
ADAPTIVE 2017

The Ninth International Conference on Adaptive and Self-Adaptive Systems and

Applications

ISBN: 978-1-61208-532-6

February 19 - 23, 2017

Athens, Greece

ADAPTIVE 2017 Editors

Andrei Alexandru Enescu, EOS Electronic Systems, Romania

Andreas Rausch, TU Clausthal, Department of Computer Science, Software
Systems Engineering, Clausthal-Zellerfeld, Germany

 1 / 83

ADAPTIVE 2017

Forward

The Ninth International Conference on Adaptive and Self-Adaptive Systems and
Applications (ADAPTIVE 2017), held between February 19-23, 2017 in Athens, Greece,
continued a series of events targeting advanced system and application design paradigms
driven by adaptiveness and self-adaptiveness. With the current tendencies in developing and
deploying complex systems, and under the continuous changes of system and application
requirements, adaptation is a key feature. Speed and scalability of changes require self-
adaptation for special cases. How to build systems to be easily adaptive and self-adaptive, what
constraints and what mechanisms must be used, and how to evaluate a stable state in such
systems are challenging duties. Context-aware and user-aware are major situations where
environment and user feedback is considered for further adaptation.

The conference had the following tracks:

 Fundamentals and design of adaptive systems

 Adaptive mechanisms

 Managed Adaptive Automotive Product Line Development

We take here the opportunity to warmly thank all the members of the ADAPTIVE 2017
technical program committee, as well as all the reviewers. The creation of such a high quality
conference program would not have been possible without their involvement. We also kindly
thank all the authors that dedicated much of their time and effort to contribute to ADAPTIVE
2017. We truly believe that, thanks to all these efforts, the final conference program consisted
of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the ADAPTIVE 2017
organizing committee for their help in handling the logistics and for their work that made this
professional meeting a success.

We hope that ADAPTIVE 2017 was a successful international forum for the exchange of
ideas and results between academia and industry and to promote further progress in the area
of adaptive and non-adaptive system applications. We also hope that Athens, Greece provided
a pleasant environment during the conference and everyone saved some time to enjoy the
charm of the city.

ADAPTIVE 2017 Committee

ADAPTIVE 2017 Steering Committee
Roy Sterritt, Ulster University, UK
Constantin Paleologu, University Politehnica of Bucharest, Romania
Claudia Raibulet, University of Milano-Bicocca, Italy

 2 / 83

Radu Calinescu, University of York, UK
Po-Hsun Cheng, National Kaohsiung Normal University, Taiwan
Marc-Philippe Huget, Polytech Annecy-Chambery-LISTIC | University of Savoie, France
Ryotaro Kamimura, Tokai Univerisity, Japan
Valérie Camps, Paul Sabatier University – IRIT, Toulouse, France

ADAPTIVE 2017 Industry/Research Advisory Committee
Weirong Jiang, Google, USA
Jessie Y.C. Chen, U.S. Army Research Laboratory, USA
Sherif Abdelwahed, Distributed Analytics and Security Institute (DASI), USA
Gregor Grambow, AristaFlow GmbH, Ulm, Germany
Marc Kurz, ecx.io austria GmbH - An IBM company, Wels, Austria
Habtamu Abie, Norwegian Computing Center/Norsk Regnesentral-Blindern, Norway

 3 / 83

ADAPTIVE 2017

Committee

ADAPTIVE Steering Committee
Roy Sterritt, Ulster University, UK
Constantin Paleologu, University Politehnica of Bucharest, Romania
Claudia Raibulet, University of Milano-Bicocca, Italy
Radu Calinescu, University of York, UK
Po-Hsun Cheng, National Kaohsiung Normal University, Taiwan
Marc-Philippe Huget, Polytech Annecy-Chambery-LISTIC | University of Savoie, France
Ryotaro Kamimura, Tokai Univerisity, Japan
Valérie Camps, Paul Sabatier University – IRIT, Toulouse, France

ADAPTIVE Industry/Research Advisory Committee
Weirong Jiang, Google, USA
Jessie Y.C. Chen, U.S. Army Research Laboratory, USA
Sherif Abdelwahed, Distributed Analytics and Security Institute (DASI), USA
Gregor Grambow, AristaFlow GmbH, Ulm, Germany
Marc Kurz, ecx.io austria GmbH - An IBM company, Wels, Austria
Habtamu Abie, Norwegian Computing Center/Norsk Regnesentral-Blindern, Norway

ADAPTIVE 2017 Technical Program Committee

Sherif Abdelwahed, Distributed Analytics and Security Institute (DASI), USA
Habtamu Abie, Norwegian Computing Center/Norsk Regnesentral-Blindern, Norway
Nadia Acbchiche-Mimouni, University of Evry, France
Jose M. Alcaraz Calero, University of the West of Scotland, UK
Harvey Alférez, Universidad de Montemorelos, Mexico
Richard Anthony, University of Greenwich, UK
Charles K. Ayo, Covenant University, Ogun State, Nigeria
Antonio Brogi, University of Pisa, Italy
Radu Calinescu, University of York, UK
Valérie Camps, Paul Sabatier University – IRIT, Toulouse, France
Carlos Carrascosa, Universidad Politécnica de Valencia, Spain
Jessie Y.C. Chen, U.S. Army Research Laboratory, USA
Po-Hsun Cheng, National Kaohsiung Normal University, Taiwan
Enrique Chirivella Perez, University of the West of Scotland, UK
Jose Alfredo F. Costa, Federal University - UFRN, Brazil
Anderson da Silva Soares, Professor at Federal University of Goiás, Brazil
Baudouin Dafflon, Université de Lyon, Université Lyon 1, France
Mihaela Dinsoreanu, Technical University of Cluj-Napoca, Romania

 4 / 83

Ioanna Dionysiou, University of Nicosia, Cyprus
Benedikt Eberhardinger, University of Augsburg, Germany
Lukas Esterle, Vienna University of Technology, Austria
Fairouz Fakhfakh, University of Sfax, Tunisia
Ziny Flikop, Consultant, USA
Francisco J. García-Peñalvo, University of Salamanca, Spain
Ilias Gerostathopoulos, Technical University Munich, Germany
Gregor Grambow, AristaFlow GmbH, Ulm, Germany
Leszek Holenderski, Philips Lighting Research, Data Science Dept - Eindhoven, The Netherlands
Marc-Philippe Huget, Polytech Annecy-Chambery-LISTIC | University of Savoie, France
Weirong Jiang, Google, USA
Clarimar José Coelho, Escola de Ciências Exatas e da Computação (ECEC) - Pontifícia
Universidade Católica de Goiàs (PUC Goiás), Brazil
Imène Jraidi, University of Montreal, Canada
Ilia Kabak, "STANKIN" Moscow State Technological University / Institute of design-technology
informatics of the Russian Academy of Sciences, Russia
Ryotaro Kamimura, Tokai Univerisity, Japan
Quist-Aphetsi Kester, Ghana Technology University College, Ghana
Satoshi Kurihara, University of Electro-Communications, Japan
Marc Kurz, ecx.io austria GmbH - An IBM company, Wels Austria
Mikel Larrea, University of the Basque Country UPV/EHU, Spain
Henrique Lopes Cardoso, FEUP/LIACC, Portugal
Tamara Lorenz, University of Cincinnati, USA
Ricardo Marco Alaez, University of the West of Scotland, UK
Cesar Marin, The University of Manchester, UK
Mieke Massink, CNR-ISTI, Italy
Dalton Matsuo Tavares, Federal University of Goiás, Brazil
René Meier, Lucerne University of Applied Sciences and Arts, Switzerland
Sarhan M. Musa, Prairie View A&M University, USA
Asoke Nath, St. Xavier's College(Autonomous), West Bengal, India
Filippo Neri, University of Napoli "Federico II", Italy
Constantin Paleologu, University Politehnica of Bucharest, Romania
Alexander Perucci, University degli Studi dell'Aquila, Italy
Claudia Raibulet, University of Milano-Bicocca, Italy
Mahesh S. Raisinghani, Texas Woman's University, USA
Andreas Rausch, Technische Universität Clausthal, Germany
Pablo Salva Garcia, University of the West of Scotland, UK
José Santos Reyes, University of A Coruña, Spain
Jagannathan (Jag) Sarangapani, Missouri University of Science and Technology, USA
Dominic Seiffert, University of Mannheim, Germany
Huseyin Seker, University of Northumbria at Newcastle, UK
Marjan Sirjani, Malardalen University, Sweden / Reykjavik University, Iceland
Vasco N. G. J. Soares, Instituto de Telecomunicações / Instituto Politécnico de Castelo Branco,
Portugal

