analysis are input to

the EHSM through a feedback loop. This, in turn, generates

an event into the NASM via a second feedback loop

instructing it what state to transition into based on the

robot’s sensor readings. Secondly, the robot’s sensor data is

processed in parallel with the monitoring activity in order to

identify patterns in changes in sensor behaviour. It is

through this reflective analysis over time that adaptive

learning is facilitated.

2) Anomaly Identification: From our observations of our

static sensors’ behaviour over time, we determined that two

types of anomaly may be exhibited: random anomalies and

systemic anomalies.

a) Random Anomalies: Random anomalies are defined

as those which occur sporadically such as the absence of an

expected sensor activation. These anomalies are addressed

directly through the mobile robot, which positions itself at

the door and provides substitution of the sensor in question.

Whilst providing substitution, the robot feeds back its own

sensor data. This data is then pre-processed and correlated

with that of the static environment sensors for anomaly

verification and fault diagnosis.

b) Systemic Anomalies: Systemic anomalies are

defined as those which occur as sensor behaviors change

over time. Our current research leads us to believe that these

changes in behavior may be attributed to the degradation of

hardware resulting in behaviors such as slower relay time,

battery deterioration or the receipt of multiple sensor events

for one real-world event. This requires further investigation

in order to verify the validity of this hypothesis. It is these

anomalies that the system must investigate fully in order to

learn about the changes in the behavior of the sensors in the

environment. To this end, adaptive learning [15] must be

applied so that the system may adapt its policies.

IV. DISCUSSION

When an anomalous sensor reading is received by the
NASM, a corresponding action, dependent on sensor type,
inputs an event to the EHSM. A feedback loop operates
between the NASM and EHSM whereby, upon successful
investigation of the anomaly, the EHSM may then generate a
Reset event into the NASM in order to restore its function.
Alternatively, the EHSM may generate a new action into the
NASM which corresponds to a systemic anomaly which has
been detected in a given static sensor so that the NASM may
handle the occurrence of that sensor behavior in future
without reporting the event to the EHSM as a new anomaly.

By utilizing a feedback loop, actions may be dynamically
generated into the NASM. These actions are the result of the
investigation by a mobile robot and analysis by the system of
the sensor behaviors. By providing the dynamic generation
of actions into the NASM, the adaptivity of the state
machines policies can be achieved. This approach has the
potential to bring greater flexibility to the system and more
robust fault tolerance without the need for human
intervention. Therefore, the adaptivity in this system will be
achieved through the NASM. This is facilitated by the
feedback of the results of the robot’s investigation of the
environment sensors via the EHSM.

When the EHSM receives an event from the NASM, it
will then trigger a transition to the relevant state dependent
on the sensor or sensors that have been deemed suspicious.
The EHSM then performs an action relevant to the
anomalous sensor. Initially, the EHSM’s action will instruct
the robot to navigate to the site of the sensor. In order to do
this, the robot requires a-priori knowledge of the
environments structure. The method of navigation is not
pertinent to this research piece as it is an area which is
widely covered by roboticists. We are concerned only with
the fact that the robot can consistently navigate to a pre-
designated position, which is dictated by the unique
identifier of the specific sensor in question, using a map of
the environment and collision avoidance. Before the results
of the robot’s observations can be fed back to the EHSM,
pre-processing and analysis is required. It is through this
pre-processing and analysis that investigation of the
anomalous behavior takes place. This, in turn, facilitates the
systems learning about anomalies and changes in sensor
behaviors.

The analysis of the data received from both the robot and
the static sensors provides the system with the ability to
begin to identify systemic anomalies. Subsequently, the
system may then learn about its faults and adapt its policies
to account for the new behaviors exhibited by the static
sensors. For example, if the door contact sensor develops
behavior whereby it fires three sensor events for one real-
world door opened event instead of once, as would ordinarily
be expected, from the correlation of the robot’s observations
with the static sensor events the system may then learn that
this pattern is a systemic anomaly and accordingly adapt its

101Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 109 / 143

policy to allow three door opened events to occur, through
the adaptation of actions in the NASM, before an anomalous
contact sensor event is passed to the EHSM in future.

In the course of our research we have observed the door
contact sensor which is part of our system topology. From
these observations, we have determined that there are
instances in which sensor events are not received. During our
experiments, it became evident, for example, that the sensor
signals were lost on occasion when a door was closed.
However, this occurrence was not consistent. As a result it is
difficult to adapt to this system behavior. Consequently, the
mobile robot was instructed to navigate to the door site
location. Once there the robot’s role is two-fold in this
instance: it must use its ultrasonic array to determine the
door state and it must also verify the anomalous behavior.
When the robot’s data from its ultrasonic array is fed back it
takes over the role of the contact sensor in the finite state
machines, following pre-processing of the data, until the
issue with the door contact can be verified as either a random
or systemic anomaly.

It is evident from the above that the utilization of a
mobile robot as a means of investigating and verifying
anomalous sensor behavior has the potential to address two
types of anomalous behavior in the sensors about a door. We
have used anomalous readings from the door contact sensor
by way of example here, however; our approach would also
hold for the investigation of anomalous pressure mat
readings. Whilst the implementation is incomplete, we
believe that we can contribute to the adaptive management of
sensor faults in an intelligent environment through our
utilization of a mobile robot for investigation of the
anomalous behavior coupled with the dynamic adaptation of
system policies following the systems own investigation and
analysis of its suspected error states.

V. CONCLUSION AND FUTURE WORK

In this paper, a proposed approach to the self-healing of
door based sensors in an intelligent environment was
presented. This research utilizes a mobile robot in order to
provide sensor substitution and verification of anomalous
sensor behavior. By utilizing a mobile robot to investigate its
anomalies, the system may determine the nature of the
anomalous behavior. We have devised that this behavior may
be categorized into two types of anomalies based on
observations of a mobile robot over time; systemic and
random anomalies. It is through this process of investigation
of its own anomalous events that the system may learn from
the behavior of the sensors contained therein and adapt its
policies accordingly.

The ideas presented in this paper are in the process of
being implemented, and subsequently require further
evaluation. The preliminary results are promising and appear
to offer a useful means of introducing self-healing through
sensor substitution and software adaptation into an intelligent
environment in order to ensure the tolerance of static sensor
faults.

Our future work will consist of experimentation and
evaluation of our approach, following the completion of our
implementation. The performance of the proposed approach

will be qualitatively evaluated in order to establish a clear
picture of the performance of our approach in the real world.
Adaptive learning for the dynamic generation of system
policies through the use of a fuzzy rule-base [16] will be
further investigated in order to establish how well the system
learns using this approach.

ACKNOWLEDGMENT

Guanitta Brady’s PhD research is funded by DEL
(http://www.delni.gov.uk) and has been awarded the 2012
Annual Research Bursary from HISI (http://www.hisi.ie/).

REFERENCES

[1] M. E. Pollack, “Intelligent Technology for an Aging
Population: The use of AI to Assist Elders with Cognitive
Impairment,” AI Magazine, vol. 26, no. 2, pp. 9-24, Summer
2005, doi: 10.1609/aimag.v26i2.1810

[2] A. J. Bharucha et al., “Intelligent Assistive Technology
Applications to Dementia Care: Current Capabilities,
Limitations, and Future Challenges,” The American J. of
Geriatric Psychiatry, vol. 17, no. 2, pp. 88-104, Feb. 2009,
doi: 10.1097/JGP.0b013e318187dde5.

[3] F. Sadri, “Ambient Intelligence: A Survey,” ACM Computing
Surveys (CSUR), vol. 43, pp. 36:1-36:66, Oct. 2011, doi:
10.1145/1978802.1978815.

[4] C. K. Y. Lai and D. G. Arthur, “Wandering Behaviour in
People with Dementia,” J. of Advanced Nursing, vol. 44, pp.
173-182, Oct. 2003, doi: 10.1046/j.1365-2648.2003.02781.x.

[5] S. Davies. (2013, November 4), Wife's anger after
Southampton care home unaware dementia patient has walked
out [Online]. Available:
http://www.dailyecho.co.uk/news/10782832.Wifes_anger_ov
er_care_home_blunder/

[6] CTV British Columbia. (2013, December 9), Family wants
answers after senior leaves care home, dies outside [Online].
Available: http://bc.ctvnews.ca/family-wants-answers-after-
senior-leaves-care-home-dies-outside-1.1582407

[7] P. Horn. Autonomic Computing: IBM Perspective on the State
of Information Technology [Online]. Available from:
http://www.research.ibm.com/autonomic 2001.10.15

[8] R. Wason, P. Ahmed, and M. Q. Rafiq, “Automata-Based
Software Reliability Model: The Key to Reliable Software,”
Int. J. of Software Engineering & Its Applications, vol. 7, no.
6, pp. 111-126, Nov. 2013, doi: 10.14257/ijseia.2013.7.6.10.

[9] R. Leveugle and L. Martinez, “Design Methodology of FSMs
with Intrinsic Fault Tolerance and Recovery Capabilities,”
Proc. Euro ASIC 1992 (AISC 92), IEEE Press, June 1992, pp.
201-206, doi: 10.1109/EUASIC.1992.228024.

[10] R. Sterritt and D. Bustard, “Towards an Autonomic
Computing Environment,” Proc. IEEE Int. Workshop on
Database and Expert Systems Applications (DEXA 03), IEEE
Press, Sept. 2003, pp. 694-698,, doi:
10.1109/DEXA.2003.1232103.

[11] V. P. Nelson, “Fault-Tolerant Computing: Fundamental
Concepts,” Computer, vol. 23, pp. 19-25, July 1990, doi:
10.1109/2.56849.

[12] A. M. Okamura, M. J. Matari , and H. I. Christensen,
“Medical and Health-Care Robotics,” IEEE Robotics &
Automation Magazine, vol. 17, pp. 26-37, Sept. 2010, doi:
10.1109/MRA.2010.937861.

[13] G. Brady, R. Sterritt, and F.G. Wilkie, “An Investigation into
the Viability of a Mobile Ultrasonic Array as a Sensor
Substitute in an Autonomic Intelligent Environment,” Proc.
IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC 13),

102Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 110 / 143

IEEE Press, Oct. 2013, pp. 577-582, doi:
10.1109/SMC.2013.104.

[14] Adept MobileRobots LLC., Pioneer 3 Operations Manual.
Amherst, NH, 2010.

[15] R. M. Bahati, and M. A. Bauer, “An Adaptive Reinforcement
Learning Approach to Policy-Driven Autonomic
Management,” Proc. IEEE Int. Conf. on Autonomic and
Autonomous Systems (ICAS 09), IEEE Press, April 2009,
pp. 135-141, doi: 10.1109/ICAS.2009.58.

[16] I. B. Türkşen, “A Review of Developments in Fuzzy System
Models: Fuzzy Rule Bases to Fuzzy Functions,” Scientia
Iranica, vol. 18, no. 6, pp. 522-527, June 2011, doi:
10.1016/j.scient.2011.04.001.

103Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 111 / 143

OfficeMate: A Study of an Online Learning Dialog
System for Mobile Assistive Robots

Steffen Müller, Sina Sprenger, Horst-Michael Gross
Ilmenau University of Technology

P.O. Box 10 05 65, 98684 Ilmenau, Germany
Email: Steffen.Mueller@tu-ilmenau.de,

Sina.Sprenger@gmx.de, Horst-Michael.Gross@tu-ilmenau.de

Abstract—Service robots in the near future are supposed to live
together with humans in their private homes for a longer time
period. In this situation, experience and attitudes of the users
change and thus, the robot has to develop its behavior, too,
and it has to adapt to the user’s way of interaction and the
user’s needs. The contribution of this paper is a probabilistic
decision planner implementing the idea of online learning dialog
strategies for a mobile service robot in long-term interaction. The
planning system is part of a modular multi-modal dialog system
and allows for an autonomous personalization of the robot’s
actual interaction behaviors. A model of observed transitions and
user’s rewards using mixtures of discrete samples is proposed
for efficient inference in a factor graph model. The practicability
of the dialog system and the rewarding mechanism have been
evaluated in a ten day realworld experiment with 16 users.

Keywords–online learning; dialog system; probabilistic planner

I. INTRODUCTION

The work presented has been conducted in the scope of
the research group SERvice RObotics for health (Gesundheits)
Assistance (SERROGA) [1], which intends to develop demon-
strators for robotic applications in the context of prevention
and assistance for elderly people living alone in their home
environment. As a vision, we see a robot, that is living together
with the human in a long-term interaction situation. Further-
more, we expect the development of an emotional binding of
the user to his or her personal robot over the time, which is
reinforced by the ability of the system to adapt to the user’s
needs and preferences. The intended platform to be used in the
SERROGA project is a Scitos-G3 (see Fig. 1), that has been
developed in the EU funded project CompanionAble [2][3].
An intuitional communication is realized by a multi-modal user
interface consisting of a touchscreen, touch sensitive cover, and
a touch sensitive patch of fur used for petting the robot. Actual
work in progress intends for inclusion of speech recognition
as an additional input channel. For output, the robot can use
synthesized voice, the screen, as well as an artificial face
consisting of two eye displays.

A laser range finder and a Kinect sensor, together with a
differential drive enable autonomous localization and naviga-
tion skills. A fish-eye camera is used for person detection and
tracking, which is a key functionality for successful interaction.
Additionally, for giving explicit feedback by a user, special
positive and negative reward buttons are placed on top of the
screen.

The aim of this work is to enable and understand a long-
time development and adaptation of a multi-modal human-
robot dialog. In that context, we identified three phases in

the interaction. At the beginning, in the first phase, the user
needs to get to know the robot. The system has to give
advice how to use it and has to introduce its capabilities. The
dialog initiative is primary at the side of the robot. Later,
in a second phase, when the user knows better about the
capabilities of the robot, the initiative will be in the user’s
hand, and the robot should learn the user’s preferences and
needs. That means, the robot is supposed to learn which
services are used in which situation and what are the user’s
attitudes towards the various options the robot has in its dialog
behavior. Also, preferred selections are learned by the robot
in order to apply that knowledge in the third phase. When
that third, stable phase is reached, the robot can make use of
the observations in interaction with that specific user. So it
is able to act proactively depending on the current situation.
Then, a mixed initiative dialog should emerge even with the
limited domain of the robot’s services. Nevertheless, the ability
to learn and change interaction behavior should not be limited
to the initial phases. Changes of user’s attitudes have to be
tracked continuously and life-long.

tactile sensor for petting
microphone
speakers
eye-displays
fish-eye camera
Kinect sensor
reward screen buttons

tiltable touch-screen

touch sensitive cover

laser range finder

ultra sonic sensors

bumper

Figure 1. Scitos-G3 robot “Max” used for the evaluation.

The remaining part of this paper is structured as follows:
First, a brief discussion of approaches from literature for
learning dialog behavior is given, followed by the presentation
of our own contribution. Thereto, in Section III, first, the
dialog system is described at a glance, and afterwords, the
adaptive parts, the probabilistic planner and the models used,
are explained. In Section IV, our experience with the described

104Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 112 / 143

system in user test is presented, and results are discussed.

II. RELATED WORK AND DISCUSSION

In literature, several approaches for dialog modeling can
be found mainly in the field of speech-based dialog systems,
which also have capabilities of adaptation. A common ap-
proach is using Reinforcement Learning techniques for op-
timization of a dialog flow, even when inputs are uncertain.
The Partially Observable Markov Decision Process (POMDP)
is used here, but this comes along with high computational
effort, which is intended to be overcome by several approaches
for simplification [4][5]. These approaches try to find a policy
in order to maximize the discounted future reward, that mainly
is generated by a system internal reward function. Therefore,
the system designer has to define in advance what the long-
term goals during upcoming dialogs will be.

Pineau et al. [6] applied a POMDP model for learning
an optimal dialog behavior for a service robot called Pearl.
Although they applied a hierarchical decomposition of the
assistance task, the complexity of the realizable functionality
is very limited. That approach also relies on a hand crafted
reward function and the policy is computed offline before
application. Thus, the robot can not consider individual user’s
characteristics discovered at runtime.

One disadvantage of many similar Reinforcement
Learning-based approaches in the domain of dialog learning
is the batch update, where in a training phase interaction data
is acquired, and afterwards the optimization run is applied
offline in order to generate the productive dialog system.

A model for learning a behaviour online from direct user
rewards is called “Training an Agent Manually via Evaluative
Reinforcement” (TAMER) [7][8]. This approach explicitely
models, which feedback a user gives for a certain state-action
pair, and then acts greedily in order to get the maximum reward
for the next action. The argumentation for this λ0 strategy is
the idea, that the human supervisor estimates the utility value
of a state-action pair and already represents this in the reward
signal. This might be correct to a certain degree, but has a clear
disadvantage. The system can only act in order to achieve user
goals, but is not able to incorporate internal goals or wishful
target states. One interesting aspect of the TAMER model is
the reward model. This allows to predict the user rewards and
apply them internally - even if the user is not giving feedback
for each action. Thus, this model allows that the user has to
get active by giving feedback only if s/he wants to modify the
behavior, not if s/he is pleased with it.

An alternative dialog system applying probabilistic infer-
ence is presented in [9] and later in [10]. Inference techniques
have been applied to a statistical model of the dialog in order
to reason the goals the user might have in mind and, therefore,
decide which information needs to be asked or given in the
next steps of dialog. Unfortunately, this idea is not directly
transferable to our scenario, where the goal of the dialog is
not only determined by the user but also by the system itself
(e.g., the robot should engage the user in communication or
physical activities). Additionally, the required direct reward to
be given by the user, which is used to modify the way things
are communicated, is hard to introduce in that approach.

In our approach, we need to combine system internal goals,
which mainly are i) fast task completion and ii) less correction
steps by the user with explicit and implicit rewards given
directly by the user during the interaction. As explicit reward,

subdialog 1

variable 3

variable 1

variable 2

subdialog 1

variable 1

variable 2

variable 1

variable 2

subdialog 1

dialogmanager

input
interpreter /

fusion

output
rendering

suspended
suspended
suspended

active

stack of active subdialogs

subdialogs
defiened in
the service
modules

variable 1

variable 2

variable 3

a1 a2

a3

a4 a5

subdialog 1
variable 1

variable 2

Figure 2. Architecture of our dialog system - The dialog manager holds a
stack of subdialogs each defined by as set of state variables a decission tree
of possible actions.

we consider positive or negative feedback by means of pushing
the respective like or dislike buttons on the screen, while
implicit rewards are unconscious signals like the rate of petting
the robot, or simply ignoring the robot’s attempts to interact
with the user.

To get capability of online learning/adaptation, we would
like to get rid of the complicated optimization problem of
finding a complete policy each time we get new observations,
although we are only interested in the optimal action for
the current situation. This is possible by means of an online
planning mechanism and also allows for changing optimization
goals as well as discovering new states of the dialog at runtime,
which would be difficult or even impossible for implicit
planning methods.

Dialog modeling techniques existing today are mostly
related to a very complex application development process.
Our aim is to provide a framework for rapid application de-
velopment, which is realized by combining simple frame-based
multi-modal dialog with the capabilities of optional adaptation
without introducing additional configuration effort. A key to
a manageable design effort is the possibility for problem
decomposition. According to hierarchical abstract machines
[11], that are also used in the Reinforcement Learning domain
for restriction of the action space, in our approach, individual
subdialogs are defined as independent modules, each restricting
the policy to a reasonable subset and having the ability of
calling other subdialogs on demand. How this modularization
is realized in our system is explained in the next section.

III. ADAPTIVE MODULAR DIALOG SYSTEMS

The implementation of the dialog system is based on the
robot middle-ware MIRA [12][13] and implements the control
layer in our software architecture [2]. Therefore, it integrates
well with the other robot software components for navigation,
perception skills, and graphical user front-end and realizes an
interface to the robot infrastructure for the individual services.
The software architecture supports a modular design, where
each subdialog (greeting, weather info, news, entertainment,
etc.) is an independent module defining a service. Thus, it is
easy to add new functionality and refer to, or combine existing
dialog capabilities in new dialogs, such that the borders of
the modules get blurry for the user, who is perceiving the
robot as one personality. The software modules implement a

105Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 113 / 143

content specific back-end functionality as well as define the
subdialogs needed. The configuration for a subdialog is mainly
a definition of the state space S (variables holding user inputs
and context information) and a set of output actions available
A = {a1, . . . , aK} (see Fig. 2 upper part). For instance,
actions are expressing a greeting multimodally or asking which
website the user likes to see. In order to reduce the necessity
for exploration in an unordered set of actions and in order
to prevent from selection of irrational sequences frustrating
the user, it is necessary to limit the set of selectable actions in
each state S. In our system this is done by a manually designed
decision tree over the state variables S. Each node in the tree
decides between two alternative branches, each consisting of
sets of possible actions or further subtrees. These sets allow to
define options from which the dialog manager has to choose
later on by means of the probabilistic planner. By defining
trees with only one action in the branches, it is possible to
realize deterministic dialog strategies as well. In that case,
the system behaves like a Finite State Machine. For realizing
action sequences, it is necessary to consider the history of
executions of the actions in the dialog state. Therefore, each
possible action ak has a counter Hk, holding the number of
executions of ak since the latest activation of the subdialog.