 5 / 83

Cristian Stanciu, University Politehnica of Bucharest, Romania
Roy Sterritt, Ulster University, UK
Natalia V. Sukhanova, "STANKIN" Moscow State Technological University / Institute of design-
technology informatics of the Russian Academy of Sciences, Russia
Martin Swientek, Capgemini, Germany
Sotirios Terzis, University of Strathclyde, Scotland
Christof Teuscher, Portland State University, USA

 6 / 83

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 83

Table of Contents

4T Loadless SRAMs for Low Power FPGA LUT Optimization
Karol Niewiadomski, Carsten Gremzow, and Dietmar Tutsch

1

Design Patterns for Addition of Adaptive Behavior in Graphical User Interfaces
Samuel Longchamps and Ruben Gonzalez-Rubio

8

Goal-Compliance Framework for Self-Adaptive Workflows
Budoor Allehyani and Stephan Reiff-Marganiec

16

Pure Embedding of Evolving Objects
Max Leuthauser

22

A Component Framework for Adapting to Elastic Resources in Clouds
Ichiro Satoh

31

A Component Model for Limited Resource Handling in Adaptive Systems
Karina Rehfeldt, Mirco Schindler, Benjamin Fischer, and Andreas Rausch

37

A Holistic Approach for Managed Evolution of Automotive Software Product Line Architectures
Christoph Knieke, Marco Korner, Andreas Rausch, Mirco Schindler, Arthur Strasser, and Martin Vogel

43

Automotive Software Systems Evolution: Planning and Evolving Product Line Architectures
Axel Grewe, Christoph Knieke, Marco Korner, Andreas Rausch, Mirco Schindler, Arthur Strasser, and Martin
Vogel

53

Towards a Formalised Approach for Integrated Functions Updates of Existing Mechatronic Systems
Tim Warnecke, Karina Rehfeldt, Andreas Rausch, David Inkermann, Tobias Huth, and Thomas Vietor

63

Refurbishment of Automotive Electronic Components regarding Update Capability of Applications
Nils Boecher

68

Memory-Map Shuffling: An Adaptive Security-Risk Mitigation
Pierre Schnarz, Andreas Rausch, and Joachim Wietzke

70

Powered by TCPDF (www.tcpdf.org)

 1 / 1 8 / 83

4T Loadless SRAMs for Low Power FPGA LUT Optimization

Karol Niewiadomski, Carsten Gremzow, Dietmar Tutsch
University of Wuppertal

Chair of Automation and Computer Science
Wuppertal, Germany

Email: {niewiadomski, gremzow, tutsch}@uni-wuppertal.de

Abstract—The adaptiveness of Field Programmable Gate Arrays
(FPGAs) is a key aspect in many mobile applications. Modern
vehicles contain up to 100 ”Electronic Control Units” (ECUs)
in order to implement all necessary functions for autonomous
driving. Due to the limited power resources of mobile applications,
an appropriate implementation of power reduction measures is
crucial for achieving an acceptable amount of power savings.
Commercial Electronic Design Automation (EDA) tools support
the designers to implement low-power circuits on architectural
level. However, effective power reduction mechanisms have to be
applied to the backbone of each FPGA: the look-up table (LUT).
In this paper, we describe the implementation and comparison of
various LUTs based on different Static Random Access Memory
(SRAM) cells. All SRAM cells have been analyzed in order to
evaluate feasible modifications for the sake of lowering leakage
currents and modified in order to minimize static and dynamic
power consumption. Followed by a comparison of different LUT
implementations based on the optimized SRAM cell designs, we
derive further optimization approaches to achieve effective power
savings for the usage in environments like vehicles, smartphones,
etc. with limited power.

Keywords–FPGA; LUT architecture; SRAM cell optimization;
low-power; leakage-current reduction; power reduction measures.

I. INTRODUCTION

During the last years, the number of classic desktop com-
puters used in domestic homes has constantly decreased. The
reason behind this phenomenon is the rising number of mobile
devices such as smartphones and tablets, taking over most
of the functionalities provided by desktop computers before.
Furthermore, upcoming features like highly automated driving
cars or fully autonomous vehicles require a high demand
for computing power. Whilst the computing performance of
mobile devices is improved constantly to face the challenges of
complex applications like video processing for adaptive cruise
control on long distance highway drives, the capacities of
batteries providing the needed energy resources have not been
extended in the same way. A modern, upper-class vehicle con-
tains more than 70 ECUs to provide all features desired by con-
sumers these days [1]. On-board communication networks like
Controller Area Network (CAN), FlexRay and ethernet ensure
the communication between these devices, but also introduce a
remarkable amount of additional weight of approximately up to
30% (depending on the used technology). In order to counter
the limits set by power consumption and overall weight, a
significant reduction of the ECU number would be an efficient
approach. This could lead to the application of more powerful
processors, taking over many of the functionalities from the
large number of slower ECUs used before. The downside
of this approach would be a higher power consumption due
to higher clock frequencies. A more comprehensive approach
focuses on the massive usage of FPGAs in mobile applications.

FPGAs offer various advantages compared to processors and
Application Specific Integrated Circuits (ASICs). Being fully
configurable, FPGAs are well-suited for the execution of
various functions which have been spread over several ECUs
before, either purely by hardware implementations or soft-
ware execution running on a softcore processor implemented
on the FPGA’s fabric. However, FPGAs don’t offer similar
power saving mechanisms implemented on microprocessors
and lack of of a substantial power management system. Power
consumption saving mechanisms shall be applied to series
production passenger cars, which is a cost-sensitive market,
hence we choose the Xilinx Spartan-3 low-cost FPGA as a
baseline architecture for all further considerations [2]. FPGAs
play a major role for the realization of adaptive systems.
Partial, dynamic reconfiguration [3], supported by various
FPGA designs, offer a vast potential for fast adaption of the
implemented functional range within a vehicle, e.g., realizing a
requested function by the driver and disengaging a previously
implemented vehicle function which is not required any more
[4].

In this paper, we evaluate selected SRAM cell designs on
their suitability for a low-leakage LUT implementation, which
are the elementar computational elements. Since the overhead
of reconfigurability leads to unused parts within the FPGA,
both static and dynamic power consumption are analyzed
for each cell design. In Section II, we give an overview
about a selection of existing designs and our motivation for
improvements. In Section III, we describe a number of leakage
reduction techniques and evaluate the feasible adaption on
current designs. In Section IV, we investigate the SRAM
cell designs on their assets and drawbacks and compare the
simulation results. In Section V circuit improvement methods
for standby and active currents reduction are introduced. All
investigated SRAM cells are enhanced with these additional
improvements and compared again. In Section VI, we use each
modified SRAM cell to implement a 4-input LUT reference
design and explore the power consumption during the idle and
active state. The advantages of reasonable SRAM cell design
modifications are presented based upon the simulation results.
In Section VII, all previous discussions are summarized and
concluded.

II. RELATED WORK

Various SRAM cell designs have been under research over
the years. Compared to dynamic RAM (DRAM), which is
widely used as main memory in many applications, SRAM
offers numerous advantages like quick read & write-cycles,
cell stability, data retention without refresh cycles, differential
outputs and many more. During the pre-Complementary Metal-
Oxide-Semiconductor (CMOS) era, the 4T cell [5] was com-

1Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 9 / 83

monly used for cache memories. Considering the additional
effort in terms of process variations for implementing the
resistor load and weaker signal to noise (SNM) margin, this
cell type was replaced by the 6T cell [6]. This design depicts
the mostly used approach for combining reliable functionality
with a proven in use fabrication process due to its CMOS
structure. Being the starting point for benchmarking, cell
variations like the 5T SRAM [5] design were developed to
eliminate the parasitic capacitance penalties of two bitlines.
Further derivations like the 7T cell implementation [7] inherit
the characteristics of the reference 6T design and provide
power savings by exploiting an effective writing mechanism,
putting no further requirements on adaptions to auxiliary
circuitry. Features like soft error rate robustness during low-
power operation have been explored in a 10T design varia-
tion [8]. All of these cell types have been designed during
research without applying additional, commonly used power
reduction measures. LUT designs have been evaluated and
improved on architectural level [9] for power reduction by
power gating mechanisms. New FPGA designs were presented
and compared to commercial products, by adding structural
improvements [10].

Our approach goes one step further and is based on circuit
level improvements to a LUT by reasonable selection of a
suitable SRAM cell design and substantial modification of the
cell circuitry to achieve better leakage reduction and power
savings. The improvements achieved on that level are essential
for important leakage current suppression and are an inevitable
step to be combined with architectural amendments.

III. LEAKAGE REDUCTION

Three major components of leakage currents can be iden-
tified for a Metal-Oxide-Semiconductor (MOS) transistor of
gate lengths in nanometer scales:

• Subthreshold leakage
• Direct tunneling gate leakageshown in
• Reverse biased p-n BTBT leakage

Whilst the band-to-band tunneling (BTBT) leakage cur-
rents can be neglected for devices exceeding 50nm gate
lengths, subthreshold and direct tunneling gate leakage currents
come into consideration for our design. Tunneling electrons
through gates oxides can be countermeasured by carefully
setting an adequate oxide thickness of each transistor. This
dependency can be seen in (1):

JDT∝A(
Vox
Tox

)2 (1)

where

A = µoCox
W

Leff
(
kT

q
)2e1.8

By increasing the oxide thickness Tox, the direct tunneling
current density JDT can be efficiently lowered to a minimum
stage [11]. Increasing the gate length Leff would have a
similar effect, but lead to higher effort in the manufacturing
process due to a change in one of the basic technology
parameters like the gate length of a transistor. Therefore,
this option should be avoided. However, the usage of multi-
oxide thicknesses is a technology dependent parameter and

requires awareness for the selection of a suitable multi-oxide
technology.

Subthreshold currents can be expressed by the following
equation:

Isub∝
W

Leff
e(VGS−Vt0−γVSB+ηVDS)/nVt)(1−e

−
VDS
Vt) (2)

Equation (2) shows the parameters which contribute to the
overall weak-inversion current, flowing below the threshold
voltage Vth of each MOS transistor in the circuit. Several
leakage reduction measures can be applied by utilizing these
parameters to design a low leakage circuit:

• W : setting the width of a transistor as small as
possible leads to a higher resistance of it and therefore
to smaller leakage currents

• Vgs: Gate biasing is done by applying a Vgs voltage
lower than Gnd, which turns the transistor deeply off

• Vsb: Body biasing by tweaking the body voltage of a
turned off transistor

• Vdd: Lowering the supply voltage mitigates or even
completely removes the DIBL (drain-induced barrier
lowering) effect, represented by η in (2)

In general, we can distinguish between two classes of
leakage reduction techniques [12]. Some can be applied during
the design, whereas others can be used during operation time of
the circuit. A reasonable extract of these techniques is shown
in Table I:

TABLE I. LEAKAGE REDUCTION TECHNIQUES

Design leakage reduction Static leakage reduction Active leakage reduction
Dual-Vth Stacking DVS
Multi-Vdd Sleep mode

VTCMOS DVTS

Energy efficient circuits should feature multiple supply
voltages and at least a dual threshold approach. As shown
in Table I, these characteristics need to be added during
the development phase. Furthermore, additional techniques
working during operation of the circuit can help to con-
tinuously reduce the overall power consumption. Dynamic
(threshold) voltage scaling (DVS & DVTS), as well as variable
threshold CMOS (VTCMOS) circuitry are powerful methods
to overcome the side-effects like subthreshold leakage due to
progressive scaling to smaller technology nodes.

We analyze the techniques listed in Table I on their careful
combination and application to volatile (SRAM) memory cells
and therefore automatically to LUTs.

IV. SRAM CELL DESIGNS

The backbone of each computational activity within an
FPGA is the LUT [13]. Depending on the number of the LUT’s
inputs, a LUT can contain numerous SRAM cells. For exam-
ple, in case of a 4-input LUT, 16 SRAM cells are necessary
for the realization of all possible input value combinations.
Since the memory cells are used for configuration, they are also
called configuration RAM (CRAM). Once configured during
the start-up phase, the content of these memory cells won’t be

2Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 10 / 83

changed until the next reconfiguration cycle. In consequence,
the static leakage current reduction is of higher significance
for the overall power consumption.

The selection of a low-power SRAM cell design is crucial
for an appropriate energy-efficient implementation of inte-
grated circuits. Many memory cell designs have been intro-
duced in the past. The common 6 transistor cell can be found
in most FPGAs nowadays [14]. In principle, this memory
cell consists of two cross-coupled inverter and two access
transistors, connecting the inverters to the bitlines, as shown
in Figure 1.

Vdd

Gnd

WL

BL
BL

M1

M2

M3

M4
M5

M6

Figure 1. 6T SRAM cell

As long as M5 and M6 are in cut-off mode, the cross-
coupled inverters are isolated from the bitlines and store the
complementary data value at the output nodes of each inverter.
Data retention is ensured as long as a sufficient supply voltage
Vdd is applied. Before reading the stored data, both bitlines
BL and BL are precharged to Vdd by a special precharge
circuit and the access transistors M5 and M6 are turned on.
One of the bitlines will be discharged to Gnd, whereas the
other bitline will remain on Vdd. The voltage drop between
BL and BL will be sensed and evaluated by a sense amplifier.
For writing data into the cell, one of the bitlines is kept at
Vdd, whereas the other bitline is kept at Gnd. By turning the
access transistors on, the desired value is written. For this
purpose, a suitable bitline driver circuit is needed to ensure
the propoer execution of the writing cycle. Careful transistor
sizing is required for avoiding the cell to flip during, e.g., a
read cycle. This cell design is well-elaborated and used for
years in integrated circuits. Its stability and reliability is well-
known and therefore used in various applications. However,
the power consumption of the 6T SRAM cell can be further
optimized by some modifications resulting in the SRAM cells
described in the following paragraphs:

1) 4T SRAM cell: A typical implementation of a four
transistor SRAM cell is shown in Figure 2. In comparison
to the 6T cell, a smaller are of approximately 30% can be
achieved [15]. Due to the replacement of all pMOS transistors
by polysilicon resistors, only nMOS transistors are used for the
pure functionality of this cell. Despite of the space-savings,
which could lead to a higher yield after the manufacturing
process, the realization of high-resistivity polysilicon resistor
adds additional technological steps to the manufacturing pro-
cess, resulting in higher costs.