The dialog state of an independent subdialog, besides
the counters for the actions, comprises a set of variables
{V1, . . . , VN} representing user inputs, but also system in-
ternal data and events that are of relevance for the decision
on the next action of the robot. For example, the number
of appointments to be reminded or the answer (yes/no) to
the question if appointments should be listed are such state
variables in a “reminder” subdialog. The variables have a
specific range that can either be discrete or real-valued, which
has to be considered later in the respective similarity functions.
The range is defined by the type of a variable that also
defines which inputs can be filled in it by the input interpreter.
Additionally, all variables are labeled with a certainty value
{C1, . . . , CN} that expresses to what degree the respective
information is known, unconfident, or unknown. This, for
example, allows to model the ambiguity of speech recognition
inputs or other probabilistic observations.

Therefore, the state representation for one subdialog is a
discrete vector:

S = (V1, . . . , VN , C1, . . . , CN , H1, . . . ,HK) (1)

A. Control Flow in the Dialog System

Having defined the structure of a subdialog, now the
coordination of user inputs, multiple active subdialogs, and
the system output generation are explained.

In general, a turn-based control flow is realized where
user input turns and system turns alternate. Once a system
output action is executed, the system waits until expected user
inputs are recognized or until a timeout triggers a new system
turn. All multi-modal user inputs are processed in parallel
by the input interpreter and will update the dialog state of
the respective subdialog. Inputs or internal events are filled
in variables of all subdialogs that match the respective type.
Special variables may activate a subdialog if they get filled by
an input or event.

The dialog manager holds a stack of active subdialogs (see
Fig. 2), where the top most is that one evaluated each time a
system action is necessary (start of a system turn). The dialog

manager evaluates the decision tree of the top most subdialog
in the stack using its current state S = s0 in order to get the
possible action set for the current situation. If only one action
is available, it is executed by the output renderer directly.
The interesting part, where adaptation takes place, is given
when multiple actions are allowed by the decision tree, and the
probabilistic planning process, as described in section III-C, is
triggered. This planning yields a probability distribution on the
actions Pplan(A), that maximizes the probability of reaching a
system internal goal state while maximizing the user’s rewards
on the way.

Since the system does not know neither the user’s rewards
and the possible transitions in the dialog states nor the goal
states that are defined by the actions in these states, there is
a need for exploration additionally to the aim for exploitation
of the knowledge allready acquired (exploration-exploitation
dilemma). Furthermore, the progress in the phase model of
the long-time interaction, introduced in the intro part of this
paper, also has to be considered during action selection. Thus,
two additional probability distributions are used for action
selection. The first represents the number of executions of
each available action Pcount(A) to enforce that all possible
actions are tried out equally during exploration. The second
distribution Pprio(A) allows for consideration of a priority that
is depending on the progress in the long-time interaction. In
this way, in the beginning phase, more explanatory actions are
selected, and in the stable phase only straight actions without
additional help messages and proactive actions like offering
services in a certain situation are recommended. Consequently,
the three influence factors Pplan(A), Pcount(A), and Pprio(A)
are combined, and the action to be eventually executed is
selected by drawing from that resulting distribution.

When the action is executed, mainly screen and speech
outputs are generated, that may refer to values of the vari-
ables in the subdialogs, and communicate content suitable for
the current situation (asking questions, confirming inputs or
giving answers). Also special actions, like activation of other
subdialogs or canceling an active subdialog, are possible. If a
new subdialog is activated, the former top most in the stack
gets suspended and can execute one more action in order to
react to that special situation. If the interrupting subdialog is
finished, the suspended one returns to the top of the stack and
gets resumed. This resuming is a special action that may be
used to bring the user back into the context of the former
conversation.

B. Modelling of Interactions

For the planning and adaptation, the system needs to
represent knowledge on the history of interactions with the
user. This is done by means of several probabilistic models
which are described in the following. The dialog manager first
builds up a persistent probabilistic transition model at runtime
that is representing the probability of reaching a certain state
S′ given a predecessor state S and the executed action A.
Here, user specific decisions and reactions are learned as well
as the internal restrictions on the state sequences, such that
the planning system does not need to be configured with that
knowledge in before. The representation of that model is a
weighted sum of samples sj = (S′, S,A)j each of them
equipped with a weight wj . These samples have a very high
dimensionality (keep in mind the elements of the state vector
S) and, therefore, it is very unlikely that exactly the same states

106Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 114 / 143

A

P(S'|S,A) S'S

next time step

μS'→P(S'|S,A)(S')μP(S'|S,A)→S(S)

μA→P(S'|S,A)(A) μP(S'|S,A)→A(A)
μS→P(S'|S,A)(S)

current
state

P(R|S') R

P(G|S') G
μP(G|S')→S'(S')

μP(R|S')→S'(S')

P(R)

R

μS→S'(S')

P(G)

0 1G

initialization
with goal states

one time slice

Figure 3. Dynamic factor graph for planning of next action A, given the current state S, a goal state distribution G and a reward proposal distribution R.

appear very often. To generalize consequences among similar
states, a similarity function δS′,S,A(sa, sb) 7→ [0, 1] defines a
neighborhood among samples sa and sb. The subscript S′, S,A
determines the dimensions considered in that similarity. Later,
when operating with marginal distribution,we need to compare
samples on certain dimensions only. The probability of a
particular transition t = (S′

t, St, At), by means of that set
of all samples sj and similarity function is defined as follows
with a normalization factor η:

P (S′
t, St, At) = η

∑
j

wjδS′,S,A(t, sj) (2)

For realizing a goal directed planning of action sequences,
additionally a model of goal states P (G,S) and a model of
rewards P (R,S) gained in a certain state, are defined similarly
also as weighted set of discrete samples. Here, G can be 1 for
a success state, e.g. the dialog was successfully completed,
or it can be 0 for a fail state that has to be avoided in future
interactions. This is for example the case, if a dialog turn times
out without any user reaction.

The rewards are only recorded if positive or negative
reward events took place. By ignoring zero rewards, the policy
remains stable, even if the user is pleased with it and does not
reward every action individually.

The goal and reward models can be used to evaluate a
probability for a state S to be a goal state, as well as the
probability to get a high reward in that state. The models return
0.5 if there are no similar observations in the sample set.

Initially, these user-specific models for each subdialog are
empty and have to be filled during the interactions by observ-
ing and counting the real transitions, rewards, and occurrence
of goal labels.

C. Probabilistic Action Planning

This section describes the planning mechanism used to
deduce a probability distribution Pplan(A) for the available
actions, that maximizes the probability of reaching a goal
labeled state while gaining as much reward as possible on the
way to a goal state. For that kind of problems, the probabilistic
model of our dialog is represented as a dynamic factor graph
(see Fig. 3) for which a message passing algorithm called
max product algorithm [14][15][16] exists. The max product
algorithm can find the marginal distributions for all unobserved
variables in the factor graph that maximize the probability
given the set of fixed or observed variables.

The idea of that algorithm is to perform local operations
in the nodes of the factor graph and propagate the results in

form of messages µsender→receiver(domain) along the tree
structure of the graph in order to get the result in the node
of interest, which is the A node of the first time step in our
case. Unfortunately, in our dynamic factor graph, the number
of time steps to reach a goal state is not known in before, but,
since we are only interested in the next action, the inference
can be executed in a loop, with one iteration for each time
step to be looked in the future. This is shown by the message
µS→S′(S

′) in the figure. This is only possible in an acyclic
factor graph, which is the reason for the complex state S and
the respective factor models we have chosen in the model.
A further factorization would possibly simplify the factor
potentials, but the complete factor graph would not longer
be acyclic afterwards. This would make the time step loop
trick impossible since belief propagation needs to iterate on
the complete structure of a loopy factor graph.

A central decision for the factor graph algorithm is the
form of representing the probability distributions in the nodes
of the factor graphs and in the messages sent between them.
Normally, Gaussians or discrete distributions are used for that,
but in our case the dimensionality of the distributions’ domains
is too large for that. Hence, we propose a representation as
mixture of discrete samples as already introduced for building
up our transition model P (S′, S,A). In the following, we
briefly show, how the operations required by the max product
algorithm have been implemented for that kind of distribution
representation.

The initialization of the planning loop requires setting
the distribution of the state S′ to the desired distribution of
goal states we expect. For that, the model of goal probabilities
P (G|S′) for each observed state provides the fraction of oc-
curred goal labels in the actions leading to that state. Asuming,
that the target probability for reaching a goal is distributed like
the little diagram shown in Fig. 3 bottom right, the P (G|S′)
table is used to weight the states S′ of the transition model,
thus a set of weighted S′ samples results. This is our initial
state distribution P (S′) of the last time step in the planning
horizon (blue message µP (G|S′)→S′(S

′)).
Then the planning loop starts with the step 1: According

to the max product algorithm, the distribution P (S′) has to be
multiplied by the message µP (R|S′)→S′(S

′) from the reward
model. This reward model P (R|S′) is also a set of state
samples si, that maps to the average reward ri gained in
that state. We use the proposition, which is maximizing the
reward along the sequence of states, and define the distribution
of the expected reward as a sigmoid function (shown in the
little diagram besides the R node in Fig. 3). Knowing this,
for each sample sj in the S′ distribution, we can compute an

107Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 115 / 143

updated weight w(S′)
j by comparing the states of these samples

to states of the samples si in the reward model and applying the
sigmoidal proposition distribution indicating the desirability of
the respective reward. Adding an ε ensures that weights will
be vaild, even if no samples of the reward model do match in
the similarity function.

w
(S′)
j = wj

0.5ε+
∑
i

1
1+e−ri

δS′(sj , si)

ε+
∑
i δS′(sj , si)

(3)

To reduce the complexity for the next computations, samples
with low weights are omitted, and samples with high similarity
δS′(sj , si) are merged until a maximum number of samples
remains. We used 20 samples at maximum in all message
distributions.

In step 2, this sample set P (S′) is sent to the transition
model as message µS′→P (S′|S,A)(S

′) to get multiplied to the
conditional probability distribution P (S′|S,A).

Since we only have counters w(S′,S,A)
j for the occurrences

of the various state transitions, we need to divide P (S′, S,A)
by P (S,A) to get the conditional, which is done by calculating
new weights w(S′|S,A)

j for the samples sj according:

w
(S′|S,A)
j =

w
(S′,S,A)
j∑

i w
(S′,S,A)
i δS,A(sj , si)

(4)

This can be done before planning starts and has only to be
updated when a new transition has been observed.

In the P (S′|S,A) node, the product of the factor potential
and all incoming messages has to be calculated. Therefore,
each sample of the transition model gets a new weight
ŵ

(S′|S,A)
j (5), which incorporates the similarities of samples

si in the incoming message µS′→P (S′|S,A)(S
′). The message

µA→P (S′|S,A)(A) is assumed to be uniform and is not con-
sidered in the weight computation. It would be possible to
incorporate priors on actions here to realize a dependency of
the actions on the progress in the long-term interaction phase.

ŵ
(S′|S,A)
j = w

(S′|S,A)
j

∑
i∈µS′→P (S′|S,A)(S

′)

δS′(sj , si)w
(S′)
i (5)

The max product algorithm now needs to find the maximum
probability for each value of the variable for the outgoing
message. In our case, that is the µP (S′|S,A)→S(S), and thus
the goal variable is S. For each sample, all other samples
are compared using δS(si, sj), and only the one with the
maximum weight will be used. As result, we get a message
µP (S′|S,A)→S(S), that can be processed further in the variable
node S.

Here, in step 3 we have to test, if the current state s0 of our
subdialog matches the inferred predecessor state distribution
P (S) for the planned sequence to the goal state of a length
of the current iteration. In case of sufficient probability, the
action A can be deduced, that maximizes probability of going
one step towards the goal state starting from s0. This is done
by sending the message µS→P (S′|S,A)(S), which is simply our
current state s0 with weight w0 = 1 to the factor node (red
message in Fig. 3).

There, again the product and maximization has to take
place, which is realized by re-weighting the samples of the

transition model again. Here, the intermediate weights already
containing the message from S′ can be reused.

w̃
(S′|S,A)
j = ŵ

(S′|S,A)
j δS(sj , s0)w0 (6)

With these new weights, the maximization along the S and S′

dimensions can be done in oder to get a probability for each
action to reach a goal within the current time horizon. This is
done by grouping the samples of the transition model sj by the
discrete action dimension A and checking for the maximum
weight w̃j in each group.

Before going to the next planning time step by sending the
µS→P (S′|S,A)(S) message renamed as µS→S(S) and starting
over with step 1, for each action in the set of available
actions, the maximum probability over all time steps is stored.
Afterwards, this is used to gain the Pplan(A) distribution used
for action selection as described before.

D. Prediction of User Preferences

In many situations in a repeatedly conducted dialog be-
tween the robot and the user, the annoying questions for
options (e.g., which website should be shown) can be omitted,
when using the former choices in a similar situative context.
The transition model we built from the dialog history, exactly
contains these information.

Thus, instead of asking the user for the information, the
robot can try to infere the desired value, which is changing the
state S of the subdialog similarily without any further inputs
from the user. Depending on the outcome of that, the dialog
can continue either with a confirmation of that fact or with a
question for specification of the information, if the inference
did not yield a significant probability for either option.

By means of that, also the proactive situation dependent
offer of services can be realized easily, where the correctness
of the suggestions strongly depends on the context variables
considered in the subdialogs state vector.

IV. EXPERIMENTAL EVALUATION

The correct function and ability of considering observed
reactions of the user during robot’s action selection first
has been validated by means of a set of simulated dialog
sequences not embedded in a complete robot application. This
functional test showed the learning capabilities as expected, but
it is hardly possible to simulate a more complex application
realistically. Even more, it is not possible to predict the impact
of our dialog system on real users.

Due to these circumstances, the proposed system has
afterwards been evaluated in a separate application before
being applied for realizing the user interface of our health
assistant robot. Caused by restrictions on access to the robot
as well as the number of test users needed in combination with
the intended long-term interaction, an evaluation scenario has
been chosen, that involved 16 members of our lab in parallel.
The robot has acted as an “Office Mate” by visiting each
trial participant once a day and offering its services after the
user confirmed his/her supposed identity and the respective
persistent interaction models have been loaded. The experiment
took ten workdays in order to give time for an observable
change of the robot’s behavior.

The participants had to fill out two questionnaires with a
first focus on the long-term acceptance of a robot with an adap-
tive dialog behavior, and a second focus on the practicability of

108Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 116 / 143

our realization. Questions mainly followed the Almere Model
[17] , while questions regarding the perception of the robots
adaptation skills have been added.

The first questionaire had to be filled in before the exper-
iments to get the baseline and find preferences regarding the
form of being addressed by the robot (formal or informal),
as well as to get hints on the set of websites to be provided
by the robot during the interactions. A second questionnaire
after the experiment asked for the personal experience of the
participants.

The tests have additionally been accompanied by an ob-
server to reveal usability problems, and aforementioned ques-
tionaires have been used for a qualitative evaluation due to the
low number of participants.

A. Office Mate Services

The application for our Office Mate scenario covers a
couple of services. For giving an impression on the capabilities
and the options for adaptivity, these services are described in
the following.

The adaptivity was mainly realized in the main menu
subdialog, which had a set of optional actions that comprise
(M1) offering a normal selection menu, which of the services
to execute next, (M2) proposing an unused service to introduce
it to the user with the question whether to start it or not, (M3)
executing a service proactively depending on the prediction of
a selection. The user in that case only has to confirm or deny,
whether that the service is going to be started. The context state
variables for the prediction of the next service to be selected by
the user include one counter for each service available counting
the number of activations of that service in that session. By
means of these context variables, the system can learn arbitrary
sequences of services used.

However, actions (M4) to (M6) are the same as (M1) to
(M3), except that a written advice on how to interact with the
robot in that situation is given on the touch screen additionally.
These later actions are designed for the first phase in the long-
time interaction, where the user should learn how to use the
robot.

Further variability is implemented in the greeting subdia-
log, which is always started at the beginning of an interaction
session with a participant. Besides a deterministic greeting,
here the optional actions were: (G1) giving a tutorial on how
to use the robot, (G2) asking for wellbeing, and (G3) quitting
the greeting subdialog and continuing with the main menu
subdialog. During the greeting subdialog, a sequence of these
actions is also possible.

The first two services offered are news and entertainment
via websites in a browser. These subdialogs had optional
actions as well, which were (N1) presenting a longer list
of respective websites for selection, or (N2) suggesting a
website based on the predicted selection known from previous
interactions. Since the number of different websites visited is
part of the state variables of that subdialog, it is possible that
the system can learn and predict a sequence of sites preferred
by the user. Also in these services, the available actions could
be executed with an additional advice on how to use the screen
menu.

The third service, a weather forecast, had the only option
to present weather warnings, if available, automatically or to
wait until being asked for. In all cases, the current temperature

and weather conditions as well as a two day forecast are
presented on the screen.

Two more rather simple services are answering questions
for current date and time as well as showing the menu of the
refectory. Since these services do not require further decisions
by the user, there are no optional actions.

A last service offered was a reminder service. The user
was able to edit and show appointments in a list for the current
week or the current day. On the main menu, there was an
indication on the number of reminders for that day. Since
this number is also used in the context variables of the main
menu, the proactive presentation of reminders was possible
if the user teached that behavior by selecting the reminder
presentation manually some times. Unfortunately, the calendar
was not synchronized with the Google Calendar usually used in
our lab. Therefore, that service had not been used consequently
by the participants.

To quit a session with the robot and send it to the next
user, the option for a good bye dialog was available in the
main menu.

B. Results and Discussion

When asked for their expectation to the Office Mate robot,
among a couple of additional features for such a robot (sending
it to others, sending it to get coffee, using it as avatar by a video
conference), few generic aspects regarding adaptation have
been mentioned by the participants beforehand. One aspect
was that the robot is supposed to know when the user can be
disturbed and when not. Unfortunately, that is only possible if
detailed context information on the user and the situation at
all is available to the robot.

Not all participants of the experiment have been available
all the ten days; thus a difference in the experience for different
durations of interaction could be observed. All participants
who had more than four interactions did notice that the robot
learned their preferences and also changed its behavior over
time. That mostly is related to the prediction of user’s choices
(see III-D), leading to a suggestion of following services if the
user’s attitude is stable. Here, the robot developed an individual
sequence of suggestion of services from the main menu as well
as individual sets of websites preferred for each user.

Unfortunately, most of the users mentioned, that they were
a bit confused by the option of rewarding the robot. They
wanted to reward explicitly special aspects of the complex
behavior like diction or level of advice. It was not transparent
to them, what aspects are variable in this situation and to which
aspect the reward refers. This is an indication for using more
implicit and system-internally generated rewards in future, that
the users are not aware of. By means of that, the user does not
need to know the alternatives the robot has in certain situations.
Concluding this, offering explicit good/bad buttons is not a
practical way for getting rewards from the user.

Those users who used the reward buttons could also
influence the dialog flow and the way of presentation of
information. If the tutorial in the greeting subdialog had been
punished, it occured less often during the following days. Also,
the written advice on how to interact in certain situations
appeared less often during the experiment if the user punished
that behavior by means of negative rewards. However, the
user’s perception of the exploration of alternative actions is
critical. It was confusing for many users, that the robot,
although they had already rewarded a behavior, acted again

109Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 117 / 143

in that unwanted way. The reasons for this were the complex
state model on the one hand and the exploration strategy on the
other hand. In many situations, the user might think that s/he
already had passed exactly that sequence, but in the robots
state variables there is a difference in the history or in the
certainty values, causing that the situation is unknown to the
robot, thus an exploarative action is selected that the user
confused. Additionally, even if the robot knows the situation
from past interactions, the need for exploration of longer
sequences of actions yields further executions of unwanted
actions regardless of the history in the reward model.

For a better generalization over states that are different
in only a few dimensions, the planning step in the transition
model needs to be improved in order to recombine parts of
samples. That will help to reduce the number of observations
the system needs to learn a possible path through the state
space. Furthermore, it may be possible to apply a more greedy
action selection strategy as proposed in the TAMER system [8]
to reduce unexpected repetitions of actions that result from
exploration steps. Unfortunately, this conflicts with the ability
to find an action sequence that reaches system internal goals.

An additional possibility for reducing the number of re-
warding events and improving generalization skills is the han-
dling of recurring variations of actions in different situations.
In the Office Mate implementation, there was an alternative
with or without additional output in many situations. It would
be better to introduce a global property “use additional support
outputs” which is followed if possible and switch it on and off
by only one action instead of generating almost similar copies
of arbitrary actions. Therefore, the negative reward for one
output in situation A could influence the form of output in
situation B without having seen situation B in before. Besides
the degree of advice needed, also the volume of voice outputs
or the form of addressing the user (formal or informal) are
candidates for such global properties.

The overall results showed that the planning algorithm does
work very well, but the way of configuring the subdialogs
has to be improved in future real applications considering
the findings discussed above. More effort has to be put in
the deduction of meaningful reward from the user’s reactions
on robot’s behavior. Also the perception skills of the robot
always could be improved to extend the context variables of
the subdialogs. By means of that, proactive behavior of the
robot can be better suited to the actual situation.

V. CONCLUSION

We could show in an experimental setup, that a dialog
manager using an online life-long learning transition model for
online planning of action sequences can be realized. The very
high dimensional state space of a human robot dialog can be
managed by splitting the whole application into independent
subdialogs. This also improves the application development
process by modularization. An efficient way for the probabilis-
tic inference during the planning process could be realized by
a sample-based representation of probability distributions. At
last, independent of the planning algorithm, we could identify
a couple of design issues with our test application, that have
to be improved in future implementation.

ACKNOWLEDGMENT

This work has received funding from the Federal State
of Thuringia and the European Social Fund (OP 2007-2013)

under grant agreement N501/2009 to the project SERROGA
(project number 2011FGR0107).

REFERENCES

[1] “SERROGA webpage”, 2014, URL: http://www.serroga.de [accessed:
2014-04-01].

[2] H.-M. Gross, C. Schröter, S. Müller, M. Volkhardt, E. Einhorn, A.
Bley, C. Martin, T. Langner, and M. Merten, “Progress in Developing
a Socially Assistive Mobile Home Robot Companion for the Elderly
with Mild Cognitive Impairment”, in Proc. IEEE/RJS Int. Conf. on
Intelligent Robots and Systems (IROS 2011), pp. 2430-2437.

[3] H.-M. Gross, C. Schröter, S. Müller, M. Volkhardt, E. Einhorn, A. Bley,
T. Langner, M. Merten, C. Huijnen, H. van den Heuvel, and A. van
Berlo,“Further Progress towards a Home Robot Companion for People
with Mild Cognitive Impairment”, in Proc. IEEE Int. Conf. on Systems,
Man, and Cybernetics (IEEE-SMC 2012),2012, pp. 637-644.

[4] T. Blaise, J. Schatzmann, and S. Young. “Bayesian update of dialogue
state for robust dialogue systems.” In Proc. of Acoustics, Speech and
Signal Processing, ICASSP 2008, 2008, pp. 4937-4940.

[5] M. Toussaint, S. Harmeling, and A. Storkey, “Probabilistic inference
for solving (PO)MDPs”, Informatics Research Report 934, School of
Informatics, University of Edinburgh, 2006.

[6] J. Pineau and S. Thrun. “High-level robot behavior control using
POMDPs.” AAAI-02 Workshop on Cognitive Robotics, Vol. 107, 2002.

[7] W. B. Knox and P. Stone. “Interactively shaping agents via human rein-
forcement: The TAMER framework.” In Proc. of the fifth international
conference on Knowledge capture. ACM, 2009, pp. 9-16.

[8] W. B. Knox, P. Stone, and C. Breazeal, “Training a Robot via Human
Feedback: A Case Study.” In: Social Robotics. Springer International
Publishing, 2013, pp. 460-470.

[9] H. M. Meng, C. Wai, and R. Pieracciniet, “The Use of Belief Networks
for Mixed-Initiative Dialog Modeling”, In Transactions on Speech and
Audio Processing, 2003, vol. 11, no. 6, pp. 757-773.

[10] F. F. Martinez, J. Blzquez, J. Ferreiros, R. Barra, J. Macias-Guarasa,
and J. M. Lucas-Cuesta, “Evaluation of a spoken dialogue system
for controlling a Hifi audio system”, In Proc. of Spoken Language
Technology Workshop, IEEE SLT 2008, 2008, pp. 137-140.

[11] R. Parr, and S. Russell, “Reinforcement learning with hierarchies of
machines.” in Advances in neural information processing systems, 1998,
pp. 1043-1049.

[12] “MIRA website” URL: http://www.mira-project.org [accessed: 2014-
04-01].

[13] E. Einhorn, R. Stricker, H.-M. Gross, T. Langner, C. Martin,“MIRA -
Middleware for Robotic Applications” in Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS 2012), 2012, pp. 2591-2598

[14] C. M. Bishop, “Pattern Recognition and Machine Learning”, New York:
springer, 2006.

[15] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and
the sum-product algorithm”, In: Information Theory, IEEE Transactions
on, 2001, vol. 47, no. 2, pp. 498-519.

[16] H. A. Loeliger, “An introduction to factor graphs”, in Proc. Signal
Processing Magazine, IEEE, 2004, vol. 21, no. 1, pp. 28-41.

[17] M. Heerink, B. Kröse, V. Evers and B. Wielinga, “Assessing Acceptance
of Assistive Social Agent Technology by Older Adults: the Almere
Model”, International Journal of Social Robotics, 2010, vol. 2., no. 4,
pp. 361-375.

110Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 118 / 143

A Black Box Validation Strategy for Self-adaptive Systems

Georg Püschel, Christian Piechnick, Sebastian Götz, Christoph Seidl, Sebastian Richly, Uwe Aßmann
Software Technology Group, Technische Universität Dresden

Nöthnitzer Str. 46, 01062 Dresden, Germany
Email: {georg.pueschel, christian.piechnick, sebastian.goetz1, christoph.seidl, sebastian.richly, uwe.assmann}@tu-dresden.de

Abstract—Self-adaptive systems are able to operate autonomously by
reconfiguring themselves for changing context conditions and tasks. This
capability requires a process of decision making that can only be partially
hard-coded. Some parts of the logic are the result of reasoning and, thus,
implicit to the system designer or user. In consequence, the quality of
the systems functionality has to be extensively validated before delivery.
During the validation, firstly, the response of adaptation decisions as
a result of environment change has to be examined. Secondly, it is
necessary to check the interaction of adaptation and non-adaptation-
related behavior. The management of all this information is expensive.
Therefore, we propose an approach that separates environment change,
functionality and adaptation concerns using expressive models. The
models are executed by a simulator and validated against the real behavior
of the system under test. We illustrate the complete approach using an
example SAS operating a domestic service robot. Our design process
and the proposed modeling principles equip engineers with a toolset that
allows them to face the challenging complexity of self-adaptive system
validation.

Keywords—self-adaptive systems; service robots; model-based testing;
simulation; feedback loops

I. INTRODUCTION

A Self-adaptive System (SAS) [1] adapts itself according
to changes in its environment. The continuous execution of
sensor monitoring, decision making, planning, and adaptation
execution is organized in feedback loops [2]. Due to the use of
intelligent reasoning strategies, the SAS is capable of fulfilling
its tasks more efficiently or it even may find solutions to tasks
that were not explicitly defined at design time.

In our work, we aim to provide solid SAS development
methods and, thus, we also require a validation approach
that is able to deal with the complexity of such self-adaptive
behavior. The mechanisms that decide autonomously have to
be validated extensively before deploying the system in a
productive environment. A limitation is that a SAS can be
adapted from external or reason about unanticipated events can
never be tested comprehensively in this phase of the life cycle.

However, even for these systems, the user’s trust has to
be gained by examining the system in an appropriate variety
of scenarios. Hence, validation methods can be performed
on different abstraction layers as, for instance, the German V-
Modell [3] proposes. On the lowest abstraction layer of modules,
knowledge of code and design models can be utilized. However,
due to the complexity and large variety of possible situations,
performing a comprehensive validation (e.g., by deriving and
executing test cases) on these levels is expensive.

In contrast, validating SAS applications on acceptance level,
based on requirements of a more abstract specification, is more
promising. For this purpose, the engineer no longer relies on
detailed knowledge of the system interior but on a black box
interface that is used to enforce situations and validate the
outcome. Thus, setting up a black box interface that provides

all necessary operations to interact with the system and to query
information that has to be examined, is the first crucial task
during the validation phase.

A validation method for specification-based black boxes
is model-based testing [4]. In this approach, a test model is
specified and test cases are generated from it. Additionally,
a further problem is that SAS can be deployed in complex
environments where not every detailed situation can be enforced.
For instance, some entities the system is interacting with
like hardware controllers or physical objects are difficult to
be formalized. Instead, the test model designer may specify
some future decisions depending on run-time state that is
observed from these entities at runtime. As sequential test
cases cannot support such decisions, the model has to be
executed at run-time. Therefore, we propose using simulation
and capturing the discussed non-specifiable parts of the system
or test environment “in-the-loop”.

The challenge in simulating a SAS is to provide a meta-
model that is expressive enough for compactly specifying all
behavioral and adaptation-related aspects. These aspects are
given by several requirements that we derived from failure
scenarios in our previous work [5]:

(1) Correct sensor interpretation
(2) Correct adaptation initiation
(3) Correct adaptation planning
(4) Consistent adaptation/system interaction
(5) Consistent adaptation execution
(6) Correct system behavior (especially actuator actions)

Goals (1) and (6) include the validation of the correctness
in sensor perception and actuator control. Both properties can
be checked in isolation by instrumenting the respective drivers.
However, in this paper, we focus on the goals (2)-(5), which
directly deal with the SAS feedback loop (sometimes referred
to as MAPE loop: monitor, analyze, plan, execute [2]). In
order to match the requirements, the model has to provide
means for defining in which situations an adaptation has to be
initiated (goal 2), how the system has to adapt (goal 3), how
the adaptation has to be scheduled with non-adaptation-related
behavior (goal 4), and how the end result of the adaptation is
expected to look like (goal 5).

In order to match these requirements, we contribute a
methodology to separate their different aspects in a composite
simulation model. Parts of our model are enriched with
assertions on the System Under Test’s (SUT) interface in order
to define how a simulation state has to be concretely validated.
We illustrate the complete modeling methodology using our
HomeTurtle domestic robot. In the HomeTurtle scenario, a
robot is deployed in a flat of a handicapped person and is

111Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 119 / 143

capable of delivering various items, which are stored in a
software-controlled cabinet.

The remainder of this paper is structured as follows: In
Section II, we start with our example adaptive system. In
Section III, we present our approach based on this example.
In Section IV, we illustrate an example simulation run. In
Section V, we present out implementation and experimental
environment. Afterwards, in Section VI, we discuss related
work. In Section VII, conclusion and future work are discussed.

II. EXAMPLE APPLICATION: HOME TURTLE

In this section, we present an illustrative example of a SAS
that supports a handicapped person at home. The scenario
is depicted in Figure 1. A service robot “HomeTurtle” (an
extended version of the TurtleBot platform [6]) is initially
deployed in the flat. The task of the robot is to find and deliver
a desired item to the user (i.e., the inhabitant). Those items
can be dropped from a cabinet into a basket mounted on top
of the robot. Therefore, the cabinet contains several boxes with
magnetically clamped flaps. The magnets are triggered from a
WiFi-connected embedded device.

In the beginning, a user instructs the robot by entering the
desired item (e.g., “towel”) using a Tablet PC that is accessible
nearby. Using a wireless network, the robot can query the flat’s
map, available cabinets including their positions and contents.
After this information has been gathered, the robot is able to
inform the user whether the desired item is available. If the item
has been found, a route is planned and the robot starts driving.
In this process, the robot has to avoid collisions with walls and
other obstacles (symbolized by office chairs). After approaching
a cabinet and parking in a predefined position underneath it, the
robot signals the cabinet to drop the requested item. Afterwards,
it drives back to the user. Additionally, during the complete
process, the environment may signal an emergency (e.g., a fire
or medical emergency). In this situation, the robot is expected
to drive to its emergency position as labeled in our illustration.
Thus, it avoids to obstruct the access of human helpers to the
inhabitant.

The following sensors and actuators are used to accomplish
the robot’s task:

• Robot drive: The robot drive has three modes for
stopping (0=stop) and driving in arbitrary directions
with two different velocities (1=slow, 2=fast).

• Stereo camera: Can be used to recognize walls,
obstacles, and the cabinets.

• On-board computation unit: The robot runs its
operations on-board using a fix-installed netbook that
connects to all the hardware on the robot.

• Smart illumination system: The flat is equipped with
room lights that can be operated by the software system
to improve the flat’s illumination.

• Local WiFi: The robot, as well as the cabinet, are
connected to a wireless network. Thus, the flat’s
map and information about the cabinet’s position and
contents can be shared.

Stereo
Camera

Computation
UnitDrive

Basket

Obstacle CabinetInhabitant

0

1

2

3

0 1 2 3 4

y

x

!
emergency

Illumintation System

Fig. 1. Scenario: HomeTurtle operating in a flat.

driver

<<interface>>

Environment
+setDaylight(daylight:boolean)
+placeObstacles(locations:Point[])
+setupCabinet(items:String[],location:Point)
+signalEmergency()

<<interface>>

HomeAutomationSystem
+request(item:String)
+poll()
+current(): Event

<<Singleton>>

Driver
+d: Driver

Event
+position(): Point
+velocity(): int
+collected(): String
+failed(): boolean
+illumination(): boolean

Point
+x: int
+y: int

+Point(x:int,y:int)

Fig. 2. Test driver interface.

Furthermore, to improve its behavior, assure safety and
minimize operation time, the following adaptations are possible:

• Improve illumination: If the robot enters a room and
daylight from the windows is not sufficient for object
recognition, the robot connects to the illumination
system and activates it.

• Location-dependent velocity: While driving at fast
mode velocity, the robot is not able to stop in time if
an obstacle is detected. As the obstacles’ positions
may change, the robot is expected to run in slow
mode during the current request as long as the current
position was not explored during this request.

In order to send input data to the real system and to
validate its output, the simulation has to communicate with the
system using a test driver. For our example, we implemented
such a driver whose interface is depicted in Figure 2. The
Driver holds a static instance Driver.d and implements
two interfaces: Firstly, Environment provides methods to
enforce an emergency signal, mock a light state, and setup
obstacles and a cabinet. In order to reduce the scenario’s
complexity, we assume that the positions of the inhabitant
and emergency locations as well as the room’s layout are
static. Secondly, the interface HomeAutomationSystem can
be used to request a new item from the robot or to retrieve
events that can be validated during simulation. Each Event
captures information about the current position, velocity, and
illumination. It also informs whether an item was collected or
the search has failed.

112Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 120 / 143

Process Model
uses

Adaptation Model

Environment
Reconfiguration
Model

events
Real

environment
and system
(black box)

manipulates

validatesStructual Simulation
Model

Configuration
Variability Model

initiates

validates

events

manipulates

initiates

depends on

Fig. 3. Concern-separated components of the simulation model.

III. VALIDATING SAS BY USING AN ADAPTIVE
SIMULATION MODEL

In this section, we present our methodology. The briefly
discussed challenges are tackled in different components of
a black box simulation model. These components, as well as
their dependencies, are depicted in Figure 3. Each component
matches a set of specific concerns that were separated in order
to decouple the responsibilities during the design process. The
model is as much as possible based on Unified Modeling
Language (UML) 2 [7], Object Constraint Language (OCL) [8]
and a special version of equivalence class trees [9].

The recent state of the performed scenario is reflected
by the Process Model that is based on state charts. The
actions performed during execution are, firstly, the requests
that are sent to the test driver and, secondly, assertions that
determine whether the received events are correct in the
current state. Thus, the state of the simulation model represents
assumptions on the state of the real system. In order to work
with more detailed state-defining information, the Structural
Simulation Model (i.e., a UML class model) is used. During
the initiation of the system, the environment is set up and,
synchronously, the Structural Simulation Model is configured
with information that reflects this initial environment setting.
As there may be different variants of initial configurations, the
Environment Variability Models defines an equivalence class
tree that allows to derive such configurations. The Environment
Reconfiguration Model contains state charts with actions that
define environment manipulations in order to trigger adaptation
in the real system. As it defines an operational order of
manipulations, requirement (3)–correct adaptation planning—
can be dealt with. Regarding the requirement (2) (cf. Section I),
it has to be validated whether system correctly adapts to
these changes. Therefore, the Environment Reconfiguration
Model produces events that are consumed by an Adaptation
Model that reflects adaptation modes and validates them using
assertions (requirement (5)–consistent adaptation execution).
This Adaptation Model is a state charts as well. Events can
also be produced by the Process Model and its behavior can
be tailored to the Adaptation Model’s state. Thus, requirement
goal (4)–consistent adaptation/system interaction–is matched.
The details of the individual model components are explained
in the following.

driver simulation

<<Singleton>>

Simulation
+s: Simulation
+placedItems: String[]

obstacles

*

Point
+x: int
+y: int

+Point(x:int,y:int)

locationCabinet1

visited

*

destination

1

Fig. 4. Structural simulation model.

[visited->includes(Driver.d.
current().position())]

[visited->includes(Driver.d.
current().position())]

[not(visited->includes(Driver.d.
current().position()))]

[not(visited->includes(Driver.d.
current().position()))]

entry/Driver.d.request(„tissue“)
exit/Driver.d.poll()

entry/assertTrue(Driver.d.current().failed())

[not(placedItems->includes(„tissue“))][not(placedItems->includes(„tissue“))]

entry/visited.add(Driver.d.current().position());
exit/Driver.d.poll()

[placedItems->includes(„tissue“)]
/assertTrue(not(Driver.d.current().failed()))

[placedItems->includes(„tissue“)]
/assertTrue(not(Driver.d.current().failed()))

NewLoc

OldLocentry/assertTrue(not(obstacles->
includes(Driver.d.current().position())
&& Driver.d.current().position().x<5
&& Driver.d.current.positon().x>=0
&& Driver.d.current().position().y<4

&& Driver.d.current().position().y>=0)

after(3s)after(3s)

context: Simulation.scontext: Simulation.s

S0

S1

S4

S3

S2

[olcInState(Emergency)
or Driver.d.currrent().position().equals(destination)]

[not(olcInState(Emergeny)
or Driver.d.current().position().equals(destination))]

[Driver.d.current().position().equals(destination) and
not(destination=null) and not(destination.equals(locationCabinet))]
/assertTrue(oclInState(Emergency) || collected = „tissue“)

[olcInState(Emergency)
and not(Driver.d.current().position().
equals(new Point(4,0))]
/destination = new Point(4,0)

[not(olcInState(Emergency))
and destination = null]
/destination = locationCabinet

[not(olcInState(Emergency))
not destination=null]
/destination = new Point(1,3)

Fig. 5. System process model.

A. Structural Simulation Model

During the simulation, several assumptions on the real
system have to be managed that are represented by a sim-
ulation state. For our example application, the locations of
obstacles and the cabinet has be remembered as well as the
locations that were already visited. This state is captured by
a structural model as depicted in Figure 4. The singleton
object SimulationState.s holds attributes and aggregates
objects that can be manipulated or evaluated by the central
System Process Model.

B. System Process Model

The System Process Model defines the task-specific behavior
of the system and how it interacts with its adaptation feedback
loops. For our example, we defined these aspects in an UML
State Chart as depicted in Figure 5. It uses OCL constraints
whose context is the static instance Simulation.s. In state
S0, a request for a towel is initiated and the first event is polled.
If the initial configuration set up the cabinet with the desired
item, S1 is reached, otherwise S2. The action of the latter
transition (i.e., the entry action of S1) performs an assertion
on whether the real system has either failed or not. If any
assertion in the models fails, the simulation is cancelled and an

113Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 121 / 143

Environment

placeObstacles(X)
Simulation.obstacles=X

placeCabinet(X,Y)
Simulation.s.placedItems=X
Simulation.locationCabinet=Y

[]
[new Point(1,2)]

[new Point(0,3),
new Point(2,2),
new Point(4,3)]

[Inv: Simulation.s.obstacles->union(Set{new Point(4,0),
new Point(1,3),Simulaton.s.locationCabinet})->forAll(a,b|a<>b)]

X

[]
new Point(1,2)

new Point(0,3)
new Point(2,2)

X
[]

[„tissue“]
[„towel“]

[„tissue“,“towel“]

Y

Fig. 6. Environment configuration variability model.

error is signaled. Starting from state S2, the robot’s destination
is determined by evaluating the previous destination value
(either null, the start place, the cabinet’s place or the emergency
position).

States S3 and S4 form a feedback loop. When entering S3,
the current position is appended to the list of visited locations
and the next event is polled. In the next step, the loop sleeps
three seconds (indicated by the AcceptTimeAction, cf.
UML spec. [7]). Thus, the Adaptation Models are expected to
enforce changes to the environment that are interleaved with
the process. Subsequently, in S4 an assertion is performed in
order to ensure no obstacle has been hit and the robot did not
leave the boundaries of the scenario. Depending on whether
the current position is contained in the visited collection, a
signal OldLoc or NewLoc is produced. Therefore, we use the
SendSignalAction UML element. These signal events are
later used to synchronize with the adaptation models. At this
point, the feedback loop is restarted. As soon as the destination
is reached, the transition to state S2 is triggered. Another exit
possibility from the loop is triggered when the Emergency
adaptation mode is active. This information can be queried
by the oclInState(...) function, which is applied to the
Adaptation Models. In this way, an interaction between the
task-related process and the adaptation mode of the SAS can
be modeled. The final state is enabled if the robot reaches a
destination that is not the location of the cabinet. The respective
transition checks an assertion whether either an emergency was
signaled or the correct item was collected.