The 4T (polysilicon) SRAM is a predecessor of all CMOS-
based SRAM cells. Lower stability, lower tolerance against

Vdd

Gnd

WL

BL BL
M2

M4

M1

M3

RL RL

Figure 2. 4T SRAM cell

soft-errors and a more technically demanding manufacturing
process exclude this cell type from further considerations [5].

2) 5T SRAM cell: The circuitry of a five transistor SRAM
cell is shown in Figure 3. The advantage of this cell design
compared to the 6T reference cell is the availability of just
one access transistor M5 and therefore only one bitline BL
[16]. The connecting bitlines in each slice of an FPGA add
undesired parasitic capacitances, which underly the process of
charging and discharging during each read- and write-cycle
and lead subsequently to higher power consumption. A cell
design working with just one access transistor adds space-
savings. For a proper and stable functionality of this cell,
asymmetric transistor sizing is required, which may complicate
the manufacturing process and to modifications of auxiliary
circuitry like sense amplifiers, precharge circuits, etc..

Vdd

Gnd

WL

BL

M1

M2

M3

M4
M5

Figure 3. 5T SRAM cell

3) 7T SRAM cell: The seven transistor SRAM cell is shown
in Figure 4, which enhances the 6T reference cell design by
an additional feedback transistor M7 and 2 signal lines R and
W . The idea behind this design is a write mechanism, which
depends only on one of the two bitlines in order to execute a
write operation. This can be also expressed in equation 3 [11].

While the activity factor α equals 1 in conventional mem-
ory cells, the 7T SRAM cell reduces this factor to less than 0.5
by exploiting the fact, that most of the bits in memories and
caches are zeros [7]. The main asset of this implementation is
the reduction of the switching activity and therefore a reduction
of charging and discharging cycles of parasitic capacitances.
The drawback is the required additional control logic and

3Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 11 / 83

Vdd

Gnd

WL

BLBL

M1

M2

M3

M4
M5

M6

W

R

M7

Figure 4. 7T SRAM cell

the loopback transistor, which lead to higher complexity and
required space.

P = αCBLV
2Fwrite (3)

V. SRAM CELL DESIGN MODIFICATIONS

The simulation results showed that the choice of a suitable
SRAM cell design leads to a significant impact on power
consumption of a LUT. In this section we present further
improvements on each cell design in order to achieve even
better power savings in this essential component. Since Xilinx’
Spartan 3(A) is manufactured in a 90nm process and has a
recommended internal supply voltage of 1.2V , we choose a
90nm TSMC technology library at an comparable operating
voltage of 1.2V .

Coming back to the proposed cell designs in Section IV,
we refer to the 4T SRAM cell since its compact design is of
interest for further considerations and performance comparison
to other design. The major drawback of the 4T SRAM cell is
the high-resistive polysilicon resistor, which should be replaced
or completely omitted in an improved cell. A possibility how
to bypass this drawback is shown in Figure 5.

Vdd

WL

BL BL

M2

M4

M1

M3

Figure 5. 4T loadless SRAM cell

The previous pull-down network (PDN) consisting of two
nMOS transistors is replaced by a pull-up network of two
pMOS M1 and M2 transistors [17]. In combination with both
nMOS access transistors M3 and M4 a stable and power
saving functionality is achieved. Instead of precharging both
bitlines to Vdd as a pre-step of the reading-phase, the bitlines
are ”precharged” to Gnd, due to the fact, that pMOS transistor
are used as drivers in this cell. This saves power and ensures

compatibility with CMOS logic processes. Nevertheless, minor
adaptions to the auxiliary circuitry around the cell have to be
done, e.g., modifying the bitline drivers.

A. Test results

All SRAM cells have been designed and simulated by
usage of the Cadence toolchain and a 90nm technology pro-
vided by TSMC at an ambient temperature of 27◦C. The main
challenge to achieve comparable results was to develop suitable
bitline drivers, precharge circuitry and a sense amplfier. Careful
design of the bitline drivers is crucial for avoiding the cell
to flip during a read cycle. All simulations are performed
with a clock frequency of 200MHz and a load of 600aF.
Configuration memory cells used in a LUT are not supposed
to be written and read at high frequencies, like e.g., memory
arrays in a microprocessor’s cache (up to 4GHz). Therefore, we
choose a lower frequency, nevertheless all cells have also been
successfully tested with a higher clock frequency of 500MHz.

For the first step, the determination of the best SRAM cell
design in terms of power consumption without any further
improvements, is done. The simulation results of the 6T cell
design are shown in Figure 6:

Q
N

 (
V

)

-.25

0.0

.25

.5

.75

1.0

1.25

P
W

R
 (

u
W

)

-25.0

0.0

25.0

50.0

75.0

100

I
(u

A
)

-40.0

-30.0

-20.0

-10.0

0.0

10.0

Q
 (

V
)

-.25

0.0

.25

.5

.75

1.0

1.25

time (ns)

0.0 5.0 10.0 15.0 20.0 25.0 30

Figure 6. Power dissipation and ILeak of 6T SRAM cell

The average power consumption, the maximum and mini-
mum power consumption during simulation time were traced
and summarized in Table II:

TABLE II. SIMULATION RESULTS WITHOUT MODIFICATIONS

SRAM cell Average Power nW Max. Power uW Min. Power pW
4T 334.5 35.07 161.7
5T 587.2 61.26 217.34
6T 927 75.39 250.8
7T 491 49.19 221.7

Compared to the other designs, Table II shows clearly
the drawbacks of the reference 6T SRAM cell. Substantial
power savings can be achieved by the choice of alternative
cell design. For example, the average power consumption of
the 6T SRAM reference cell design is 927nW and about 3
times higher than the average power consumption of the 4T
loadless SRAM cell, which is only 334.5nW . That results in
power savings of approximately 65%.

4Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 12 / 83

B. Dual Threshold CMOS
Further optimizations can be achieved by the introduction

of high threshold voltage (Vth) transistors. High Vth transistors
require a higher VGS voltage at the gate in order to turn the
transistor on, which can lead to an increase of the propagation
delay within a signal path. Therefore, high Vth should be only
used in applications which are not timing-critical. However,
the SRAM cells in a LUT are used as configuration RAM
(CRAM) and are pertinent for use with high threshold voltage
transistors. All cell designs have been modified and the simula-
tions were performed again. These modifications are limited to
the core cell only, the precharge circuitry, the sense amplifier
and the bitline drivers have not been modified. The results are
summed up in Table III.

TABLE III. SIMULATION RESULTS WITH HIGH THRESHOLD
VOLTAGE TRANSISTORS (hvt)

SRAM cell Average Power nW Max. Power uW Min. Power pW
4T hvt 324 31.83 74.99
5T hvt 541.78 54.9 130.5
6T hvt 695.1 64.46 158.3
7T hvt 427 36.21 161.9

In comparison to the reference design of the 6T SRAM
cell, the introduction of the high Vth transistors adds power
savings of about 25%. The performance of the high Vth 4T
loadless SRAM cell is slightly improved and leads to energy
savings of approximately 10nW.

C. Transistor Stacking
Transistor stacking, shown in Figure 7, which is also

known as self-reverse biasing, is a strong technique to reduce
subthreshold leakage current by raising the voltage at the
source terminal of each transistor. By constantly increasing
the source voltage VS and keeping the gate voltage VG at the
same level, VGS becomes negative at a certain point of time,
which leads the transistor into super cut-off mode and turns it
deeply off. Subthreshold currents are exponentially reduced.