C. Environment Configuration Variability Model

The state space of an environment situation can be enor-
mously large. In testing, this problem is usually dealt by
using classification. For instance, data ranges of the system’s
input parameters are split into equivalence classes and only
representatives are tested. All representatives of an equivalence
class are assumed to produce the same output. For our example,
we designed a special model as depicted in Figure 6. The
hierarchical structure serves as a decision tree for determining
under which initial conditions a simulation can be started.
Each one of the Environment child nodes performs multiple
operations: Firstly, the real system is initiated (e.g., the robot is
set up in its initial location) and secondly, the simulation state
is manipulated such that it reflects this initial configuration.
The operations are parameterized with one or two substitution
variables. Each variable can be replaced by one of the concrete

Day

Night

entry/setDaylight(true)

entry/setDaylight(false)

after(2s)after(2s)

after(5s)after(5s)

context: Driver.d

after(3s)after(3s)
entry/signalEmergency()

Emergency

Fig. 7. Environment reconfiguration model.

values in its leaf nodes. The latter ones are the equivalence class
representatives. Furthermore, the model contains an invariant
to prohibit configurations where the robot’s start position,
obstacles, or the cabinet are put in the same location.

Basically, this model represents the variability of possible
environment settings. Thus, more sophisticated models of
variability (e.g., attributed feature models [10]) can also be used
for the same purpose. Inherent invariants of such models can
restrict the configuration variability space to a manageable size.
However, a specific challenge of SAS is to validate whether
to system adapts correctly the changes of this configuration.
Therefore, in the next section, the configurations dynamics are
defined.

D. Environment Reconfiguration Models

Figure 7 depicts a simple model of environment reconfigu-
ration. In the upper chart, the entry point of the first state sets
the environment daylight to true. The driver is now in charge
of mocking the brightness sensor’s input data and thus enforces
the system to adapt. In order to reflect the expected adaptation
in the simulation model, a signal Day is produced that later will
be received by the Adaptation Model. After five seconds, the
daylight setting is inverted and the Night signal is sent. After
additional two seconds, the reconfiguration loop restarts. The
lower chart performs a loop that every three seconds demands
the simulation to decide of an emergency is signalled or not.
This decision can, for instance, be determined randomly or by
the user.

Using such environment reconfiguration models, scenarios
with different operational orders can be generated. Based on
these scenarios, the SUT is stressed and its reactions are
exhaustively validated. Using timing, the variety of interleaving
possibilities with actions from the Process Model can be
reduced.

E. Adaptation Model

Adaptation models define how a configuration has to be
altered in response to a received signal. Signals have been
produced by either the Environment Reconfiguration Models or
by the Process Model in order to notify about a condition that
may cause an adaptation. Figure 8 depicts three state charts
for the velocity, illumination, and emergency adaptations.

114Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 122 / 143

entry/assertTrue(current().velocity()==1)

entry/assertTrue(current().velocity()==0) entry/assertTrue(current().velocity()==2)

NewLoc OldLoc

Stop

Night

Day

entry/assertTrue(current().illumination())

entry/assertTrue(not(current().illumination()));

context: Driver.dcontext: Driver.d

/poll()

/poll()

/poll()

/poll()

/poll()

Emergency

Emergency

NoEmergency

/poll()

Fig. 8. Adaptation models.

placeObstacles(new Point(1,2));
Simulation.s.obstacles=new Point(1,2);
placeCabinet([„tissue“],new Point(0,3));
Simulation.s.placedItems=[„tissue“];
Simulation.s.locationCabinet=new Point(0,3);

Driver.d.request(„tissue“);
Driver.d.setDaylight(true); //signal Day sent
assertTrue(Driver.d.current().velocity()=0);
assertTrue(not(Driver.d.current().illumination()));

assertTrue(not(Driver.d.current().failed());

Simulation.s.visited.add(Driver.d.currentPosition());
Driver.d.poll();

Driver.d.signalEmergency(); //signal Emergency thrown

//signal Emergency received
poll();

3s3s

…

(1) initial values from
Environment Variability Model

(2) initial actions from Process Model and
Environment Reconfiguration Models

(3) transition S0 => S2

(5) entry and exit of state S3

Simulation.s.destination=Simulation.s.locationCabinet

(4) transition S2 => S3

(6) Environment Reconfiguration Model

(7) Adaptation Model

Fig. 9. Excerpt of an example simulation run.

States of an adaptation state chart may contain an entry op-
eration, which performs a validation on the system’s adaptation
mode. Using UML AcceptEventActions, the automaton
is designed to wait for the signals. After a signal was received, a
new system event is retrieved (poll()) such that the assertion
is performed on a fresh information basis. Each Adaptation
Model stores a specific aspect of the SUT’s adaptation mode.
Behavioral adaptations are defined using constraints on the
Adaptation Models’ states.

Fig. 10. The HomeTurtle lab.

IV. SIMULATION

To clarify the models’ interactions, we illustrate an excerpt
of an example simulation run in Figure 9. The simulation
is indeterministic as there can be several execution paths.
Sequence (1) of operations is generated by the Environment
Variability Model. The simulator automatically selects a solution
of the model’s invariant such that no obstacle position equals the
positions of the inhabitant, cabinet, or emergency stop. When
the different state charts are initiated, operations sequence
(2) is performed as defined in the initial states. When the
Environment Reconfiguration Model sets the daylight property,
a signal Day is produced. However, as the respective Adaptation
Model has no matching outgoing transitions in its initial state,
this signal is ignored in this specific state. Sequences (3) and
(4) are generated when the transitions S0->S2 and S2->S3
are triggered. S0->S1 cannot be executed as tissue item
was placed in the cabinet during operation of sequence (1).
Subsequently, in sequence (5) the entry and exit action of S3
are executed. After this point, the Process Model waits for three
seconds as defined and, consequently, there is an indeterministic
decision point in the Environment Reconfiguration Model where
either an emergency is signaled up or not. We assume that the
simulation determines to generate the emergency such that in
sequence (6), the driver is called and the respective signal is
produced. In sequence (7), the Adaptation Model receives this
signal and switches to the emergency mode after polling a new
event. Afterwards, the simulation starts validating whether the
robot correctly drives to the emergency stop.

V. IMPLEMENTATION AND EXPERIMENTAL ENVIRONMENT

Syntax and semantics of all used models were implemented
in our Model-driven Adaptivity Test Environment (MATE). It
provides an EMF (Eclipse Modeling Framework [11]) based
metamodel and a simulator that can be used to execute the
model automatically or—in order to debug it—step-wise.

In our previous work, we developed the Smart Application
Grid (SMAG) framework that can be used for architectural
run-time adaptation [12]. Based on SMAG, we created the self-
adaptive HomeTurtle software. An impression of the physical

115Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 123 / 143

experimental environment is given in Figure 10. In order to
show the feasibility of our validation approach, a platform-
specific HomeTurtle test driver was developed as well. It
directs the operation calls produced by the model to the real
system and—vice versa—generates events from the system’s
observed behavior. However, not every modeled operation
can be performed automatically. The initial configuration of
the environment (setting up the cabinet’s content, placing
obstacles, etc.) and the validation whether the correct item
was collected are performed manually by the test engineer.
During the automatable phases, the validation directly benefits
from the model-driven nature of our approach, its advantage
in manually performed action is given by the reproducability
of simulation paths. If any path fails during a test, it can be
recorded, analyzed and later even be re-executed.

VI. RELATED WORK

Validation approaches for self-adaptive systems are still rare
in literature. An advanced strategy was proposed within the
DiVA project [13]. The validation of DiVA-based implementa-
tions can be performed in two phases: (1) In the early phase,
instances of the context model are generated and associated
with partial solutions. Those describe how parts of the systems
have to be configured after a certain context instance was
applied and the corresponding adaptation was performed. (2)
In an operational validation phase, the system’s behavior is
investigated during a sequence of contextual changes. The DiVA
validation methods neither consider any system/adaptation
interaction, nor do they propose specific test models.

Nehring and Liggesmeyer proposed in [14] a process for
testing the reconfiguration of adaptive systems. The validation
is performed in six iterations: In the beginning, a system model
is derived and representative workload is prepared by a domain
expert and later executed by developers or system engineers.
In the second iteration, a system architect checks if structural
changes are performed correctly. Thereby, the reconfiguration
actions have to be in the correct order such that the system
ends in a valid state and the quality of service is only affected
minimally during reconfiguration. The third iteration considers
data integrity while stressing the system with increasing load.
In the fourth iteration step, state transfer between replaced
components is investigated. An interaction issue between system
transactions and the adaptation is tested in the fifth iteration.
The last iteration considers the identity of components and
component types before and after adaptation. In comparison to
our approach, Nehring and Liggemeyer assume the adaptive
system to be component based and the validation can be
sufficiently investigated by a debugger-like tool chain. Thus,
their approach is exploratory and hard to use for integration
and system testing.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a concept to build black box
simulation models for validating SAS. Our models are based
on UML class models, state charts plus equivalence class trees
with invariants. Automatons communicate by events such that
the different concerns of the system process and adaptation
can be separated. Our approach does not rely on any design
model such that engineers are able to build discrete simulation
models of arbitrary self-adaptive systems. The methodology

comprises a process of classifying environment variability and
defining an explicit model on its change. Using this toolset,
we match the requirements (2)-(5) as stated in Section III.
Requirement (2)–Correct adaptation initiation is considered
by letting Adaptation Models receive signal events from the
Environment Reconfiguration Models. Thus, the change in
context can be causally connected with an adaptation of the
system. As Adaptation Models define an operational order of
adaptation actions, goal (3)-Correct adaptation planning is dealt
with. Requirement (4)-Consistent adaptation/system interaction
can be validated as the Process Model accesses the state of the
Adaptation Models and defines conditions on this state. Thus,
the system’s adaptive behavior can be defined. As Adaptation
Models can also check an adaptation’s outcome by assertions,
requirement (5)-Correct adapation execution is addressed.

In our future work, we are going to enrich the employed
formalism (i.e., state charts, equivalence class trees, etc.) for
more compact definitions and experiment with more complex
scenarios in order to expand the evaluation. Concerning the
improvement of formalism, for instance, we consider using
Petri nets as they are more flexible in describing parallelism and
synchronization, which is especially important when multiple
widely-independent system parts interact.

ACKNOWLEDGMENT

This work is funded within the projects #100084131 and
#100098171 (VICCI) by the European Social Fund as well as
CRC 912 (HAEC) and the Center for Advancing Electronics
Dresden (cfaed) by Deutsche Forschungsgemeinschaft.

REFERENCES

[1] B. H. C. Cheng et al., “Software Engineering for Self-Adaptive Systems:
A Research Roadmap,” in Dagstuhl Seminar 08031 on Software
Engineering for Self-Adaptive Systems, 2008, pp. 1–26.

[2] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,”
Computer, vol. 36, no. 1, Jan. 2003, pp. 41–50.

[3] IABG, “V-Modell XT 1.4,” http://v-modell.iabg.de, visited 04/01/2014,
2012.

[4] M. Utting and B. Legeard, Practical model-based testing: a tools
approach. Morgan Kaufmann, 2010.

[5] G. Püschel, S. Götz, C. Wilke, and U. Aßmann, “Towards Systematic
Model-based Testing of Self-adaptive Software,” in Adaptive, 2013, pp.
65–70.

[6] “TurtleBot 2,” http://turtlebot.com, visited 04/01/2014.
[7] Object Management Group (OMG), “UML Specification, Version 2.4.1,”

http://www.omg.org/spec/UML/2.4.1/, visited 04/01/2014.
[8] Object Management Group (OMG), “Object Constraint Lanugage,

Version 2.3.1,” http://www.omg.org/spec/OCL/2.3.1/, visited 04/01/2014.
[9] M. Grochtmann, “Test case design using classification trees,” Proceedings

of STAR, vol. 94, 1994, pp. 93–117.
[10] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,

“Feature-oriented Domain Analysis (FODA) Feasibility Study,” DTIC
Document, Tech. Rep., 1990.

[11] “Eclipse Modeling Framework Project,”
http://www.eclipse.org/modeling/emf/, visited 04/01/2014.

[12] C. Piechnick, S. Richly, and S. Götz, “Using Role-Based Composition
to Support Unanticipated , Dynamic Adaptation - Smart Application
Grids,” in Adaptive, 2012, pp. 93–102.

[13] A. Maaß, D. Beucho, and A. Solberg, “Adaptation Model and
Validation Framework – Final Version (DiVA Deliverable D4.3),”
https://sites.google.com/site/divawebsite, visited 02/01/2014, 2010.

[14] K. Nehring and P. Liggesmeyer, “Testing the Reconfiguration of Adaptive
Systems,” in Adaptive, 2013, pp. 14–19.

116Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 124 / 143

A First Step Towards a Dependability Framework
for Smart Environment Applications

Ehsan Ullah Warriach, Tanir Ozcelebi, Johan J. Lukkien
Department of Mathematics and Computer Science

Eindhoven University of Technical
Eindhoven, The Netherlands

{e.u.warriach, t.ozcelebi, j.j.lukkien}@tue.nl

Abstract—Smart environments will consist of a large number
of heterogeneous devices that communicate to collaboratively
perform various tasks for users. We propose a novel depend-
ability framework to increase availability and reliability of smart
environment applications. We argue that the key step in achieving
high dependability is to predict faults before they occur. Many
statistical fault prediction techniques have been proposed for
smart environment applications. Selecting the best one among
these techniques involves performance assessment and detailed
comparison on given metrics. We present a linear regression-
based prediction model to predict the remaining battery lifetime
of a device to prevent faults due to low battery. Further, we dis-
cuss the proposed dependability framework, the basic approaches
and the corresponding mechanisms to achieve our long-term
research goal. We envision that dependability framework will
reduce maintenance costs of large-scale smart environments and
increase the dependability of smart environment applications.

Keywords-smart environments; dependability; fault-prediction;
battery fault-prediction model; linear regression.

I. INTRODUCTION

A smart environment is a physical space enriched with em-
bedded Information Communications Technology (ICT) and
adequate software modules that can communicate their local
states, which are adaptive. From a technology point of view,
sensor and actuator technologies, as well as communication
standards are the main drivers for the development of today’s
smart environments. A convergence of these technologies
raised interest in the smart environment research and its appli-
cations such as smart buildings (homes or offices), intelligent
lighting, and remote health monitoring [1]–[3].

In smart environments, low capacity sensor and actuator
nodes play an important role as they provide the bridge
between the digital world and the physical world. A smart
environment application relies first and foremost on sensory
data acquired from multiple sensors in various locations of
the real-world [4]. Sensor nodes are typically small, inexpen-
sive, wireless, and battery-powered devices, prone to faults
due to internal and external influences, such as low battery,
miscalibration, hardware or software failures, environmental
interferences and sensor aging. We define a fault as a deviation
of at least one characteristic property or parameter of the
system from normal operation. Faulty sensors deliver incorrect
information to the application and this may lead to incorrect

conclusions and consequently application failures, since sen-
sors are usually left unattended for long periods of time in the
field. Therefore, the adoption of smart environments is largely
hindered by the fact that there is constant need for human
(or even expert) intervention and the cost of maintenance
of such systems is very high. Thus, dependable systems are
required, evolving at runtime to maximize the availability
and reliability of their applications. We identify two levels of
dependability mechanisms, i.e., proactive mechanisms in the
absence of faults and reactive mechanisms in the presence of
faults. Systems that have the ability to identify faulty behaviors
and make the necessary alterations to restore normal operation
without human intervention [5] by means of a reactive depend-
ability mechanism, such as fault tolerance through hardware
redundancy, are said to be self-healing. On the other hand,
systems that utilize proactive dependability mechanisms aim
to predict and prevent faults before they occur, or at least delay
them. There are two goals of this: i) to maintain application
functionality as long as possible, and ii) graceful degradation
of application performance. Fault prediction is required for
proactive dependability and is the focus of this paper. It is a
key mechanism of the dependability framework proposed in
this paper, along with other mechanisms for fault monitoring,
adaptation, fault tolerance, fault healing and fault notification.

Several fault prediction models for smart environment appli-
cations have been proposed in the literature. However, further
research is needed to assess the quality and the resource
requirements (e.g., memory, Central Processing Unit (CPU))
of these models. This paper describes work in progress for
comparing various models for fault prediction against our
proposed linear regression model. Linear regression analysis
is one of the most widely used multivariate analysis methods,
which assumes linear relationships between independent and
dependent variables [6].

Faults can occur due to many reasons. For example, the
battery is a critical resource of a battery-powered sensor, and
it is one of the most common sources of faulty behavior [7] [8].
A battery powered node may start transmitting faulty values
due to low battery [9] [10]. Predicting the remaining battery
lifetime can help to use it more efficiently and to predict when
a fault is likely to occur, allowing to take actions to prevent it.
The need for reliable and accurate battery lifetime prediction

117Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 125 / 143

models have been expressed repeatedly in the literature. A
battery depletion prediction model was introduced by Kevin et
al. [11], where the Received Signal Strength Indicator (RSSI)
value is monitored to predict the battery lifetime of sensor
because RSSI becomes very low shortly before the depletion
of the node battery. Profiling of the battery usage offline to
make online predictions was proposed by Wen et al. [12],
where the history of average energy consumption rate is used
to predict the remaining battery lifetime of mobile devices.
Takahashi and Ide [13], proposed a prediction model that uses
previous battery usage pattern in the regression function as a
trajectory in a feature space to predict the remaining battery
lifetime.

In our approach, the discharge rates of running applications
on a sensor network are modeled offline and this model is
then used to predict the remaining battery lifetime online.
We identify the Battery Dependent Components (BDCs) of
a sensor that affect energy discharge rate. For example, radio
(Transmitting (TX)/Receiving (RX)), Light-Emitting Diodes
(LEDs), CPU, and sensor board are prominent BDCs. Ac-
cording to a regression model, remaining battery lifetime is a
dependent variable, and energy consumption states of BDCs
are independent variables. Our goal is to predict the remaining
battery lifetime and take actions to avoid upcoming faults.
In our future work, the considered fault prediction models
will be evaluated based on a comparison of their resource
requirements as well as precision and recall performance
metrics.

The remainder of this paper is structured as follows. We
propose the dependability framework for smart environments
applications in Section II. The fault-prediction model is pre-
sented in Section III to predict the remaining battery lifetime
of a sensor node using a linear regression model. The metrics
that enable measuring the performance of a fault-prediction
model are reviewed in Section IV. Finally, conclusion and
future work are presented in Section V.

II. DEPENDABILITY FRAMEWORK FOR SMART
ENVIRONMENTS

Our long-term research goal is the development of a detailed
dependability framework and to evaluate reliability and avail-
ability of smart environment applications as a result of self-
x (self-protection, self-adaptation, self-healing) properties of
the framework. Fig. 1 shows the high-level architecture of the
proposed dependability framework, consisting of three main
states.

The fault prevention state tries to predict faults and pre-
vent the faults (proactive) by adapting the system and the
applications based on available resources. The failure preven-
tion state attempts to keep the system and the applications
functioning with the help of fault tolerance and fault healing
mechanism in the presence of detected faults (reactive). The
application failure state notifies the system administrator to
take mandatory actions against the detected fault to bring
the system back into a safe state. Main mechanisms of the
dependability framework are i) fault prediction, ii) adaptation,

Figure 1: Dependability Framework for Smart Environments

iii) fault monitoring, iv) fault tolerance, v) fault healing and
vi) fault notification. Fault prediction looks to the future. It is
based on monitoring the current state of a system in terms of
resource attributes and also considers a history of such state
information. Adaptation goal is to prolong the time before
either a system or an application reaches a faulty state. Fault
monitoring is responsible for monitoring and detecting viola-
tions of regular operating constraints (fault) in all hardware,
software, and network configurations, as well as identifying
the fault type. Fault tolerance refers to the ability of a system
to avoid application failures in the presence of faults. Fault
healing is the ability of a system to repair, update, or replace
the faulty part. After healing, the system returns to a safe
state. Fault notification is responsible to notify the user about
the fault in a way that it causes minimal disruption to the user
activity when it is not healed.

III. FAULT PREDICTION

In this initial phase of our work, we concentrate on the fault
prediction model of the proposed framework. In general, given
a fault prediction model, the system periodically monitors and
logs the current state of the system at run-time and predicts
the next state(s). In a smart environment, a set of resource
attributes Y = {Y1,,YK} (e.g., battery levels or memory
statuses of devices) are monitored and logged. Further, a num-
ber of statistical features f ∈ F = {F1,,FM} are extracted
from the history and the current value of y ∈Y . The elements
of f (e.g., minimum, maximum, expected value, gradient,
mean, median, variance) are used in the fault prediction
analysis. When a particular resource attribute of a device or the
statistical features that correspond to the device are beyond the
acceptable range (e.g., defined by thresholds of battery level),
the fault prediction invokes the adaptation mechanism.

A fault prediction is defined by the triple {Ftype, tmin
PF , tmax

PF },
where Ftype refers to the type of the predicted fault, and [tmin

PF ,
tmax
PF] refers to the interval in which the fault is expected. This

is visualized in Fig. 2, where time t refers to a monitoring
instance and 4tWS indicates how much into the past the fault

118Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 126 / 143

Figure 2: Fault Prediction Model Quality

prediction looks. 4tLPF is the time until the predicted fault
interval. The prediction indicates that the fault of type Ftype
will occur in a time interval of length 4tPF = tmax

PF − tmin
PF .

A smaller value of 4tPF indicates a more accurate fault
prediction model. If 4tPF is too large, it is very likely that a
predicted fault falls within this determined interval. However,
in this case the fault prediction is not useful since the fault
can happen anywhere in the large interval.

A. Battery Fault Prediction Model
In this section, we introduce a prediction model for the

remaining battery lifetime of a device. As shown in Fig. 3,
the prediction of remaining battery lifetime can be divided into
two main parts, namely, offline modeling and online prediction.

Figure 3: Battery Lifetime Prediction Model

Since the battery discharge rate varies according to the
energy consumption of running applications (of BDCs that
take a role), battery lifetime is application dependent. We
identify a number of BDCs and their possible states, e.g.,
CPU (active, idle, standby), LEDs, sensor board and radio
(TX/RX). The radio component can have different settings of
TX and RX modes based on either available battery of a device
or application specific. We quantify the relation between
BDC states and the battery discharge rate using a linear
model, resulting in a multiple linear regression model that
employs application specific battery discharge rates. Whenever
the application behaviour changes, the fault prediction model
needs to be revised using a multiple linear regression model
to calculate the current battery discharge rate. These are then
used during the online prediction process together with the
current battery energy level to predict the remaining battery
lifetime.

B. Linear Regression Model
Linear regression model [6] has been successfully used for

forecasting and prediction in various fields and we consider

this model to predict the remaining battery lifetime. Multiple
linear regression models the relationship between two or more
explanatory variables and a response variable by fitting a linear
equation to observed data [6].

Consider a set of tasks τ = {τ1,,τN} running on a
device, where each task has a battery discharge rate R =
{R1,,RN} based on the BDCs energy consumption states
X = {X1,,XP} while running that task. The external or
internal events can influence the running task and change the
state of a BDC. For example, a task can dynamically pick
one of the data sampling periods T1 and T2, specifying that its
battery discharge rate also varies dynamically. Therefore, we
need to identify the quantitative relationship between different
states of the task and their discharge rate. We consider the
states of BDCs as independent variables (X for explanatory)
and battery discharge rate as dependent variables (R for
response). Linear regression is used to predict the values of the
response variables, (r1,,rN) ∈ R, given a set of explanatory
variables (x1,,xP) ∈ X (states of BDCs). The relationship
between the explanatory variables and the response variables
is given by the following equation 1:

rN = β0 +β1X11 +β2X12 ++βpX1p + εi (1)

where,

R =


r1
r2
...

rN

 ,X =


XT

1
XT

2
...

XT
N

=


x11 · · · x1P
x21 · · · x2P
...

. . .
...

xN1 · · · xNP



β =


β1
β2
...

βP

 ,ε =


ε1
ε2
...

εP


• R is a (N×1) dependent variable matrix, where N is the

number of tasks (discharge rates).
• X is a (N ×P) matrix of independent variables, where

xn,p is the state of the pth BDC while task τn is running.
• β is a (P×1) vector of regression coefficients.
• ε is a (N×1) vector of additive random error. We assume

that the error εi is a statistical error, which is normally
distributed with mean zero and variance σ2, abbreviated
as N(0,σ2) [6].

The linear regression function of the battery discharge and
BDCs is described using the equation 2:

E(t) = e0−β∗ t (2)

where, e0 and (−β) are the intercept and slope of the line
respectively. ē =

∑
n
i=1 ei
n , t̄ =

∑
n
i=1 ti
n , β =

∑
n
i=1(ti−t̄)(ei−ē)
∑

n
i=1(ti−t̄)2 and

e0 = ē− β ∗ t, β measures the change in the mean of E
for a unit change in t, which is the discharge rate of the
battery [6]. In order to explain the battery lifetime predic-
tion model, let us suppose we have a set of data samples
(ti,ei), i = {1,2,,n}, as shown in Fig. 4.

It shows the prediction of the battery lifetime of a sensor,
where e is the value of battery and t is the time. Suppose,

119Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 127 / 143

Figure 4: Estimation Curve of a battery discharge rate

a system monitoring module measured the battery energy
level e0 at the time t0, which is beyond the acceptable range.
Then, battery lifetime prediction model is invoked to determine
the remaining battery lifetime against the current status of
BDCs states and using the current battery energy level e0.
Consequently, we can have an estimation of remaining battery
lifetime using the discharge rate. We assume that the battery
energy level is ePF at time tPF . Then, by observing Fig. 4
and by applying following Equation 3, we can measure the
remaining battery lifetime:

TB = tPF − t0 =
e0− ePF

β
(3)

IV. EVALUATION OF FAULT PREDICTION MODEL

In order to investigate the quality of fault prediction model
and to compare various fault prediction models against our
proposed linear regression model it is required to identify
suitable metrics. The goal of a fault prediction model is to
predict faults accurately, efficiently and in a timely manner. An
accurate fault prediction model would accomplish a one-to-one
matching between predicted and true faults. A fault prediction
is a True Positive (TP), if a fault occurs within the predicted
period. If no fault occurs and a fault is predicted, the prediction
is a False Positive (FP). If the model misses to predict a true
fault, it is a False Negative (FN). If no true fault happens
and no fault notice is given, the prediction is a True Negative
(TN). Further, we consider precision and recall based on above
metrics. Precision is defined as the ratio of correctly identified
faults to the number of all predicted faults precision = T P

T P+FP .
Recall is the ratio of correctly predicted faults to the number
of true faults recall = T P

T P+FN [14]. Accuracy is the number of
correct predictions over the total number of predictions made.
Further, we will investigate the computational requirements of
fault prediction models, e.g., memory and CPU.

V. CONCLUSION AND FUTURE WORK

We presented a high-level architecture of a dependability
framework for smart environment applications. In this context,
we consider the problem of predicting faults in smart environ-
ments. As a first step, we presented a prediction model based
on the multiple linear regression model for the remaining
battery lifetime of a device. In order to develop an accurate
and efficient fault prediction model, we must understand the

trade-offs among the metrics defined in Section IV for each
prediction model and choose the best tradeoff for a given
dependable framework for smart environments. Our future
work will focus on implementing this architecture on top of
an operational platform in a real smart environment in order
to guarantee the availability and reliability of applications.
The ability of applications in a system to survive free of
faults depends on adaptations supported by the dependability
architecture. We recognize that the system may be affected
by many types of faults. Thus, we will investigate optimal
application adaptation mechanisms as well as fault prediction
models against other types of faults, e.g., low memory, link
quality, hardware or connection failures, miscalibration. Our
ultimate goal is to develop a dependability framework for
smart environments to provide users with services, which are
highly reliable and available.

ACKNOWLEDGMENT

This work has been supported by the ProHeal project
(n. 10017751) funded by the Information Technology for
European Advancement (ITEA2).

REFERENCES

[1] D. Cook and M. Schmitter-Edgecombe, Assessing the quality of activ-
ities in a smart environment, Methods of Information in Medicine, vol.
48, no. 5, 2009, pp. 480-500.

[2] P. Yu, X. Ma, J. Cao and J. Lu, Application mobility in pervasive
computing: A survey, Pervasive and Mobile Computing, vol. 9, no. 1,
2013, pp. 2-17.

[3] S. Bhardwaj, T. Ozcelebi, O. Ozunlu, and J.J. Lukkien, Increasing
reliability and availability in smart spaces: A novel architecture for
resource and service management, IEEE International Conference on
Consumer Electronics (ICCE), 2012, pp. 439-440.

[4] F. L. Lewis, Wireless Sensor Networks: Smart Environments, John Wiley
& Sons, Inc., 2005, pp. 11-46.

[5] D. Ghosh, R. Sharman, H. Raghav Rao, and S. Upadhyaya, Self-healing
systems - survey and synthesis, Decision Support System, vol. 42, no.
4, 2007, pp. 2164-2185.

[6] L. Wasserman, Lecture Notes for Linear Regres-
sion, 2010, Retrieved 08-04-2014. [Online]. Available:
http://www.stat.cmu.edu/ roeder/stat707/lectures.pdf.

[7] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler, Lessons From
A Sensor Network Expedition, European Conference on Wireless Sensor
Networks, 2004, pp. 307-322.

[8] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
Wireless sensor networks for habitat monitoring, 1st ACM international
workshop on Wireless sensor networks and applications, vol. 2, 2002,
pp. 88–97.

[9] E.U. Warriach, M. Aiello, and K. Tei, A Machine Learning Approach
for Identifying and Classifying Faults in Wireless Sensor Network,
IEEE 15th International Conference on Computational Science and
Engineering (CSE), 2012, pp. 618-625.

[10] N. Kevin et al., Sensor Network Data Fault Types, ACM Transaction
Sensor Network, vol. 5, no. 3, 2009, pp. 25:1–25:29.

[11] I. H. Yano, V. C. Oliveira, E. A. de Mello Fagotto, A. A. Mota, and
L. T. M. Mota, Predicting battery charge depletion in wireless sensor
networks using received signal strength indicator, Journal of Computer
Science, vol. 9, no. 7, 2013, pp. 821-826.

[12] Y. Wen, R. Wolski, and C. Krintz, Online Prediction of Battery Lifetime
for Embedded and Mobile Devices, Power-Aware Computer Systems -
Lecture Notes in Computer Science, vol. 3164, 2005, pp. 57-72.

[13] T. Takahashi, and T. Ide, Predicting battery life from usage trajectory
patterns, 21st International Conference on Pattern Recognition (ICPR),
2012, pp. 2946-2949.

[14] F. Salfner, M. Lenk, and M. Malek, A Survey of Online Failure
Prediction Methods, ACM Computer Survey, vol. 42, no. 3, 2010, pp.
10:1–10:42.

120Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 128 / 143

ContextPoint: An Architecture for
Extrinsic Meta-Adaptation in Smart Environments

Christian Piechnick, Sebastian Richly, Thomas Kühn, Sebastian Götz, Georg Püschel and Uwe Aßmann
Software Technology Group, Technische Universität Dresden,

Dresden, Germany
Email: {christian.piechnick, sebastian.richly, thomas.kuehn3, sebastian.goetz1, georg.pueschel, uwe.assmann}@tu-dresden.de

Abstract—The establishment of mobile devices had a high impact
on the use and development of software systems. It is expected that
the ability to automatically adapt to changing environments will be a
crucial property for future apps running on mobile devices. The problem
with current approaches for self-adaptive systems is that developers must
define the adaptive behaviour at design-time. In many cases, however, the
developer cannot predict all situations at design-time, which should trig-
ger adaptation at runtime. Furthermore, applications for mobile devices
are usually optimized for a small set of use cases and have a narrow, well-
defined scope. In order to support more complex tasks, the functionality
of several apps has to be composed dynamically. Another problem arises
from the ever increasing number of available applications. In this paper,
we address these problems by proposing a novel infrastructure for self-
adaptive systems in smart environments, namely ContextPoint. Our goal
is to describe an architecture which supports unanticipated adaptation
for single systems, as well as the automatic integration of actuators
and sensors, situated in the environment, with services and data from
both, mobile devices and the cloud. Therefore, a distributed adaptation
technique is proposed, where adaptation logic and rules are provided by
the environment itself. This decentralization simplifies the development
of self-adaptive systems with dynamic adaptive adaptation processes
(meta-adaptation) and, thus, the design and operation of systems with
unanticipated adaptation. Furthermore, our approach provides means
for describing context-dependent collaboration between varying systems
enabling the design of ad-hoc system-of-systems.

Keywords—Adaptation; Self-Adaptive; Meta-Adaptation; Architecture;
Context-aware; Location-aware.

I. INTRODUCTION

The wide-spread acceptance of mobile devices (e.g., smart-
phones, tablets) changed the development as well as the
use of software applications radically. Because applications
running on mobile devices change their location and, hence,
their environmental situations they are used in, they have to
adapt their appearance and behaviour accordingly. This kind
of flexibility is commonly called context-aware adaptation
in self-adaptive systems. Currently, such systems rely on an
environmental model (i.e., context model), which describes
the entities of the execution context and their relationships.
In these models, software engineers predefine statically at
design-time which contextual information can be observed at
runtime. At runtime a MAPE-K-Loop [1] (a) monitors the
environment using sensors, (b) analyses the gathered data
to instantiate the context meta-model, (c) plans necessary
reconfigurations, and (d) executes the chosen plans. The main
problem, however, is that software developers usually cannot
predefine all environmental entities, which could be important
for an adaptation process at runtime, at design-time. Lets
consider an application that mutes a smartphone automatically,
every time the user must not be disturbed (e.g., the user is
participating in a meeting). The fact, however, that a user would
be disturbed by a ringing smartphone is highly individual. A
developer of such an application could most possibly not foresee

all individual cases (e.g., when a baby is sleeping within the
same room the user is located). To address this problem, the
adaptation process itself should adaptable.

Another consequence arising from the characteristics of
mobile devices is the change in size and range of functions.
Traditionally, software system for stationary devices increased
in their code size and complexity. The goal was to create multi-
purpose systems with a huge set of provided functionality.
Applications for mobile devices, henceforth denoted as apps,
reversed that trend. They usually have a narrow scope with
a rather small set of offered functionality. Those apps are
optimized for a well-defined set of tasks. We call this Functional
Separation of Concerns (F-SoC). In order to support more com-
plex workflows, several apps have to work together to combine
their provided functionality in a seamless way. Currently, there
is no mechanism to describe an overall workflow across multiple
apps on mobile platforms. On Android, for example, it is only
possible to exchange data between applications using intents.
Intents restrict an application’ access to another application’s
provided services or data. Those intents are specified using
coarse-granular classes of access types defined in the system
frameworks. The problem is that developers would need to
agree on a shared set of guidelines (like datatypes) in order to
establish a seamless integration, which is hard to enforce for
domain-specific applications from different domains. Through
the establishment and spread of devices for smart environments,
this kind of functionality becomes even more important. Since
sensors and actuators become cheaper and more standardized,
they can be placed easily in any kind of environment. It is
likely that, in the future, users want to integrate their apps
on multiple mobile devices seamlessly with services provided
by both the environment and via Internet, depending on their
current situations.

The main problem resulting from the F-SoC expansion is
the huge number of similar apps developed for different tasks
or usage-scenarios. The Google Play Store contain almost one
million apps each. After the user found an appropriate app in
this huge variaty of offers, it has to be installed manually and, in
many cases, be configured. In order to increase convenience and
efficiency, regarding the usage of mobile devices, it should be
possible to automatically detect a set of apps that are well-suited
to support a user’s task in a given situation and automatically
deploy, configure and connect those applications.

The mentioned requirements for context-aware, mobile app-
infrastructures can be summarized as follows. Apps have to
support:

R1 unanticipated adaptation by meta-adaptation, i.e.,
the adaptation mechanisms need to be adaptable

121Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 129 / 143

themselves, because the developer cannot foresee all
possible situations the application will operate in.

R2 runtime composition. In order to support complex
tasks, apps have to be combined to ad-hoc systems
of systems (SoS). Those apps can either be executed
on the same device or be integrated as services in a
distributed system.

R3 automatic provisioning. Based on the context and the
task of a user, a collection of suitable apps have to be
provided.

In this paper, we present an approach which satisfies all
three requirements by introducing the concept of extrinsic
meta-adaptation in a self-adaptive control loop. Usually, the
mechanisms required for self-adaptive systems are implemented
statically. Even though, many approaches propose architectures
to support adaptive monitoring and analysis by distributing
those steps to a varying network of collaborating systems,
plan and execute are usually fixed in their implementation.
Even though every self-adaptive systems relies on a component
model that can theoretically be extended at runtime, currently
there is no process how to dynamically extend the knowledge
base used for adaptation as well as how to adapt the adaptation
process itself. Furthermore, systems with a flexible monitor and
analyze phase are able to dynamically extend the information
sources that are used for decision making, while the strategies
how those information are processed remain fixed. A self-
optimizing system for non-functional properties for example,
might at runtime extend the information required to perform
optimization and include new components that can be used
by the planning component, but will still only optimize non-
functional properties. In situations where it is necessary to adapt
for self-healing or functional requirements, such a system will
fail. Meta-adaptation allows to adapt the adaptation process
itself (e.g., introduce new plan and execute logic, etc.) at
runtime. We want to propose an adaptation mechanism where
apps on mobile devices can automatically be adapted, connected,
and provided from an environmental infrastructure. Because
the meta-adaptation is provided by the environment itself (i.e.,
extrinsic), the overall adaptation process can be extended at
runtime by changing the location without redeployment of the
entire self-adaptive system.

This paper is structured as follows: In Section II, we give
a short introduction to the Smart Application Grids (SMAGs)
approach, which is used as a basis for the approach presented
in this paper and introduce the concept of meta adaptation in
Section III. We discuss our approach in Section IV. Section
V provides an evaluation of the presented concept using an
example. In Section VI, related work is presented. Finally,
Section VII presents our conclusion and future work.

II. SMART APPLICATION GRIDS

In order to dynamically adapt an application to varying
contexts, the structure and behaviour of an application has to
be changed at runtime. Hence, the application architecture has
to be variable and extensible. Variability enables the adaptation
of existing behaviour at runtime within a given variability space.
In contrast to that, extensibility allows to scale the variability
space and build the foundation for Meta Adaptation.

ContextPoint

ContextPoint
Participant 1

Adaptation Rules

Access Control

App Repository

Service Trader

<<ComponentType>>

ComponentTypeA
<<ComponentType>>

ComponentTypeB
<<Port Type>>

PortTypeA

requiresprovides

<<Component>>

JComponentA
<<Component>>

JComponentB
<<Port>>

JPortA

a : JComponentA b : JComponentB

a : JComponentA b : JComponentBpa : JPortA

M
eta

A
rch

itectu
re

A
rch

itectu
re

R
u

n
tim

e
R

u
n

tim
e

w
ith

P
o

rt b
o

u
n

d

SMAG Application

SMAG Runtime Environment

Real
World

Context

Sensors

Inference

Adaptation

Context
Model

<<Knowledge>>

Context
Model

<<Monitor>>

Sensors

<<Analyze>>

Inference

A
d

ap
tatio

n

Extension

Models

Components

Constraints

M

KA

P
<<Plan>>

Adaptation

<<Execute>>

SMAG Runtime Environment

+

-

§

Ports

V
arian

t Sp
ace

C
u

rren
t

C
o

n
figu

ratio
n

D
es

ig
n

A

rt
ef

ac
ts

C
o

m
p

o
-

n
en

ts
P

o
rt

s

Runtime Environment

Root-App

App1 AppN…

M

A

P

K

M

A

P

K

SMAGs Repository

Sensors

Actuators

Services

Data

Settings

ContextPoint
Participant 2

ContextPoint
Participant N…

Location X

Mobile Devices

Environmental
Devices

Cloud

ContextPoint

Users

Meta-Adaptation

Instance of Instance of

Instance of Instance of

Instance of

Fig. 1. The Meta-Levels of Smart Application Grids

Traditionally, variability is assured by applying the Template
Hook Meta Pattern [2]. The application logic is separated in
a fixed (template) and variable part (hook). By exchanging
the hook at runtime, an application’s behavior is adapted
dynamically. This very simple procedure introduces three
problems. First, the replacement of the complete hook can
be expensive concerning resource usage and replacement time.
Second, the system might be in an inconsistent state during
reconfiguration. Third, if the hook is stateful, the state has
to be migrated to the new hook, which can be expensive as
well. Because in many designs, the hook can also have external
references, both incoming and outgoing, those references have
to be migrated, too. To tackle those shortcomings, invasive
composition techniques (i.e., Aspect Oriented Programming)
for dynamic context-aware adaptation were investigated [3].
With runtime weaving it is possible to exchange program
code in a very fine-grained manner during the lifetime of
an application. Still, aspects introduce some problems as well.
First, it is a code-composition technique on meta-layer M1
[4], i.e., the class-layer. Consequently, it is only possible to
change the behaviour of all objects instantiated by a given
class [5]. However, for many scenarios it is necessary to have
an adaptation technique on meta-layer M0, i.e., the object-
layer, which allows to change the behaviour of individual
objects. Another major drawback of aspects is that they
are a white-box composition technique (i.e., aspects rely on
the internals of the application subject to adaptation) which
decreases reusability. Consequently, reusing adaptive behaviour
across different applications and domains is insufficiently
supported. In order to support invasive software composition
on an architectural (component) level, we developed our Smart
Application Grids (SMAGs) framework. SMAGs is a model-
driven, platform independent design and operation principle for
fine-grained, dynamic and unanticipated adaptation with a focus
on increased reuse. SMAGs consists of many small, distributed
applications that are linked dynamically. Role-Based Design and
Programming [6] is used to change the structure and behaviour
of individual applications as well as to express dynamically
varying relationships across several distributed applications. A
role is a dynamic service of an object in a specified context,
offering the possibility to express separation of concerns,

122Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 130 / 143

interface-structuring, dynamic collaboration description, and
access restriction [7]. Roles are played by objects, dynamically
altering the structure and behaviour of the player. In other
words, roles enable an adaptation technique on meta-layer M0,
the object-layer. On the one hand, roles can extend the object’s
state and functionality (i.e., introduce new methods and/or
attributes). On the other hand, the objects existing behaviour can
be changed. Furthermore, roles contain references to other roles.
Since roles can be played and discarded at runtime, they are
capable of expressing dynamically changing relationships across
multiple system entities (e.g., objects, components, etc.). The
major difference to other invasive composition approaches (e.g.,
aspects) is that roles are played within a context (e.g., ”a person
plays the student role within the context of an university”). This
tight coupling between behaviour and environmental conditions
makes Role-Based Design a powerful approach to model Self
Adaptive Systems (SAS).