Vdd

Gnd

WL

BL BL

M1

M2

M3

M4
M5

M6

M7 M8

Figure 7. 6T SRAM cell with stacking

At the same time, the body to source potential VSB
also becomes negative, since the body terminal of a nMOS
transistor is usually kept at Gnd. In consequence, the body
effect is intensified, thus Vth is tuned by that effect to a
higher level. This fact can be further exploited by continuing
stacking transistors in series, but the effect of subthreshold

current reduction becomes diminished with a rising number of
transistors.This technique implies a trade-off between power
savings and size ratio of the chip. Despite the gradual tech-
nology shrink up to 16nm FinFET, on-chip space is not an
unlimited resource and should be used carefully. Therefore, we
choose to add two stacking transistors only in order to have
a reasonable compromise between leakage current reduction
and size-ratio of the cells. The simulation results are shown in
Table IV and Table V.

TABLE IV. SIMULATION RESULTS WITH STANDARD TRANSISTORS
AND STACKING

SRAM cell Average Power nW Max. Power uW Min. Power pW
4T 346.8 35.31 137.6
5T 327.4 25.1 189.4
6T 826.6 72.05 274
7T 540.4 31.64 168.3

If the used manufacturing process doesn’t support dual-
threshold CMOS technology, Table IV shows that a noteworthy
reduction of leakage currents within the 4T SRAM cell is
achieved by approximately 90%. Even the standard 6T SRAM
cell features important amendments in terms of power savings
(≈ 12%) and leakage currents.

TABLE V. SIMULATION RESULTS WITH hvt TRANSISTORS AND
STACKING

SRAM cell Average Power nW Max. Power uW Min. Power pW
4T hvt 336.6 32.79 70.42
5T hvt 327.4 25.1 189.4
6T hvt 672.4 61.28 167.4
7T hvt 461.8 30.84 523.9

The combination of both techniques, dual-threshold CMOS
and transistor stacking, puts additional improvements to the
overall power savings parameters. Since most of the currently
available technologies feature dual-threshold CMOS, the fea-
sibility of this combination is high.

D. Dynamic Voltage Scaling
The higher the supply voltage is, the faster the operation

of the integrated circuit will be, since high Vdd allows fast
charging and discharging of parasitic capacitances. In case of
low demand on performance such as for CRAMs, the supply
voltage can be lowered while still ensuring data retention
within the cell. Dynamic voltage scaling (DVS) depends
usually at least on an operating system and a regulation loop
to recognize the circuit speed and to cover a wide range of
operating voltages. Our approach simplifies this principle by
introducing two additional transistors, shown in Figure 8.

Both transistors M9 and M10 are used to connect the
SRAM cell to two different supply voltages, Vdd and VddL,
whereas Vdd equals the primary 1.2V. On the one hand, the
prerequisite of this method is a dual-Vdd setup, representing
a simple alternative to the mentioned operating system driven
regulation loop, and on the other hand a modified power gating
approach is implemented. Since the 4T SRAM cell has no
connection to Gnd in its core, power gating is achieved by
the possibility to fully cut-off the supply voltage, if needed.
However, power gating should be introduced at a coarse-grain
level, e.g., by powering or switching off groups of cells at
a higher abstraction layer. By lowering the supply voltage

5Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 13 / 83

Vdd

Gnd

WL

BL BL

M1

M2

M3

M4
M5

M6

M7 M8

VddL

SLEEP SLEEP

M9
M10

Figure 8. 6T SRAM cell with hvt transistors, stacking and DVS

to VddL, which equals 1V, we can further reduce leakage
power consumption. Experimental results have shown, that
data retention will still be ensured at supply voltages down to
400mV. A combination of all three power saving mechanisms
in a 6T SRAM cell is shown in Figure 8.

TABLE VI. SIMULATION RESULTS WITH hvt TRANSISTORS,
STACKING AND DVS

SRAM cell Average Power nW Max. Power uW Min. Power pW
4T hvt 232.9 21.27 49.59
5T hvt 327.4 25.1 189.4
6T hvt 458.7 44.67 166.1
7T hvt 368.3 26.53 167

In order to achieve an average power consumption of
232.9nW at a clock requency of 200MHz and full data re-
tention like shown in Table VI, we combined all three power
saving methods introduced in the chapters before with careful
transistor sizing of an efficient memory cell design. We present
the modified, loadless 4T SRAM cell in Figure 9.

The simulation was done by injecting a 1 → 0 → 1
sequence and one read cycle at the end of the simulation time,
which can be seen in Figure 10. By comparing the results
of Figure 10 with the outputs shown in Figure 6, we see a
reduction in both, power and current spikes. Looking back
on the continuous improvements added to each cell type, we
see the benefits in reduction of average power consumption in
Figure 11.

VI. LUT SIMULATIONS

The LUT was implemented with each cell type investigated
in the previous chapters. In order to achieve an equal distribu-
tion of bits, all memory cells have alternating bits stored and
are not connected to the bitlines by switching off all access
transistors. As a matter of lucidity, we present a comparison
between the 6T SRAM- and 4T SRAM LUT implementa-
tion. As expected, the 4T SRAM cell design shows a better
performance in terms of power savings and leakage current
reduction than the 6T SRAM cell design does. By comparing
a LUT implementation with a standard 6T SRAM cell and our
modified 4T SRAM design, Table VII summarizes the results
and highlights the improvements in power dissipation, which

Vdd

W
L

BL BL

M2

M4

M1

M3

SLEEP SLEEP

M5 M6

M7 M8

Gnd

M9

M10 M11

P
R

E

VddL

Figure 9. Modified 4T SRAM cell

1.25

.75

-.25

0.0

Q
N

 (
V

)
1.0

.5

.25

20.0

0.0

10.0

-10.0

30.0

40.0

P
W

R
 (

u
W

)

2.5

-10.0

0.0

5.0

-7.5

-12.5

I
(u

A
)

-5.0

-2.5

0.0

.5

1.25

.75

Q
 (

V
)

-.25

1.0

.25

time (ns)

0.0 5.0 10.0 15.0 20.0 25.0 30.0

Figure 10. Power dissipation and ILeak of a modified 4T SRAM cell

equals power savings of approximately 16%. Figure 12 shows
the related leakage current of the 4T SRAM based LUT.

TABLE VII. LUT COMPARISON

SRAM cell Average PWR nW Max. PWR uW Min. PWR nW Energy aJ
4T hvt 424.2 40.94 0.24 127
6T 500 42.99 2.8 150

It should be mentioned that either the precharge circuit nor
the sense amplifier have been optimized for power efficiency.
Optimizing these parts will lead to even better results and
raise the duration of a battery charge, independent of the
target application. Further optimization can be achieved by
coarse-grain power gating of CRAM blocks within the LUT
architecture. Unused CRAMs should be completely powered
off by adding additional, thick-oxide transistors, cutting off the
cell from Vdd and Gnd.

The modified 4T memory cell design introduced in Figure
9 is superior in terms of low power aspects compared to all
other investigated cell designs. However, this solution requires

6Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 14 / 83

600

6T 6T hvt 5T 5T hvt 7T 7T hvt 4T 4T hvt
250

300

350

400

450

500

550

SRAM cell type

A
v
e

ra
g
e

 p
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 (

n
W

)

Figure 11. Power dissipation reduction

I
(n

A
)

-5.0

-2.5

0.0

2.5

5.0

time (ns)

0.0 5.0 10.0 15.0 20.0 25.0 30.0

Figure 12. Leakage current of an improved 4T SRAM based LUT

additional space, since it requires at least four additional
transistors to achieve its intended power-efficient functionality.

VII. CONCLUSION

We analyzed a typical LUT structure of an FPGA in terms
of power dissipation and leakage current. Our approach was to
integrate power savings mechanisms at the basic circuit level
before heading for further optimizations on architectural level.
Different SRAM cell structures have been investigated on their
power characteristics in order to evaluate the best design for
implementing a LUT, which features inherent low-power char-
acteristics. Simulations have shown that the 4T loadless SRAM
cell features the required properties. We applied various low-
power techniques and enhanced this cell for standby leakage
current mitigation. Hence, we presented a modified 4T loadless
SRAM cell design. By combining dedicated techniques during
design time and during operating time, we achieved a reduction
of the average power consumption within the LUT of 16% dur-
ing simulation time. Subsequently, this leads to overall energy
savings of 127aJ compared to the origin 150aJ of a 6T SRAM
cell based LUT implementation. The leakage current Ileak is
reduced dramatically from 1.741nA to approximately 0.2nA,
showing the strong impact of leakage reduction methods on
power-critical circuitry. FPGAs support adaptiveness of whole
systems by re-configuration abilities on demand of the appli-
cation. The presented low-power cell design reduces power
consumption significantly during the charging and discharging
cycles of re-configuration tasks within an FPGA.

ACKNOWLEDGMENT

The authors thank Amit Majumdar, from Xilinx, for his
support and interesting discussions on FPGA architectures.
Also, we want to give credit to Ray Chiang, from TSMC,

for his explanations and suggestions on the used technology.
We are grateful to Andreas Ullrich, from University of Wup-
pertal, for his restless dedication in PDK compilation and tool
maintenance.

REFERENCES
[1] S. Fürst, “Challenges in the design of automotive software,” in

Proceedings of the Conference on Design, Automation and Test in
Europe, ser. DATE ’10. 3001 Leuven, Belgium, Belgium: European
Design and Automation Association, 2010, pp. 256–258. [Online].
Available: http://dl.acm.org/citation.cfm?id=1870926.1870987

[2] XA Spartan-3A Automotive FPGA Family Data Sheet, Xilinx, 04 2011,
rev. 2.0.

[3] M. Ullmann, M. Hübner, B. Grimm, and J. Becker, “An fpga run-time
system for dynamical on-demand reconfiguration,” in Parallel and Dis-
tributed Processing Symposium, 2004. Proceedings. 18th International.
IEEE, 2004, p. 135.

[4] R. Anthony, A. Rettberg, D. Chen, I. Jahnich, G. de Boer, and
C. Ekelin, “Towards a dynamically reconfigurable automotive control
system architecture,” in Embedded System Design: Topics, Techniques
and Trends. Springer, 2007, pp. 71–84.

[5] A. S. Pavlov, “Design and Test of Embedded SRAMs,” Ph.D. disserta-
tion, University of Waterloo, Ontario, May 2005.

[6] J. P. Uyemura, CMOS Logic Circuit Design. Norwell, MA, USA:
Kluwer Academic Publishers, 1999.

[7] R. E. Aly, M. I. Faisal, and M. A. Bayoumi, “Novel 7t sram cell for
low power cache design,” in Proceedings 2005 IEEE International SOC
Conference, Sept 2005, pp. 171–174.

[8] S. M. Jahinuzzaman, D. J. Rennie, and M. Sachdev, “A soft error
tolerant 10t sram bit-cell with differential read capability,” IEEE Trans-
actions on Nuclear Science, vol. 56, no. 6, Dec 2009, pp. 3768–3773.

[9] A. Lodi, L. Ciccarelli, D. Loparco, R. Canegallo, and R. Guerrieri,
“Low leakage design of lut-based fpgas,” in Proceedings of the 31st
European Solid-State Circuits Conference, 2005. ESSCIRC 2005., Sept
2005, pp. 153–156.

[10] T. Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger, “A 90nm
low-power fpga for battery-powered applications,” in Proceedings of
the 2006 ACM/SIGDA 14th international symposium on Field pro-
grammable gate arrays. ACM, 2006, pp. 3–11.

[11] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital integrated
circuits- A design perspective, 2nd ed. Prentice Hall, 2004.

[12] C. Piguet, Low-power processors and systems on chips. CRC Press,
2005.

[13] C. Maxfield, The Design Warrior’s Guide to FPGAs: Devices, Tools
and Flows, 1st ed. Newton, MA, USA: Newnes, 2004.

[14] K. Itoh, VLSI Memory Chip Design, ser. Springer Series in Advanced
Microelectronics. Springer Berlin Heidelberg, 2001. [Online].
Available: https://books.google.de/books?id=p2FsQgAACAAJ

[15] A. Bellaouar and M. I. Elmasry, Low-Power Digital VLSI Design
Circuits and Systems, 1st ed., J. Allen, Ed. Norwell, MA, USA: Kluwer
Academic Publishers, 1995.

[16] I. Carlson, S. Andersson, S. Natarajan, and A. Alvandpour, “A high
density, low leakage, 5t sram for embedded caches,” in Solid-State
Circuits Conference, 2004. ESSCIRC 2004. Proceeding of the 30th
European, Sept 2004, pp. 215–218.

[17] J. Yang and L. Chen, “A new loadless 4-transistor sram cell with a 0.18
m cmos technology,” in 2007 Canadian Conference on Electrical and
Computer Engineering, April 2007, pp. 538–541.

7Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 15 / 83

Design Patterns for Addition of Adaptive Behavior in
Graphical User Interfaces

Samuel Longchamps, Ruben Gonzalez-Rubio

Sherbrooke University,
Sherbrooke, Québec, Canada

Email: {samuel.longchamps, ruben.gonzalez-rubio}@usherbrooke.ca

Abstract—Graphical user interfaces (GUI) in modern software
are increasingly required to adapt themselves to various situations
and users, rendering their development more complex. To handle
complexity, we present in this paper three design patterns,
Monitor, Proxy router and Adaptive component, as solutions to
the gradual implementation of adaptive behavior in GUI and
general component-based software. Rather than proposing new
adaptation mechanisms, we aim at formalizing a basic structure
for progressive addition of different mechanisms throughout the
development cycle. To do so, previous work on the subject
of design patterns oriented toward adaptation is explored and
concepts related to similar concerns are extracted and generalized
in the new patterns. These patterns are implemented in a
reference Python library called AdaptivePy and used in a GUI
application case study. This case study shows concrete usage of
the patterns and is compared to a functionally equivalent ad
hoc implementation. We observe that separation of concerns is
promoted by the patterns and testability potential is improved.
Moreover, adaptation of widgets can be previewed within a
graphical editor. This approach is closer to the standard workflow
for GUI development which is not possible with the ad hoc
solution.

Keywords–adaptive; design pattern; graphical user interface;
context; library.

I. INTRODUCTION

As applications become increasingly complex and dis-
tributed, adaptive software has become a research subject of
great interest to tackle related challenges. One area of modern
applications where adaptation requirements have flourished is
graphical user interfaces (GUI). Because they are generally
engineered using a descriptive language and oriented toward
specific platforms, it is hard to produce a single GUI which
automatically adapts itself to its multiple usage contexts.

Many researchers have proposed models and frameworks
to implement adaptive behavior in a generic manner for
components-based software [1]–[4]. These solutions typically
require significant effort to modify an existing software archi-
tecture and make many technological choices and assumptions.
They are limited both in terms of gradual integration to the
software and in portability, for a framework usually targets a
certain application domain (e.g. distributed client-server sys-
tems). As a more portable approach, we propose to use design
patterns for formalizing structures of components which can be
easily composed to produce specialized adaptive mechanisms.
While some work has been done to propose design patterns for
the implementation of common adaptive mechanisms [5]–[8],
the present work aims at generalizing widespread concepts

used in these patterns. In doing so, their integration in existing
software is expected to be easier and more predictable.