As depicted in Figure 1, at design-time, a platform
independent Meta Architecture defines Component Types
which specify provided and required Port Types. A Port-
Type represents an interface specification. From several Meta
Architectures a platform specific architecture can be derived,
describing Components implementing Component Types and
Ports implementing Port-Types. Ports can be grouped into Port
Models. Each Port Model is associated with a binding to compo-
nents and with environmental conditions, stating when it should
be integrated into the application. At runtime, Components can
be instantiated and connected by their matching required and
provided Port Types. With the instantiation of Ports/Port Models
and their binding to Components, the behaviour of individual
Component Instances as well as the structure of the overall
application can be adapted according to a given context. For
more detailed information we refer to [6].

The SMAGs approach proposes an adaptation architecture.
In [6], an overview of this architecture is presented. It
represents a MAPE-K loop with the Sensor Layer monitoring
the environment and transferring the gathered information to
a Context Model. An Inference Layer relates existing and
deduces new information based on the data in the Context
Model. An Adaptation Layer creates reconfiguration plans based
on the information from the Context Model and the current
configuration of the adaptive application. Those plans are then
executed by a Runtime Environment. Because the adaptation
architecture itself is a SMAGs-based application, the concrete
implementations (e.g., the Context Model representation etc.)
can be changed at runtime. This adaptive adaptation architecture
enables Meta Adaptation.

Furthermore, the SMAGs approach is based on a distributed
repository infrastructure. A repository can be used to store
the meta-architecture and architectural information as well as
component and port implementations. These artefacts can either
be reused at design-time for the design and implementation
of new systems or at runtime to extend a running application
with new components and ports. Additionally, each repository
exposes a Service Trader. Applications can register remotely to
offered functionality alongside with contextual information at
the Service Trader. Other applications can query the published
services to autonomously create dynamically varying SoS. The
SMAGs approach is used to model a novel adaptation paradigm
for unanticipated adaptation in mobile scenarios.

III. EXTRINSIC META-ADAPTATION

Adaptation mechanisms for context-aware software system
can be classified into parametrised, control-flow based and
compositional adaptation [6]. For parametrised adaptation the
application units expose predefined parameters that can be
changed at runtime. Control-flow based adaptation triggers
the execution of application-specific behaviour to react on
environmental changes. Compositional adaptation allows to
change the structure of the application (e.g., create, remove, or
reconnect components, etc.). The available components as well
as the provided composition operators define which variants
of the system are valid configurations, constituting the variant
space. The other key modelling element, is the adaptation
strategy that describes when adaptation has to be triggered and
how the system should be reconfigured in a given situation.
Therefore, a context metamodel describes all types of contextual
information that may be available at runtime. Whenever the
concrete context model changes, the system checks whether or
not one of the variants within the variant space is better suited
than the current system configuration. When the system detects
a better alternative, a reconfiguration plan is generated. However,
the main problem for software developers is that they cannot
foresee all possible conditions that should trigger adaptation
as well as all other systems, with which the application might
collaborate. When the variant space as well as the adaptation
strategy is fixed, unplanned situations cannot be handled. In
order to support adaptation in unanticipated situations the
adaptation process itself must be variable and extensible. This
concept of adapting the adaptation is called meta-adaptation [8].
Figure 2 shows how meta-adaptation can be achieved by
extending (1) either the application’s variability space or (2)
the adaptation logic itself.

Variability-Space The variability space (Figure 2 top-right)
defines which variants of the system exist. In theory, an adap-
tation process investigates all different alternatives to decide
whether or not there is a better configuration of the system w.r.t.
the current environmental conditions. The variability space is
constructed using all possible component/port combinations
and is constrained by architectural templates and rules. Adding
new artefacts or changing existing ones changes the variability
space at runtime (Extension). This allows to create new variants,
not considered at design-time, satisfying dynamic requirements
the developers could not foresee.

Adaptation Process When the implementation of a MAPE-
K loop itself provides variability and extensibility, the adapta-
tion loop itself can be reconfigured (Figure 2 bottom-right). In
the SMAGs approach, the MAPE-K loop is implemented using
the same composition system as the system it is adapting. By
this design, it is possible to adapt the adaptation architecture,
which enables meta-adaptation. Figure 2 shows a second MAPE-
K loop that uses the Runtime Environment of the adapted
application as an executor for the reconfiguration plan. The
second loop can be implemented in any application. This allows,
for example, to exchange the context model representation, to
introduce parallel representations with different characteristics
(e.g., probability) of the context model, to introduce new
sensors, extend the inference mechanisms or introduce new
planners and executors.

SMAGs supports both dimensions of meta-adaptation. The
repository infrastructure enables applications to extend the

123Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 131 / 143

ContextPoint

ContextPoint
Participant 1

Adaptation Rules

Access Control

App Repository

Service Trader

<<ComponentType>>

ComponentTypeA

<<ComponentType>>

ComponentTypeB
<<Port Type>>

PortTypeA

requiresprovides

<<Component>>

JComponentA
<<Component>>

JComponentB
<<Port>>

JPortA

a : JComponentA b : JComponentB

a : JComponentA b : JComponentBpa : JPortA

M
eta

A
rch

itectu
re

A
rch

itectu
re

R
u

n
tim

e
R

u
n

tim
e

w
ith

P
o

rt b
o

u
n

d

SMAG Application

SMAG Runtime Environment

Real
World

Context

Sensors

Inference

Adaptation

Context
Model

<<Knowledge>>

Context
Model

<<Monitor>>

Sensors

<<Analyze>>

Inference

A
d

ap
tatio

n

Extension

Models

Components

Constraints

M

KA

P
<<Plan>>

Adaptation

<<Execute>>

SMAG Runtime Environment

+

-

§

Ports

V
arian

t Sp
ace

C
u

rren
t

C
o

n
figu

ratio
n

D
es

ig
n

A

rt
ef

ac
ts

C
o

m
p

o
-

n
en

ts
P

o
rt

s

Runtime Environment

Root-App

App1 AppN…

M

A

P

K

M

A

P

K

SMAGs Repository

Sensors

Actuators

Services

Data

Settings

ContextPoint
Participant 2

ContextPoint
Participant N…

Location X

Mobile Devices

Environmental
Devices

Cloud

ContextPoint

Users

Meta-Adaptation

Fig. 2. The SMAGs Meta-Adaptation Process

variability space at runtime, by importing new model artefacts
(i.e., (Meta) Architectures and Port Models) as well as imple-
mentation artefacts (i.e., Components and Ports). Furthermore,
SMAGs supports runtime reconfiguration of the adaptation
process because the MAPE-K loop is itself implemented as
a SMAGs application. This enables the developer of meta-
adaptive applications to change parameters of existing MAPE-
K loop components as well as to change the structure of
MAPE-K loops. Furthermore, the introduction and binding
of new ports can extend or change the behaviour of existing
components. This allows to dynamically adapt the context
model representation (e.g., add the concept of uncertainty
to specific model entries) and to bind according inference
strategies.

These two dimensions build a foundation to create location-
aware unanticipated adaptation by integrating meta-adaptive
systems within the environment. Whenever a mobile application
is situated in the same location, the meta-adaptive system can
provide location-specific adaptation knowledge.

IV. THE CONTEXTPOINT

In the research area of context-aware and self-adaptive
systems, still no common definition of the term context was
established. The most accepted and used definition was given
by Anind K. Dey in 2001:

ContextPoint

ContextPoint
Participant 1

Adaptation Rules

Access Control

App Repository

Service Trader

<<ComponentType>>

ComponentTypeA

<<ComponentType>>

ComponentTypeB
<<Port Type>>

PortTypeA

requiresprovides

<<Component>>

JComponentA
<<Component>>

JComponentB
<<Port>>

JPortA

a : JComponentA b : JComponentB

a : JComponentA b : JComponentBpa : JPortA
M

eta
A

rch
itectu

re
A

rch
itectu

re
R

u
n

tim
e

R
u

n
tim

e
w

ith
P

o
rt b

o
u

n
d

SMAG Application

SMAG Runtime Environment

Real
World

Context

Sensors

Inference

Adaptation

Context
Model

<<Knowledge>>

Context
Model

<<Monitor>>

Sensors

<<Analyze>>

Inference

Meta-
Adapation

A
d

ap
tatio

n
Exte

n
sio

n

Architectures

Port Models

Components

Constraints

M

KA

P
<<Plan>>

Adaptation

<<Execute>>

SMAG Runtime Environment

+

-

§

Ports

V
arian

t Sp
ace

C
o

n
figu

ratio
n

D
es

ig
n

A

rt
ef

ac
ts

C
o

m
p

o
n

en
ts

P
o

rt
s

Runtime Environment

Mother-App

App1 AppN…

M

A

P

K

M

A

P

K

SMAGs Repository

Sensors

Actuators

Services

Data

Settings

ContextPoint
Participant 2

ContextPoint
Participant N…

Location X

Mobile Devices

Environmental
Devices

Cloud

ContextPoint

Users

Fig. 3. The Context-Diagram of ContextPoint

”Context is any information that can be used to characterise
the situation of an entity. An entity is a person, place,
or object that is considered relevant to the interaction
between a user and an application, including the user and
applications themselves.” [9]

Over the last decades many conceptual frameworks for
context modelling and interpretation were developed [10]
[11] [12] [13]. One commonality is that every definition and
conceptualization of the term context treats the location of both
the user and the application as a first class citizen. Consequently,
the location is a central entity of context-aware adaptation.
Nevertheless, already in 1998, Schmidt et al. [14] observed that
the exact physical location is only sufficient for a rather limited
set of adaptation scenarios. The more important information for
adaptation is the semantics of the location and the implications
that can be reasoned about the fact that an application is located
at a given place at a given time. Especially in indoor scenarios,
where it is hard to determine the absolute position of an object, a
symbolic representation of the location becomes very important.
When, for example, a person enters a meeting room, where a
meeting takes place at this time, it can derive that the person is
participating in a meeting. Because indoor localization is still
difficult and usually requires a special sensing infrastructure
involving high costs and high setup efforts, this kind of location
aware services could not gained wide spread acceptance.

The ContextPoint is a device that observes the environment
and acts as a coordinator for several self-adaptive applications
within this environment. The goal of ContextPoint is to provide
an easy to install and easy to use infrastructure to enable
context-aware adaptation based on the location of the user.
Figure 3 shows a context diagram of ContextPoint with three
types of interacting services: Mobile Devices, Environmental
Devices and Cloud Services mediated by the ContextPoint. The
basic principle for interaction is locality. When a user, carrying
a mobile device, is close to a ContextPoint, information and
services implied by the location and the task of the user are
provided automatically.

In this section, we first outline the Top-Level Architecture
of the ContextPoint. Afterwards, we explain the main features
and their relation to the requirements, stated in Section I.
Furthermore, we describe how the ContextPoint architecture
relates to the concept of meta-adaptation. Finally, we outline

124Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 132 / 143

ContextPoint

ContextPoint
Participant 1

Adaptation Rules

Access Control

App Repository

Service Trader

<<ComponentType>>

ComponentTypeA

<<ComponentType>>

ComponentTypeB
<<Port Type>>

PortTypeA

requiresprovides

<<Component>>

JComponentA
<<Component>>

JComponentB
<<Port>>

JPortA

a : JComponentA b : JComponentB

a : JComponentA b : JComponentBpa : JPortA
M

eta
A

rch
itectu

re
A

rch
itectu

re
R

u
n

tim
e

R
u

n
tim

e
w

ith
P

o
rt b

o
u

n
d

SMAG Application

SMAG Runtime Environment

Real
World

Context

Sensors

Inference

Adaptation

Context
Model

<<Knowledge>>

Context
Model

<<Monitor>>

Sensors

<<Analyze>>

Inference

Meta-
Adapation

A
d

ap
tatio

n
Exte

n
sio

n

Architectures

Port Models

Components

Constraints

M

KA

P
<<Plan>>

Adaptation

<<Execute>>

SMAG Runtime Environment

+

-

§

Ports

V
arian

t Sp
ace

C
o

n
figu

ratio
n

D
es

ig
n

A

rt
ef

ac
ts

C
o

m
p

o
n

en
ts

P
o

rt
s

Runtime Environment

Root-App

App1 AppN…

M

A

P

K

M

A

P

K

SMAGs Repository

Sensors

Actuators

Services

Data

Settings

ContextPoint
Participant 2

ContextPoint
Participant N…

Location X

Mobile Devices

Environmental
Devices

Cloud

ContextPoint

Users

Fig. 4. The ContextPoint Architecture

the crucial aspect of privacy and security.

A. Top-Level-Architecture

ContextPoint is embodied as a device that is integrated in
the infrastructure of an arbitrary location, providing contextual
services by placing a mobile device at it. The ContextPoint
device as well as the mobile devices initiate communication
using Near Field Communication (NFC). Therefore, on the
mobile device a ContextPoint Root-App is running in the
background, receiving NFC-Events. When the device is placed
near the ContextPoint, it recognizes the ContextPoint’s signature
and initializes communication. The ContextPoint shares local
Wi-Fi credentials to enable the device to automatically connect
for a long-term communication. After the device connected
to the local Wi-Fi, the Root-App will register itself at the
ContextPoint device which contains a SMAGs repository storing
implementation artefacts, contextual information, and adaptation
rules; offering a Service Trader as well as providing access
control.

Figure 4 shows the Top-Level-Architecture of ContextPoint
with ContextPoint Participants as an abstraction of mobile
devices, environmental devices and cloud services which
are mediated by the ContextPoint. Each participant runs a
ContextPoint Root-App responsible for the communication
with the ContextPoint and the provision of base services for
Sensors, Actuators, Data, and Settings. This app acts as a
runtime environment for all SMAGs-Apps deployed on the
device. Each app can publish services and connect to services
offered by other participants. The Root-App is responsible
for the registration and de-registration at a ContextPoint.
After registration, different capabilities can be integrated into
the environmental infrastructure. The data delivered by the
Sensors can be used as additional data sources to construct the
ContextPoint context model. Simple services for manipulating
its Actuators as well as more complex Services can be
published at the Service Trader. In consequence, they can be
used by other applications registered at the same ContextPoint.
Furthermore, special services for accessing Data (e.g., user
profile) or reading and manipulating the devices Settings can
be published, to externally change the state of a device or
service.

B. Location Specific Apps

In the App Repository of ContextPoint, location specific apps
(e.g., a slide-presentation app for a meeting room) can be stored
together with general metadata, contextual information and
access rights. When a mobile device registers at a ContextPoint,
the Root-App queries the App Repository and presents an
overview of all available apps to the user. Based on the user’s
identity, this list might be filtered according to the access
rights of the applications and roles of the user (e.g., speaker)
and the current context. Furthermore, the list can be filtered
and prioritized using contextual information (e.g., business
applications) and application specific metadata using roles. The
user can then select apps that are automatically installed within
the Root-App. Together with the application, the ContextPoint
device provides a context- and user-specific initial configuration
(e.g., use the meeting room’s projector as a default presentation
device). This automatic App-Provisioning covers requirement
R3.

C. Location Specific Settings

Each participant can expose read and write services for its
settings to the environment. Alongside with a capability model
of the participant, an access control component is generated by
the Root-App. Based on the context, the user and the defined
access rights, other devices as well as the ContextPoint itself
can evaluate and change the settings of the participant (e.g.,
mute the mobile device). This kind of parameterized adaptation
allows to change the state of a participant in unforeseen ways,
addressing requirement R1.

D. Service Trader

SMAGs applications can offer a subset of their provided
functionality for remote access (e.g., an interface to present and
control a presentation on a smart projector). Those dynamically
published services can be registered at the ContextPoint.
Alongside with the structural description, a subset of the
applications’ context model, the identity and metadata of the
owning user as well as the functionality can be published. Other
participants can search for required services that are appropriate
with respect to their own context (e.g., search for presentation
services). This search is provided by the Service Trader R2.

E. Checkout

A participant can be signed off from the ContextPoint by
either using a checkout service of the Root-App or when the
connection to the ContextPoint is lost. SMAGs Repositories
can be interconnected by a Peer-to-Peer network [6]. This
infrastructure is used to notify ContextPoint devices when a
participant signs in another ContextPoint. In order to avoid
concurring adaptations, ContextPoints will close the connection
to participants that are still signed in, but have been detected
at another ContextPoint devices.

F. Meta Adaptation

In the SMAGs approach, the MAPE-K loop is modelled
explicitly using a component architecture, whereby the flow
between the components is modelled implictly using events.
As depicted in Figure 4, the ContextPoint runs a MAPE-K

125Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 133 / 143

loop that can adapt participants. Like any other SMAG-based
control loop, the loop itself is a SMAGs application.

Consequently different adaptation strategies and context
models can be used for different participants or situations. The
ContextPoint gathers contextual information using sensors ex-
posed by other participants (e.g., mobile devices, environmental
sensors) and stores this information in its local context model.
The execution layer of this control loop is the SMAGs runtime
environment of the corresponding participant. This allows
the ContextPoint to query a participants application runtime
model to decide whether or not an adaptation is necessary.
Since SMAGs supports parametrized, control-flow based, and
compositional adaptation; all three adaptation mechanisms can
be used to adapt the MAPE-K loop. This Meta Adaptation
triggered by the environment supports adaptation that the
developer initially did not foresee, which supports requirement
R1. Since meta-adaptive SMAGs apps can dynamically connect
several applications within one control-flow, also requirement
R2 is tackled.

G. Security and Privacy

We are aware that the proposed architecture creates serious
security (e.g., abuse of devices) and privacy (e.g., unauthorized
access to personal data) threats. On the one hand, the owner
of a ContextPoint device must be sure that only approved
participants can get access to the provided service- and data-
infrastructure. On the other hand, a participant wants to make
sure that private data cannot be accessed by other participants
and that neither data nor services from potentially compromised
sources are used. Because the software running on ContextPoint
devices and the participants devices is realized by SMAGs
applications, the role-based adaptation mechanism can be used
for security and privacy adaptation. Currently, the following
mechanisms are included: First, every ContextPoint device has
at least one owner that can regulate which participants can
sign in. By default two sign-in strategies are supported. Either
the owner grants the access for all users, or he has to confirm
each user. Second, in order to ensure client-side privacy, Filter-
Ports [6] can be used to restrict access functionality offered
by a component. Special Access Ports by default restrict any
access to the underlying functionality, only granting access to
those participants the user has defined. Hence, within the Root-
App the user has the possibility to define which services can
be used by which other participants. One serious threat is the
possible abuse of the capabilities of Meta Adaptation. One way
to address this issue is to use Access-Ports for the MAPE-K
loop, too. Because the services of the runtime environment for
querying the application model and executing reconfiguration
scripts are SMAGs Ports, Filter-Ports can equally be used
to restrict the access to the remote services of the runtime
environment. When a user does not trust the ContextPoint at
a given location he can force the application to not expose
any information about the application architectures and forbid
any remote access to the reconfiguration system.Security and
privacy threats are important topics for adaptive systems in
general, especially in extrinsic unanticipated adaptation. We
argue that the role-based adaptation mechanism of SMAGs is
a well suited mechanism towards safe and secure self-adaptive
systems, which is to be investigated in detail in future work.

V. IMPLEMENTATION

To show that the proposed architecture concept for location-
based extrinsic Meta Adaptation is feasible, we have imple-
mented ContextPoint as well as several ContextPoint apps
using the Java-based implementation of the Smart Application
Grids runtime environment. As ContextPoint device, we used
a Windows 7 notebook with a Standard JVM. In future, we
plan to investigate the use of a Raspberry Pi [15] due to
its smaller dimensions and lower energy consumption. On
the notebook a ContextPoint application was running on top
of the SMAGs runtime environment, supporting the features
presented in Section IV. A USB NFC Reader was connected
to the notebook for the initial sign-in procedure for NFC-ready
mobile devices. As a mobile, device we used a Nexus 7 Android
tablet with Android version 4.1.