As a proof-of-concept, a reference implementation of the
design patterns has been done as a Python library called
AdaptivePy. An application was built as a case study using the
library to validate the gains provided by the patterns compared
to an ad hoc solution. Special attention was paid to the
compatibility to modern GUI design workflow. In fact, rather
than create a specialized toolkit or create a custom designer
tool which would include the design patterns’ artifacts, the Qt
cross-platform toolkit along with the Qt Designer graphical
editor was used. The application workflow is presented and
compared to original methods and advantages are highlighted.
We expect that through the case study, the patterns’ usage and
advantages will be clearer and offer hints on how to structure
an adaptive GUI.

The remainder of this paper is organized as follows.
Fundamental concepts of software adaptation extracted from
previous work are described in Section II. The design patterns
inspired from the concepts are presented in Section III. The
prototype application with adaptive GUI is presented in Section
IV and an analysis of the gains procured by the use of the
proposed design patterns are presented in Section V. The paper
concludes with Section VI and some future work is discussed.

II. CONCEPTS OF SOFTWARE ADAPTATION

This section presents major concepts of adaptation from
related work classified in three concerns: data monitoring,
adaptation schemes and adaptation strategies.

A. Adaptation Data Monitoring
Contextual data on which customization control rely, re-

ferred to as adaptation data in this paper, can come from
various sources, both internal (for “self-aware” applications
[9]) and external (for “self-situated” [9] or “context-aware”
applications). The acquisition of contextual data to be used
as adaptation data is part of a primitive level, which is
necessary for other more complex adaptation capabilities to
be implemented [10]. Contextual data is usually acquired by
a monitoring entity (sensors/probes/monitors) responsible for
quantizing properties of the physical world or internal state of
an application [7], [11]–[15]. Multiple simple sensors can be
composed to form a complex sensor, which provide higher-
level contextual data (Sensor Factory pattern [15]). Internal
contextual data can be acquired simply by using a component’s
interface, but when the interface does not provide the necessary
methods, introspection can be used (Reflective Monitoring

8Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 16 / 83

[15]). When a variety of adaptation data is monitored, it
provides a modeled view of the software context, sometimes
shared within a group of components. Some event-based mech-
anism with registry entities can be used to propagate adaptation
data to interested components (Content-based Routing [15]).
Quantization can be done on multiple abstraction levels and
thresholds can be used to trigger adaptation events (Adaptation
Detector [15]).

B. Adaptation Schemes in Components
Many researchers aimed at defining a design pattern for

an adaptive component that would allow for various schemes
of adaptation in a generic way. Two main approaches can
be extracted from previous work: component substitution and
parametric adaptation.

a) Component substitution: The underlying principle
of component substitution is to replace a component by a
functionally equivalent one with regard to a certain set of
features. This can also be done by adding an indirection
level to the dispatching of requests and forwarding them to
the appropriate component. The first pattern applying this
concept is probably the Virtual Component pattern by Corsaro,
Schmidt, Klefstad, et al. [5]. It is similar to the adaptive
component proposed by Chen, Hiltunen, and Schlichting [16],
but adds the principle of dynamic (un)loading of substitution
candidates. In both cases, an abstract proxy is used to dispatch
requests to a concrete component, which is kept hidden from
the client. This approach is also used by Menasce, Sousa,
Malek, et al. [17], who proposed architectural patterns to
improve quality of service on a by-request dispatch to one
or many components. To maintain the software in a valid state
before, during and after the substitution, many techniques have
been proposed, such as transiting a component to a quiescent
state [18], [19] and buffering requests [20]. State transfer
between components can be used when possible, otherwise
the computing job must be restarted [16], [19].

b) Parametric adaptation: Rather than substituting a
whole component by a more appropriate one, parametric
adaptation is when a component can adapt itself to be more
appropriate to a situation. This is usually done by tuning
knobs, configurable units in a component (e.g. variables used
in a computation). Knobs can be exposed in a tunability
interface [1] for use by external control components, either
included by design or automatically generated at the meta-
programming level (e.g. with special language constructs, such
as annotations [10]). The tunability domain of each knob
is explicit and may vary over time. For example, if a new
algorithm is discovered in the middle of a large computing
job, an adaptation mechanism that is kept aware of the knob’s
possible values is able to switch to it if it judges that it will
perform better overall [21].

C. Adaptation Strategies
No single adaptation strategy is universal for all software.

Most past work has been done on applying component substi-
tution using various strategies. For example, many researchers
have explored rule-based constraints along with an optimiza-
tion engine to devise architectural reconfiguration plans [1],
[13]. This popular approach has tainted proposed frameworks
that tend to be limited to this strategy only. An important
principle is that strategies are separate from the component’s

implementation and can be easily changed. In fact, it is
desirable to externalize adaptation strategies in order to be able
to easily develop, modify and test them separately. Ramirez [7]
calls this class of design patterns “decision-making”, since they
relate to when and how adaptation is performed. Because these
design patterns are concrete adaptation strategies, their artifacts
are mainly related to specific strategies (e.g. inference engines,
rules, satisfaction evaluation functions). The approach of this
class of patterns is typically related to rule-based constraints
solving, but a more general goal is to select which plan or
components from a set to reconfigure the system with.

III. DESIGN PATTERNS

This section presents design patterns which realize the
concepts presented in Section II with some improvements.
When used together, we believe they provide the sought
structure for adaptive software. Unified modeling language
(UML) diagrams are used to show the structure of the patterns
in a standardized way.

A. Monitor Pattern
Classification: Monitor and analyze.
Intent: A monitor provides a value for one type of adaptation
data to interested entities.
Motivation: There is a need to quantize raw contextual data as
parameters of adaptation data with explicitly defined domain
and in specialized modules decoupled from the rest of the
application. Adaptation data needs to be reasoned about in
arbitrarily high abstraction level and be proactive in the adap-
tation detection process. Agreement for monitored data should
be implied by design in order to allow for safe information
sharing among interacting components.
Structure: Fig. 1 shows the structure of the monitor pattern
as a UML diagram.

+observed_update(observable, value)

Observer

+register_monitor(parameter, monitor)
+unregister_monitor(parameter)
+observed_update(observable, value, kwargs)
+subscribe(subscriber, parameter)
+unsubscribe(subscriber, parameter)
+snapshot(parameters = None)

MonitorEventManager

+value()
+possible_values()

Monitor

#set_latest_value(value)
+latest_value()
+start()
+stop()
+register(observer)
+unregister(observer)
+update()

DynamicMonitor

+register(observer)
+unregister(observer)
+notifyObservers(value)

Observable

+possible_values()

Parameter

+updated_monitored_value(parameter, old_value, new_value)

ParameterValueSubscriber

<<depends>>

Figure 1. Monitor pattern UML diagram

Participants:
• Parameter: A parameter is one type of adaptation

data as defined in Section II-A. Its possible values
domain is explicitly defined and forms a state space.
Many range types can be used to model a parameter’s
domain.

• (Static) Monitor: Provides a stateless (further referred
to as “static”) means of acquiring a value within

9Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 17 / 83

a subset of a certain parameter’s domain. Formally,
ΩM ⊆ ΩP for possible values Ω of monitor M and
parameter P . A monitor can be an aggregation of other
static monitors, but not of dynamic monitors.

• Dynamic monitor: Additionally to providing a value
for a parameter, schedules the acquisition of the value
and alerts an observer that a new value has been
acquired. Some form of polling or interrupt-based
thread awakening needs to be employed along with
a previous value to know if the value has changed
compared to the latest value, in which case an event
notification is triggered to interested entities. This
makes it inherently stateful. Like a static monitor, it
can be an aggregation of other monitors. The particu-
larity is that it can aggregate both static and dynamic
monitors.