Our sample scenario is based on a smart meeting room with
a built-in, remotely controllable projector, a light system and the
ContextPoint device. When a person enters the meeting room he
holds his smartphone against the ContextPoint, which exchanges
the local Wi-Fi credentials via NFC. The Mother-App running
on the smartphone receives the ID of the ContextPoint and
the Wi-Fi credentials. Afterwards the user is asked if the
smartphone should login into the local Wi-Fi. After the user
confirmed to log in, the Mother-App scans the local Wi-Fi
for the ContextPoint with the given ID using the Universal
Plug and Play (UPNP) protocol. When the Mother-App has
found the corresponding ContextPoint it uses the registration
API to authenticate and publish a description of available
services. In this case the smartphone exposes a brightness
sensor that can be used to determine the rooms brightness. The
ContextPoint determines via its context model that a meeting
is taking place in this room at the time the person enters the
room. Based on a rule, the owner of the ContextPoint defined,
the smartphone is muted by the ContextPoint (Requirement
R1). Furthermore, a ”meeting app” and a ”presentation app”
are offered to the user (Requirement R3). The meeting app
provides the user with meeting specific information that is
preconfigured to show the goal and agenda of the meeting as
well as all logged-in participants alongside with their shared
profile information of this particular meeting. The presentation
app lists all presentation files on the device as well as on the
cloud storage associated to the user and offers the capability
to start them in a slide show. Based on the information of
the context model, the ContextPoint automatically deploys
a Filter-Port that orders the presentations by their defined
category, so that meeting related presentations are shown first
(Requirement R1). For the slide show functionality each slide
can be shown on a presentation device which is by default
the screen of the device executing the app. Within the room
a projector is installed which can be used remotely as a
presentation device. Therefore, another notebook is connected
to the projector via cable, running a SMAGs app that remotely
offers the ”ISlideShowPresenter” interface. The ContextPoint
device offers to dynamically connect the projector with the
presenter app to extend the display (Requirement R2). When
the user agrees, the slide-show is automatically presented using
the rooms projector. Whenever a slide changes, metadata about
the slides is transferred along with the original content. The
ContextPoint can dynamically include a Port Model within the
presentation app that investigates the metadata of each slide
when it is shown. When the brightness in the room is high

126Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 134 / 143

(sensed by the brightness sensor) and media content is shown
(e.g., a video within the slide), the Port Model automatically
controls the rooms light system to decrease the brightness
and increase the visibility of the video (Requirements R1 and
R2). Afterwards it will illuminate the room again. This sample
application was deployed on exemplary meeting room setup
on a local exhibition. With the realization of this example we
have shown that the presented approach supports the presented
requirements within this scenario.

VI. RELATED WORK

Much research has been done in the field of self-adaptive
and context-aware systems. Especially, in the domain of mobile
and ubiquitous computing, numerous research projects were
conducted. One of the first context-aware systems was ParcTab,
developed by Schilit in 1993 [16]. ParcTabs are individual
mobile devices that are dynamically connected to other devices
based on their location. At that time the major problem is
to physically connect those devices using a heterogeneous
network infrastructure. While those issues were solved over
the last decades, current research problems mainly focus to
autonomously provide the best suited services on the desired
devices based on the users location, time, and surroundings.

Many context-aware and location-based applications have
been developed. Bravo et al. presented a self-adaptive, context-
aware conference application using RFID tags for localizing
people within a conference building and distributed applications
sensing a shared context (including the current location of
the conference attendees) provided by a central server [17].
There are also other location-based services based on NFC-
Tags for advertisement [18] and content delivery [18]. All these
examples show that a lot of different use cases for context-
aware systems exist, which all treat location as a central aspect.
The commonality between these approaches is that they have
implemented their own architecture designed for their specific,
individual usage scenario. All those architectures support
a subset of the adaptation capabilities of the ContextPoint
approach. Thus, ContextPoint can be used as a platform for
context-aware and location-based applications as it supports all
required features of the discussed examples.

Another large research field concentrates on location-based
services. Huebscher and McCann, for instance, presented a
middleware for location-based, context-aware applications in
smart home environments [19]. In their approach, the context
(e.g., location, activity, etc.) is provided by Context Services,
which analyse data delivered by one or more Context Providers.
Based on the interpretation of the context, services are selected
for a current activity of the user. This is similar to the Service
Trader architecture of the ContextPoint approach. Nevertheless,
they neglect that service selection is only one aspect of context-
aware adaptation. Furthermore, traditional service-oriented
approaches cannot individualize single services for multiple
clients (only for every user or none). Since roles can adapt the
behaviour of a player based on relationships, a single service
instance can have different behaviour depending on the client
using this service.

Other research projects aimed to design variable MAPE-
K loops in order to adjust the adaptation process. In most
of the cases, only the monitoring and analyse phase can be

extended at runtime. The MUSIC project, for example, proposed
a self-adaptive architecture for mobile devices with Context
Plug-Ins [20]. This plug-in infrastructure enables to change
the adaptation process. Even though, the MUSIC architecture
does not prohibit the introduction and activation of plug-ins
at runtime, it is only possible to extend the monitoring and
analyse phase with new sensors and reasoners. In contrast, the
ContextPoint architecture allows to exchange the operation of
the whole MAPE-K loop (e.g., use alternative context model
representations, introduce new planners or even change the
control flow between the elements of the control loop).

Other approaches in the area of adaptive systems in mobile
scenarios with context-aware extensible adaptation focus on
the content presented on the device. While those approaches
use a similar distributed architecture, they provide user-profile
and device-capability adapted content [21]. The fine-grained
structure of the applications cannot be adapted and the overall
behaviour of an application cannot be changed. Van Sinderen
et al. propose an architecture for context-aware adaptation for
faster static evolution (i.e., at design-time) of self-adaptive
systems [22]. Therefore, ECA-Rules are evaluated against a
distributed context-management infrastructure to steer adapta-
tion and context-dependent services. For adaptation they focus
on component replacement and reconnection, the drawbacks
are discussed in [6]. Like in the proposed ContextPoint
architecture the monitoring and analyse phase can be distributed
across the environment, while in their concept the plan and
execute phase are integrated within the application. This,
however, hinders the adaptation to unanticipated scenarios for
mobile devices, because concepts that were not considered
during design-time of the ECA rules cannot be handled at
runtime. The presented Meta Adaptation architecture was first
conceptualized by Perrouin et al. [23]. They describe how Meta
Adaptation can be used to adapt MAPE-K loops at runtime
in order to adjust the adaptation process to the requirements
arising from contextual changes. The ContextPoint architecture
can be seen as a concrete implementation of this concept.
Combined with the reconfiguration capabilities of SMAGs, fine
grained and cross-cutting reconfigurations of an applications
MAPE-K loop can be modelled and realized. The proposed
architecture for location-based external Meta Adaptation aims
to dynamically connect local devices to build ad-hoc SoS.
Weyns et al. proposed three different architectural styles of self-
adaptation for SoS [24]. In his classification, the proposed
Meta Adaptation architecture would be categorized as an
instance of the Collaborative Adaptations architectural style
with multiple hierarchical MAPE-K loops. These are able to
include the information extracted in the monitoring phase and to
reconfigure these loops during execution phase. The presented
approach forms a Service-Oriented Architecture (SOA) [25],
since all applications expose services that can be integrated
into other applications. Traditionally, SOA-based approaches
rely on Web Services. As discussed by Piechnick et al. [6],
adaptation in classical Web-Service-based solutions use adaptive
orchestration or choreography. On the one hand, the selection
of services (i.e., which service instances), on the other hand,
the process itself (i.e., control- and data-flow between the
services) can be varied, to adapt the behaviour of the overall
application. Especially the service selection corresponds to
adaptation with component replacement (see Section II). In
contrast, SMAGs allows for varying the behavior of a single

127Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 135 / 143

instance of a service based on the environmental situation and
the calling instance without the need to replace/create entire
service instances, which is important for stateful services, when
the state cannot be transferred easily. Web Services can be used
as a platform-independent communication infrastructure instead
of the current socket-based realization in SMAGs, whereby the
implementation of a service is a SMAGs component that can
be adapted using roles.

VII. CONCLUSION AND FUTURE WORK

Mobile devices changed the use and development of
software fundamentally. In the future, users will expect that
apps for mobile devices automatically adapt their behaviour
based on their physical location, their user profile, and the
current task. Furthermore, cheap, standardized, and easy to
install sensors and actuators for smart environments offer
new possibilities to gather environmental information. This
in turn will extend the functionality of a mobile device towards
environmental services. Traditionally, adaptive systems are
based an a self-adaptive control loop within the application,
which senses the environment and coordinates reconfiguration.
In this paper, we showed how the adaptation architecture of
Smart Application Grids can be used for Meta Adaptation and,
in consequence, to support unanticipated scenarios. Because
the MAPE-K loop of SMAGs applications is itself designed
as SMAGs components, it can be adapted at runtime as well.
This allows to create MAPE-K loops in other applications
that reconfigure the adaptation process of the original self-
adaptive system. Furthermore, we presented an architecture for
smart environments, the ContextPoint approach, which aims to
provide location-specific unanticipated adaptation. Therefore,
the symbolic location of a mobile device is determined by NFC
communication with a ContextPoint device. The ContextPoint
offers location- and context-specific apps, a Meta Adaptation
infrastructure to adapt the participating devices as well as
applications running on them in unforeseen ways. Thus, it
fully supports unanticipated adaptation, runtime application
composition, and automatic application provisioning. For future
work, security and privacy issues must be investigated, since
those aspects are crucial for a real world application. Further-
more, it must be investigated if low cost computing devices are
suitable to handle multiple participants. Additionally, it should
be investigated, which of the architectural styles, according to
Weyns et al. [24], are suitable for Meta Adaptation.

ACKNOWLEDGMENT

This work is supported by the German Research Foundation
(DFG) within the Cluster of Excellence “Center for Advancing
Electronics Dresden”, the Collaborative Research Center 912
“Highly Adaptive Energy-Efficient Computing” and the research
training group ’Role-Based Software-Infrastructures’.

REFERENCES

[1] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, Jan. 2003, pp. 41–50.

[2] W. Pree, “Meta patterns - a means for capturing the essentials of reusable
object-oriented design,” in Object-Oriented Programming. Springer,
1994, pp. 150–162.

[3] B. Morin et al., “An aspect-oriented and model-driven approach for
managing dynamic variability,” in Model Driven Engineering Languages
and Systems, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2008, vol. 5301, pp. 782–796.

[4] OMG, Meta Object Facility (MOF) Core Specification Version 2.0, 2006.
[Online]. Available: http://www.omg.org/cgi-bin/doc?formal/2006-01-01
[retrieved: April, 2014]

[5] U. Aßmann, Invasive software composition. Springer, 2003.
[6] C. Piechnick, S. Richly, S. Götz, C. Wilke, and U. Aßmann, “Using

role-based composition to support unanticipated, dynamic adaptation-
smart application grids,” in ADAPTIVE 2012, The Fourth International
Conference on Adaptive and Self-Adaptive Systems and Applications,
Nice, France, 2012, pp. 93–102.

[7] T. Reenskaug, P. Wold, and O. A. Lehne, Working with objects - the
OOram software engineering method. Manning, 1996.

[8] J. Hillman and I. Warren, “Meta-adaptation in autonomic systems,” in
Distributed Computing Systems, 2004. FTDCS 2004. Proceedings. 10th
IEEE International Workshop on Future Trends of, 2004, pp. 292–298.

[9] A. K. Dey, “Understanding and using context,” Personal Ubiquitous
Comput., vol. 5, no. 1, Jan. 2001, pp. 4–7.

[10] B. Schilit, N. Adams, and R. Want, “Context-aware computing applica-
tions,” in Proceedings of the 1994 First Workshop on Mobile Computing
Systems and Applications, ser. WMCSA ’94. Washington, DC, USA:
IEEE Computer Society, 1994, pp. 85–90.

[11] S. Greenberg, “Context as a dynamic construct,” Hum.-Comput. Interact.,
vol. 16, no. 2, 2001, pp. 257–268.

[12] J. Coutaz, J. L. Crowley, S. Dobson, and D. Garlan, “Context is key,”
Commun. ACM, vol. 48, no. 3, 2005, pp. 49–53.

[13] A. Zimmermann, A. Lorenz, and R. Oppermann, “An operational
definition of context,” in Modeling and Using Context, ser. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2007, vol.
4635, pp. 558–571.

[14] A. Schmidt, M. Beigl, and H. w. Gellersen, “There is more to context
than location,” Computers and Graphics, vol. 23, 1998, pp. 893–901.

[15] “Raspberry Pi,” http://www.raspberrypi.org/, visited 05/05/2014.
[16] B. Schilit, N. Adams, R. Gold, M. Tso, and R. Want, “The parctab

mobile computing system,” in Workstation Operating Systems, 1993.
Proceedings., Fourth Workshop on, Napa, CA, 1993, pp. 34–39.

[17] J. Bravo, R. Hervs, I. Snchez, G. Chavira, and S. Nava, “Visualization
services in a conference context: An approach by rfid technology,” j-jucs,
vol. 12, no. 3, 2006, pp. 270–283.

[18] M. Hardt and S. Nath, “Privacy-aware personalization for mobile
advertising,” in Proceedings of the 2012 ACM Conference on Computer
and Communications Security, ser. CCS ’12. New York, NY, USA:
ACM, 2012, pp. 662–673.

[19] M. C. Huebscher and J. A. McCann, “Adaptive middleware for context-
aware applications in smart-homes,” in Proceedings of the 2Nd Workshop
on Middleware for Pervasive and Ad-hoc Computing, ser. MPAC ’04.
New York, NY, USA: ACM, 2004, pp. 111–116.

[20] N. Paspallis et al., “A pluggable and reconfigurable architecture for
a context-aware enabling middleware system,” in On the Move to
Meaningful Internet Systems, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2008, vol. 5331, pp. 553–570.

[21] T. Lemlouma and N. Layaida, “Context-aware adaptation for mobile
devices,” in Mobile Data Management, 2004. Proceedings. 2004 IEEE
International Conference on, Berkeley, CA, USA, 2004, pp. 106–111.

[22] M. van Sinderen, A. Van Halteren, M. Wegdam, H. Meeuwissen,
and E. Eertink, “Supporting context-aware mobile applications: an
infrastructure approach,” Communications Magazine, IEEE, vol. 44,
no. 9, 2006, pp. 96–104.

[23] G. Perrouin et al., “Towards flexible evolution of dynamically adaptive
systems,” in Proceedings of the 34th International Conference on
Software Engineering, ser. ICSE ’12. Piscataway, NJ, USA: IEEE
Press, 2012, pp. 1353–1356.

[24] D. Weyns and J. Andersson, “On the challenges of self-adaptation in
systems of systems,” in Proceedings of the First International Workshop
on Software Engineering for Systems-of-Systems, ser. SESoS ’13.
Montpellier, France: ACM, 2013, pp. 47–51.

[25] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA: Service Oriented
Architecture Best Practices, 8th ed. Prentice Hall Professional Technical
Reference, 2005.

128Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 136 / 143

Adaptive Scheduling of Smart Home Appliances Using Fuzzy Goal Programming

Honggang Bu and Kendall E. Nygard
Department of Computer Science

 North Dakota State University

Fargo, ND, 58108, USA

Honggang.bu@my.ndsu.edu, kendall.nygard@ndsu.edu

Abstract-A smart electrical grid is highly instrumented and can

be intelligently controlled. We describe a smart grid study in

which we assume that utilities dynamically price electrical

power to help regulate supply and demand balance, and that

consumers have the ability to intelligently schedule times for

the operation of their home appliances in response to prices.

We present a mixed integer linear fuzzy goal programming

with priorities imposed on different appliances. The goal

programming formulation allows time preference constraints

to be elastic rather than rigid. Another important feature of

the model is flexibility of time slot delays for pairs of

appliances for which the operation of one must follow the other

(a washer/dryer pair for example). Numerical experimental

results based on real spot prices for electricity are presented.

In addition, computational time and the influence of time slot

lengths and priorities are discussed.

Keywords-Smart grid; Dynamic Pricing; Adaptive Systems;

Optimization.

I. INTRODUCTION

Dynamic electricity pricing on an hourly basis is

increasingly common in the United States [1]. This pricing

policy is intended to help reduce system peak demand and

also shift some load to off-peak, less expensive time periods.

This can achieve more balance between energy demand and

generation. Hourly pricing provides customers with

opportunities to reduce their costs by managing the times at

which electricity is consumed in the home. Smart appliances

that can be accessed and controlled under the expanded

addressing space of Internet Protocol version 6 (IPv6) are

becoming common, and older appliances can be IP

controlled through devices such as smart power bars.

Several studies on optimal scheduling of home

appliances have been reported. Using Markov chains to

model both energy prices and residential device usage, an

energy management system called CAES for residential

demand response applications to reduce residential energy

costs and smooth energy usage was proposed [2]. In

developing a Mixed Integer Linear Programming (MILP)

problem formulation for electricity management in multiple

homes, Oliveira et al. considered both cost and variations in

the availability of the power supply [3]. Sou et al. proposed

an MILP formulation with discrete time-slots [4]. In that

model, one execution period (e.g., one day) is discretized

into a prescribed number of uniform time slots. Amounts of

energy are assigned to each time slot for each phase of

appliance operation. Inspired by the model of Sou, Wu

included the CO2 footprint cost into the objective function

by giving it a weight for modeling environmental concerns

[5]. Giorgio developed a similar MILP formulation, but also

included domestic renewable energy and batteries as energy

sources [6].

In our work, we schedule home appliances using time

slots and a MILP, based on portions of the existing work [4].

We expand the approach by adopting a fuzzy goal

programming formulation [8]. Our model supports priority

distinctions for the different appliances, and rigid time

preference constraints are transformed into soft ones and

included in the fuzzy goal programming framework with

priorities. In addition, we devised constraints for modeling

alternative delay times between running times of closely

related appliances. The new method uses electricity prices

known 24 hours in advance; so, the scheduling is exactly

one day ahead.

Section II briefly introduces the concept of MILP and

fuzzy goal programming; Section III presents the

mathematical formulation for our mixed integer linear fuzzy

goal programming model; Section IV provides the

numerical experiments and results; and Section V presents

the conclusions.

II. MILP AND GOAL PROGRAMMING

MILP is a widely used subset of mathematical

programming in which the objective function is a linear

function of the decision variables, which can be either

integer or non-integer. Each constraint is formed from a

linear combination of the decision variables [7].

When multiple, conflicting objectives or goals are

involved in an optimization problem, goal programming is a

powerful and effective tool. The two major differences of

goal programming from conventional single-objective linear

programming are the incorporation of flexibility in the

constraint functions, and the satisficing approach that seeks

a balanced and practical solution rather than an absolute

optimal one [8]. To solve optimization problem with

multiple conflicting goals using fuzzy goal programming,

which is also called Chebyshev goal programming [8], each

original single goal is first optimized to get the

corresponding optimal goal value, then a solution that

129Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 137 / 143

minimizes the maximum deviation from any single

optimized goal value is sought. Based on the degree of

importance of each goal, priorities can be added to these

deviations to reflect different penalties applied to different

failures to meet the optimal goals [9]. A new general goal

based on the weighted sum of deviations can therefore be

formed and solved.

III. MATHEMATICAL FORMULATION

A. Assumptions and Parameters

We define an energy phase as an uninterruptible sub-

process of the entire operation process of an appliance.

Each appliance has a single phase or multiple energy phases

that must be operated in sequence, with each using a pre-

specified amount of electrical energy. The technical

specifications of appliances defined by the manufacturers of

appliances must be met. Constraints are employed to ensure

the sequential operations of some appliances, to model the

delay between the running of two closely related appliances,

to ensure that the total energy consumed within a certain

period does not exceed the peak energy allowed, and to

ensure that user time preferences are met. The overall

objective of the model is to produce the schedule for

running the appliances that saves a consumer as much

energy cost as possible, while meeting all of the constraints.

Our MILP formulation is for a single 24-hour day. Each

hour is uniformly discretized into time slots, so that the

number of total time slots in a day is 24* . N is the

number of appliances, and for each appliance i (
), is the number of uninterruptible energy phases

for each appliance.

Parameters ()

satisfying ∑
 , are used to model the priorities

assigned to each single deviation goal in the fuzzy goal

programming model. Here, is for the

deviation goals for each corresponding appliance energy

cost, and is the priority for the user time preference

penalty deviation goal.

is specified by the user according to their preferences for

different appliances.

 represents the nominal

processing time for energy phase for appliance in

minutes, and () are lower and

upper processing time limit factors for energy phase of

appliance . To denote the lower and upper limits of power

assignment, respectively, to the corresponding energy phase,

 and

 are introduced. The delay between two energy

phases of an appliance is restricted by and , the

appliance technical specifications defining the lower and

upper delay time, respectively, in minutes. is used to

denote the total energy that a phase should use according to

the technical specification.

B. Decision variables

Real (continuous) decision variables

 are used to indicate

the energy assigned to energy phase of appliance during

the period of time slot .

 To indicate during time slot k whether a particular

energy phase of appliance is being processed, a series of

binary decision variables
 { } are used, with

indicating energy phase being processed, and otherwise not

being processed.

Binary variables
 { } are utilized to indicate

whether the processing of a particular energy phase is

already finished by a particular time slot. If and only if

 , energy phase j of appliance is complete by time

slot .

To indicate whether appliance is making a transition

between energy phase to at time slot , binary

variables
 are utilized.

 if and only

if during time slot , the appliance has finished energy

phase in some earlier time slot, but the energy phase
has not yet started. These variables are useful for restricting

the delay between energy phases of an appliance.

For the fuzzy goals, parameters

 are introduced to denote the normalized

maximum deviation between the best and the worst values

of each single objective function. Specifically,

 are for the corresponding appliances, and is
for the user time preference.

C. Constraints

 1) Single appliance energy cost objective function:

The total electricity cost for appliance during the entire

execution period, denoted by , is

 ∑ ∑

 (1)

where, denotes the electricity price for time slot .

 2) Objective function for user time preference violation

penalty: Here, we consider a simple user time preference in

which the household user divides the day into two general

parts: one that can be used to run a certain appliance and the

other one cannot. Rather than use rigid constraints to

absolutely prohibit using an appliance during the non-

preferred time, we allow the time period to be used but

impose a penalty on doing so. Let
 { } denote the

user time preference interval, and
 if and only if

none of the energy phase of appliance is to be run during

time slot . Assume
 ,

 , and
 is the first,

middle, and the last slot number of the whole user

prohibited time period (which is continuous) for appliance ,
respectively; then the penalty for using prohibited time is

expressed as

 ∑ ∑ ∑
 |

 |

 (2)

130Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 138 / 143

where, is a constant, and
 [

 ⁄].

This is the objective function for the violation penalty for a

user time preference, and is denoted as . Note that this

function is a weighted penalty in that the closer to the

middle of the prohibited time zone, the higher penalty that

results.

 3) Maximum single objective deviation constraints: Let

 and be the best possible and worst possible values,

respectively, for the single objective, then we have the

following constraints:

 ⁄ (3)

 (4)

Each represents the worst deviation

level for the objective. Each and are obtained by

optimizing corresponding and alone, respectively,

without regard to other objectives. The expression
 in (3) helps normalize the objective deviation level and

thus adjust different levels to similar fluctuation ranges.

With the normalized deviation levels, applying desired

priorities to different objectives is easier. In consideration of

the interaction between or among appliances and user time

preferences, may be close to but not the real possible

optimal single objective value. So, an auxiliary coefficient

 is incorporated to to help use a better objective value

than the “false” best possible value. Since in this study the

best single objective value is the minimum value, should

be a positive constant and less than 1.

 4) Sequential processing between appliances: Suppose

appliance ̃ must be finished before appliance starts (for

example, the washing machine operations must be finished

before the dryer starts), then the following constraint

restricting the relationship between the last energy phase of

the appliance ̃ and the first energy phase of appliance
must be satisfied:

 ̃ ̃

 (5)

 5) Between-appliance delay: In reality, some appliances

are more closely related than just following the constraints

restricting their sequential processing. For example, the

dryer can start running only after the washing machine is

finished, as specified by (5), and in practice the delay

between the two appliances usually cannot be very large.

Suppose, for example, that if the dryer must start working

within 3 time slots after the washing machine is done, then

the following constraints holds:

 ̃ ̃

 ̃ ̃

 ̃ ̃

 , (6)

These constraints should be used together with (5),

namely, appliance ̃ and must satisfy (5) first.

To establish that these constraints are theoretically

correct, consider the logic below.

If is the first time slot after the last energy phase of

appliance ̃ is finished, then is the last slot when the

last energy phase of appliance ̃ is being processed. This

also implies:

 i) When , ̃ ̃

 ̃ ̃

 , and ̃ ̃

 , so,

the left side of the constraints is always equal to or less than

0. In this case, the constraints hold. Also in this case, the

appliances sequential processing constraints ensure that all

 .

 ii) When , ̃ ̃

 ̃ ̃

 , and ̃ ̃

 , so,

the left side of the constraints is always equal to 1. In this

case, the constraints require that at least one of the time slots

right after the finishing of the previous appliance must be

used to start processing of the second appliance.

 iii) When , ̃ ̃

 ̃ ̃

 , and ̃ ̃

 , so, the

left side of the constraints is always equal to 0. In this case,

the constraints hold.

 6) Sequential processing between energy phases:

Usually an energy phase of an appliance cannot start

working unless its preceding phases have finished. The

following constraints specify this condition:

 (7)

 7) Between-phase delay: The delay between two energy

phases of an appliance is restricted to a specific range.

Suppose that and are the appliance technical

specifications defining the lower and upper delay,

respectively, in minutes, then the following constraints must

be satisfied:

 ⌈

 ⌉ ∑

 ⌊

 ⌋ (8)

 (9)

 8) Uninterruptible operation of an energy phase: To

ensure the integrity and continuity of an energy phase, the

following constraints should be satisfied:

 (10)

 (11)

 (12)

 9) Energy phase process time limits: Process time limits

are enforced by the following constraint:

 ⌈

 ⌉ ∑

 ⌊

 ⌋ (13)

where is the number of time slots in each hour, is the

nominal processing time for energy phase in appliance in

minutes, and () are the lower

and upper processing time limits factor for energy phase in

appliance .
 10) Energy phase energy assignment requirement and

bounds: Each energy phase uses a certain amount of energy

 specified by the manufacturer:

 ∑

 (14)

To ensure power safety, the total energy assigned in any

time slot is not allowed to exceed the peak signal or in other

words the total slot energy upper bound:

 ∑ ∑

 (15)

The energy assignment in any time slot for each energy

phase of each appliance should satisfy the following

constraint:

131Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 139 / 143

 (16)

where,
 and

 are the lower and upper limits of power

(not energy) assignment, respectively, to the corresponding

energy phase. These limits are specified by the appliance

manufacturer.

 11) Basic decision variable constraints:

 (17)

 { } (18)

 { } (19)

 { } (20)

D. Cost function

Finally, the following total cost function, which

represents the weighted sum of the maximum objective

deviation from each single goal, is specified:

 ∑

 (21)

E. General formulation

The general formulation of the proposed framework is

summarized as follows:

Subject to: Constraints (3)-(20)

This is a MILP formulation transformed from the fuzzy

goal programming formulation, and it can be solved using

classical algorithms or heuristic search methods [4][5].

IV. NUMERICAL EXPERIMENTS

All experiments were conducted on a desktop computer

with an Intel
R
 Core

TM
 3.40GHz CPU and 16GB RAM. The

optimization problem was solved using MATLAB interface

of YALMIP and IBM ILOG CPLEX 12.5 solver

[10][11][12].

The 24-hour ahead hourly electricity price data of Nov.

3
rd

, 2013, for Long Island of New York State used in this

paper was taken from the NYISO [13]. From midnight to

next midnight, these predicted pricing data in USD/MWh

were 32.19, 27.63, 26.51, 24.6, 26.41, 22.57, 27.21, 28.6,

31.45, 35.64, 36.35, 36.86, 36.87, 36.21, 34.82, 35.17, 41.37,

57.86, 54.65, 55.44, 50.31, 45.73, 39.02, and 35.67. From

these data it can be seen that the highest price (57.86) was

2.56 times the lowest price (22.57).

This study involved three controllable same smart home

appliances including a dish washer, a washing machine, and

a dryer, similar to those used by Sou et al. [4]. Three

different lengths of time slot, 3 minutes, 5 minutes, and 10

minutes, were investigated in the numerical experiments.

The dishwasher is not supposed to be run during midnight to

7 o’clock in the morning, and both the washing machine and

dryer are not supposed to be run during midnight to 6

o’clock in the morning. The parameter , which is the

penalty term for using user prohibited time, was set to 1.1.

The dryer can only start working after the washing machine

has finished, and the delay between them should be no more

than 3 time slots. The parameters in (8) for all phases is

assumed to be 0, and in (8) for the dishwasher, washing

machine and dryer were set to 5, 10, and 0 minutes,

respectively. The parameters and in (13) were set to 0.8

and 1.2, respectively. The peak signals in (15) for 3-minute,

5-minute, and 10-minute time slots are assumed to be 3300

Wh, 5500 Wh, and 11000 Wh, respectively. The dishwasher,

washing machine and dryer have 6, 8, and 1 energy phases,

respectively. The parameter in (3) was set to 0.5. The

detailed technical specifications of the three appliances are

shown in Table I through Table III. All of the rest of the

parameter values can be found in these tables. Three

representative user priority combinations

for the objective function were selected for study, as is listed

in Table IV. In reality, all the priority choices are made by

the users and completely up to them with regard to their

preferences.

TABLE I. DISHWASHER TECHNICAL SPECIFICATIONS

energy phase Energy

required

(Wh)

Min

power

(W)

Max

power

(W)

Nominal

operation

time (min)

pre-wash 16 6.47 140 14.9

Wash 751.2 140.26 2117.8 32.1

1st rinse 17.3 10.28 132.4 10.1

Drain 1.6 2.26 136.2 4.3

2nd rinse 572.3 187.3 2143 18.3

drain & dry 1.7 0.2 2.3 52.4

TABLE II. WASHING MACHINE TECHNICAL SPECIFICATIONS

energy phase Energy

required

(Wh)

Min

power

(W)

Max

power

(W)

Nominal

operation

time (min)

movement 118 27.231 2100 26

pre-heating 5.5 5 300 6.6

Heating 2054.9 206.523 2200 59.7

Maintenance 36.6 11.035 200 19.9

Cooling 18 10.8 500 10

1st rinse 18 10.385 700 10.4

2nd rinse 17 9.903 700 10.3

3rd rinse 78 23.636 1170 19.8

TABLE III. DRYER TECHNICAL SPECIFICATIONS

energy phase Energy

required

(Wh)

Min

power

(W)

Max

power

(W)

Nominal

operation

time (min)

Drying 2426.3 120.51 1454 120.8

132Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 140 / 143

TABLE IV. USER PRIORITIES FOR THREE APPLIANCES AND

USER TIME PREFERENCE

Priority choice 1 2 3

Dishwasher 0.2 0.1 0.4

washing machine 0.2 0.2 0.3

Dryer 0.3 0.2 0.2

user time preference 0.3 0.5 0.1

V. DISCUSSION OF RESULTS

A. Computational time

Prematurely terminating the optimization process using

the first feasible solution terminating condition can

dramatically save computational time and at the same time

have little influence on the final objective function value.

Table V lists the relative extra time cost in using the default

optimal solution terminating condition compared to using

the first feasible solution terminating condition. Table VI

shows the relative objective function error between the two

terminating strategies. In view of this fact, our study

adopted the first feasible terminating strategy in the

remaining experiments.

TABLE V. RELATIVE EXTRA TIME COST (%)

Priority

choice

10-min

time slot

5-min

time slot

3-min

time slot

1 121.9013 290.0044 171.1622

2 49.74624 193.8439 158.5955

3 19.67994 225.2939 328.6174

average 63.77581 236.3807 219.4584

TABLE VI. RELATIVE OBJECTIVE ERROR (%)

Priority

choice

10-min time

slot

5-min time

slot

3-min time

slot

1 4.107487 3.16173 2.773725

2 2.172829 3.354763 4.889764

3 1.636755 1.867869 0.46734

average 2.639024 2.794787 2.710276

B. Influence of time slot length on electricity cost

The relative extra total electricity cost using the worst

solution instead of the best solution is used to facilitate the

investigation of the influence of time slot length on

electricity cost, and the results are shown in Table VII. Here,

the total electricity cost refers to the sum of the three single

appliance energy cost objectives specified in (1). From

Table VII, it can be seen that the worst-case total energy

cost is approximately double that of the best case. The

average relative extra energy cost for each time slot

indicates no obvious cost savings between the 10-min time

slot and the 5-min time slot, while the 3-min time slot can

save significant money. This is because the smaller the time

slot length, the more flexibility for appliances scheduling.

However, the computation time for the 3-min time slot case

is more than 3 times and 10 times that for the 5-min and 10-

min time slot case, respectively. This illustrates the tradeoff

between time slot size and computational time.

TABLE VII. RELATIVE EXTRA TOTAL ELECTRICITY COST (%)

Priority

choice

10-min

time slot

5-min

time slot

3-min

time slot

average for

each priority

1 98.25 103.91 112.22 104.79

2 101.40 102.01 110.13 104.52

3 113.56 106.73 113.64 111.31

average for
each time slot

104.40 104.22 112.00 106.87
(overall

average)

C. Influence of objective priority choice on electricity cost

The influence of the single objective priority choice

made by the user can be seen from Table VII. Priority

choice 3 (0.4, 0.3, 0.2, 0.1) saves more money because of its

very low user time preference priority and hence more

prohibited time used. Using Choice 1 (0.2, 0.2, 0.3, 0.3) and

Choice 2 (0.1, 0.2, 0.2, 0.5), similar results were produced.

There are three reasons for this. First, the user time

preference deviation objective has great influence on the

general fuzzy goal objective relative to appliance-related

deviation objectives. We observe that the average optimal

value of the user time preference-related deviation objective

is more than 10 times that any of the other single objective

values. Although the use of the worst and best objective

values in constructing the fuzzy objective dramatically

resizes the fluctuation range to a range that is similar to that

of the other objectives, the great difference still exists.

Second, the user time preference objective priority level 0.3

and 0.5 have almost the same effects on this single objective

value. Third, only three appliances were involved in this

study and two of them are closely related, resulting in small

scheduling flexibility. Separately selecting and treating the

user time preference objective priority levels can produce

better effects.

Illustrations of the price data (Fig. 1) used in this study

and some typical energy assignment examples (Fig. 2 – Fig.

4) are given below. All the energy assignment examples are

based on the 10-min time slot. With the increase of the user

time preference-related objective priority, the violation of

the user prohibited time decreases, and eventually no

prohibited time is used when this priority is very high.

133Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 141 / 143

Figure 1. Hourly pricing data.

Figure 2. Total energy assignment under priority choice 3 (0.4, 0.3, 0.2,

0.1).

Figure 3. Total energy assignment under the priority choice (0.14, 0.23,

0.20, 0.43).

Figure 4. Total energy assignment under the priority choice (0.02, 0.04,

0.04, 0.9).

D. Comparative discussion

The research of applying adaptive fuzzy goal

programming theory with priority considered to the area of

optimal scheduling of smart home appliances is still quite

new. Compared with the reported existing models, our

model is more realistic and practical with the new developed

between-appliance delay constraints, the soft user time

preferences, and the priorities imposed on each single

objective. In [4] and [14], only the plain MILP formulation

was used to model the home appliance scheduling problem

based on rigid user time preferences and without

considering the priority of each appliance. A very simple

household appliances scheduling formulation taking into

account only the peak hourly load constraints was proposed

[15]. Samadi et al. [16] proposed a real-time residential load

scheduling that took consideration of the load uncertainty,

but quite different energy phase concepts such as sleep,

awake, active, finished, etc., were used. A type of semi-soft

user time preference constraints were proposed in home

appliances scheduling [17], however, there are two

limitations in this study: the user time preference constraint

under each discrete sensitivity level was still a rigid one; no

energy phase concepts were adopted for detailed

investigation. Direct comparison of the energy saving

between the proposed model and other models would be

totally meaningless as each model was established based on

quite different assumptions, objective, and constraints. In

many cases, electricity cost is only part of the general

objective.

The proposed fuzzy goal programming model for home

appliances scheduling does involve more variables and

constraints than does a plain MILP model. The

implementation time required for our model is 13% more on

average than that for [3]. Since the proposed scheduling is

supposed to make one day in advance and only a few

minutes or even less than one minute is needed to finish the

implementation, the extra time cost becomes marginal.

134Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 142 / 143

VI. CONCLUSION AND FUTURE WORK

The proposed mixed integer fuzzy goal programming

model for adaptive scheduling of smart home appliances

was shown to be effective in saving user’s total electricity

cost. The user time preferences were transformed from rigid

constraints to soft violation penalty objectives and

integrated into the fuzzy goal programming formulation.

Our optimization solution also allows users to give preferred

priorities to different appliances objectives and the user time

preference objective as well. The newly introduced

constraints that restrict the delay between two closely

related appliances make the proposed framework practical.

More appliances with same or different type are to be

included in the future research to further investigate the

performance of the proposed method. The general

conclusion of the study is that a closed-form optimization

model is an effective approach for adaptation of home

appliance schedules to changing prices of electrical power.

Future work is to include more common and frequently-

used smart home appliances in the study to further test the

validity of the proposed model.

REFERENCES

[1] F. A. Wolak, “Do Residential Customers Respond to Hourly
Prices? Evidence from a Dynamic Pricing Experiment.”,
American Economic Review: Papers & Proceedings, vol.
101:3, pp. 83–87.

[2] D. O’Neill, M. Levorato, A. Goldsmith, and U. Mitra,
“Residential Demand Response Using Reinforcement
Learning”, IEEE SmartGrid-Comm., Sep. 2010, Stanford
University report.

[3] G. D. Oliveira, M. Jacomino, D. L. Ha, and S. Ploix,
“Optimal Power Control for Smart Homes,” 18th IFAC
World Congress, Aug. – Sep. 2011, pp. 9579-9586, ISSN:
1474-6670, ISBN: 978-3-902661-93-7.

[4] K. C. Sou, J. Weimer, H. Sandberg, and K. H. Johansson,
“Scheduling Smart Home Appliances Using Mixed Integer
Linear Programming,” 50th IEEE Conference on Decision
and Control and European Control Conference (CDC-ECC),
IEEE Press, Dec. 2011, pp. 5144-5149, doi: 10.1109/CDC.
2011.6161081.

[5] J. Wu, “Scheduling smart home appliances in the Stockholm
Royal Seaport”, Degree project in Automatic Control
Master’s Degree Project, Aug. 2012, Stockholm, Sweden.

[6] S. Giorgio, “Optimal Scheduling of Smart Home Appliances
Using Mixed-Integer Linear Programming,” Master thesis of
Università degli Studi di Padova. Dec. 2012.

[7] J. C. Smith and Z. C. Taskin, “Appendix A: Tutorial Guide to
Mixed Integer Programming Models and Solution
Techniques,” in G. J. Lim and E. K. Lee, Editors,
Optimization in Medicine and Biology, Auerbach
Publications, 2007, eBook ISBN: 978-0-8493-0569-6, doi:
10.1201/9780849305696.axa, pp.522-546.

[8] J. P. Ignizio and C. Romero, “Goal Programming”, in H.
Bidgoli, Editor, Encyclopedia of Information Systems, Vol. 2,
2003, Academic Press, pp. 489-500.

[9] C. F. Hu, C. J. Teng, and S. Y. Li, “A Fuzzy Goal
Programming Approach to Multi-Objective Optimization
Problem with Priorities,” European Journal of Operational
Research, vol. 176, 2007, pp. 1319-1333, doi: 10.1016/j.ejo r
.2005 .10.049.

[10] The Mathworks, Inc., MATLAB 8.0. Natick, MA, USA,
2012.

[11] J. Löfberg, “YALMIP : A Toolbox for Modeling and
Optimization in MATLAB,” Proceedings of the CACSD
Conference, Sep. 2004, pp. 284-289, ISBN: 0-7803-8636-1,
doi: 10.1109/CACSD.2004.1393890.

[12] IBM, IBM ILOG CPLEX 12.5. Armonk, New York, 2013.

[13] NYISO, “Pricing Data”, http://www.nyiso.com/ public /marke
ts_operations/market_data/pricing_data/index.jsp, 2013.

[14] A. Agnetis, G. Dellino, P. Detti, G. Innocenti, G. D. Pascale,
A. Vicino, “Appliance Operation Scheduling for Electricity
Consumption Optimization”, 50th IEEE Conference on
Decision and Control and European Control Conference
(CDC-ECC), IEEE Press, Dec. 2011, pp. 5899-5904, doi:
10.1109/CDC.2011.6160450.

[15] T. Yu, D. S. Kim, and S. Y. Son, “Home Appliance
Scheduling Optimization with Time-Varying Electricity Price
and Peak Load Limitation”, Proceedings of 2nd International
Conference on Information Science and Technology, ASTL
vol. 23, 2013, pp. 196 – 199.

[16] P. Samadi, H. Mohsenian-Rad, V.W.S. Wong, and R.
Schober, “Tackling the Load Uncertainty Challenges for
Energy Consumption Scheduling in Smart Grid”, IEEE
Transactions on Smart Grid, vol. 4, 2013, pp. 1007-1016, doi:
10.1109/TSG.2012.2234769.

[17] B. Saha, “Scheduling of Appliances based on Sensitivity to
Dynamic Pricing in a Smart Grid”, Master Thesis, Fargo, ND,
USA, Sep. 2013.

135Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Powered by TCPDF (www.tcpdf.org)

 143 / 143

http://www.tcpdf.org