• Monitor event manager: Registry entity which al-
lows for a client component to subscribe to a param-
eter and be alerted when a new value is acquired.
Similarly, a dynamic monitor can be registered within
the manager and provide a value to any subscriber
of the corresponding parameter. In such manager,
monitors and parameters are related by a one-to-one
relationship; a given parameter can only be monitored
by a single monitor.

• Observable/Observer: See Gang of Four observer
pattern [22]. Used for monitor registering mechanism.

• Parameter value subscriber: Provides a means to
be notified when a new value of a parameter it has
subscribed to has been acquired.

Behavior: An adaptation data type can be formalized as a
parameter in terms of the quantized values the system expects
to use. A static monitor provides a means to concretely
quantize raw contextual data from a sensor or introspection to
a value within a defined domain expected by the system. The
quantization can be done using fixed or variable thresholds.
A dynamic monitor adds scheduling behavior, which allows
to provide a value based on accumulated data over time
and apply filtering. The monitor event manager is alerted by
monitors and dispatches the new value to related subscribers.
The dependency regarding subscribers is with the parameters
for which they requested to be notified, but actual monitoring
is done separately.
Consequences: As monitors are hierarchically built, higher-
level abstraction information can be provided. This pattern
allows the analysis step of a MAPE-K loop [12] to be done
through hierarchical construction of monitors: a parameter
can define high-level domain values which are provided by
a monitor composed from lower-level ones and components
can use this to simplify their adaptation strategies. High-level
adaptivity logic is reusable in that parameters are abstract and
can easily be shared among projects. Monitors can be chained
such that only the concrete data acquisition has to be redone
between projects, keeping scheduling and filtering as reusable
entities.
Constraints: To assure agreement between interacting compo-
nents, it is necessary for adaptive components which depend
on a common parameter to also subscribe to the same monitor
event manager. These components are therefore part of the
same monitoring group. This can be checked statically or be

assumed by contract. The need for a one-to-one relationship
between a monitor and a parameter within a monitoring group
is based on this agreement requirement. A monitoring group
can be thought of as a single entity that cannot have duplicate
or contradicting attributes, e.g., it cannot be at two positions at
once. In this example, an attribute is a parameter and a monitor
is the entity providing the value for this attribute.
Related patterns: Sensor factory, reflective monitoring,
content-based routing, adaptation detector [7], information
sharing, observer [22].

B. Proxy Router Pattern
Classification: Plan and execute.
Intent: A proxy router allows to route calls of a proxy
to a component chosen among a set of candidates using a
designated strategy.
Motivation: When implementing component substitution, a
way to clearly separate concerns relating to the adaptation
logic (substitution by which component) and the execution of
substitution (replacing a component or forwarding calls to it)
are difficult to implement in an extensible way. The proxy
pattern [22] allows to forward calls to a designated instance,
but does not specify how control of the routing process should
be implemented. Candidate components need to be specified
in a way that does not necessitate immediate loading or instan-
tiation and which is mutable (to allow runtime discovery). To
maximize reusability, strategies should be devised externally.
Structure: Fig. 2 shows the structure of the proxy router
pattern as a UML diagram.

+candidates()
+proxy()
+route(target)
+choose_route()

ProxyRouter +delegate()
+update_delegate()

Proxy

+proxy()

InternalProxyRouter

+proxy()

ExternalProxyRouter

+choose_route(candidates)

ChooseRouteStrategy DelegateComponent

+create(args)

CandidateFactory

<<uses>>

Figure 2. Proxy router pattern UML diagram

Participants:
• Proxy: Gang of Four [22] proxy pattern, with the

exception that the interface is not necessarily speci-
fied (e.g. forwarding to introspected methods). It is
responsible for making sure no calls are lost when a
new delegate is set.

• Delegate component: Concrete component which is
proxied. It must be specified as part of the proxy
router’s candidates set.

• Proxy router: Keeps a set of component candidates
and allows to control the routing of the calls a proxy
receives to the appropriate candidate chosen by some
strategy. The proxy router is responsible for ensuring
any state transfer and initialization of candidate in-
stances.

• Candidate factory: Gang of Four [22] factory pattern
for a candidate. Used as part of candidates definition.

10Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 18 / 83

Can do local loading/unloading for external candi-
dates.

• Choose route strategy: Concrete strategy to choose
which candidate among a set to use, based on Gang of
Four [22] strategy pattern. It uses accessible informa-
tion from the application, candidates (e.g. adaptation
space, descriptor, static methods) or any inference
engine available to make a choice.

• External/Internal proxy router: Depending on the
use, a proxy router can use an external proxy (as
a member) or internally be a proxy (through inheri-
tance). To allow for both schemes, a means to acquire
the proxy is provided and returns either the member
object (external) or a reference to the proxy router
itself (internal).

Behavior: A set of candidates is either statically specified
or discovered at runtime (e.g. looking for libraries providing
candidates). The proxy router is then initialized by choosing
a candidate using the strategy and controls the proxy to set
an instance of the chosen candidate as active delegate. At any
time, a new candidate can be chosen and set as active delegate
of the proxy.
Consequences: The proxy router pattern allows for flexible
and extensible specification of component substitution. The
strategies to choose a candidate to route to can be reused in any
project with consistent information acquisition infrastructure,
such as the one provided by the monitor pattern. Candidates
need not be specified statically and control related to routing
can be done both internally and externally.
Constraints: Strategies might rely on certain project specific
information which is not portable. Separating specific from
generally applicable strategies and composing them should
help with this constraint.
Related patterns: Adaptive component [16], virtual com-
ponent [5], master-slave [23], component insertion/removal,
server reconfiguration [7], proxy [22].

C. Adaptive Component Pattern
Classification: Analyze and plan.
Intent: Use monitored adaptation data to control parametric
adaptation and component substitution by making adaptation
spaces explicit.
Motivation: A basic structure is needed to easily add adaptive
behavior in the form of parametrization or substitution. Com-
ponents need a way to explicitly provide means for adaptation
strategies to reason about their adaptation space in order to
formulate plans. This information should be external to a base
component if the adaptation is to be added gradually. Most
importantly, an adaptive component must behave like any non-
adaptive component and be used among them without any
impact on the rest of the system.
Participants:

• Adaptive: An adaptive component which defines
means for acquiring the adaptation space. It can be
used as a subscriber to a parameter value provider.

• Monitor event manager: Parameter value provider
realized with the monitor pattern (see Section III-A).

• Parameter value subscriber: Provides a means to
be notified when a new value of a parameter it has
subscribed to has been acquired (see Section III-A).

• Proxy router: Proxy router pattern (see Section III-B)
• Adaptive proxy router: Adaptive version of a proxy

router allowing to drive the routing process (substitu-
tion) using monitored data.

Structure: Fig. 3 shows the structure of the adaptive compo-
nent pattern as a UML diagram.

+adaptation_space()
+parameter_value_provider()
+updated_monitored_value(parameter, old_value, new_value)

Adaptive

+candidates()
+proxy()
+route(target)
+choose_route()

ProxyRouter

AdaptiveProxyRouter

+register_monitor(parameter, monitor)
+unregister_monitor(parameter)
+observed_update(observable, value, kwargs)
+subscribe(subscriber, parameter)
+unsubscribe(subscriber, parameter)
+snapshot(parameters = None)

MonitorEventManager

+updated_monitored_value(parameter, old_value, new_value)

ParameterValueSubscriber

Figure 3. Adaptive component pattern UML diagram

Behavior: A component to be made adaptive can inherit the
adaptive interface or a specific decorator can be created if
the component’s code should remain unchanged. The adaptive
implementation defines what base adaptation space it will
support. Then, knobs can be defined within the component and
used as variables to compute, for example, its size or lay outing
specifications. Tuning can be done when an updated parameter
value is received. For substitution, the process is the same, but
uses the AdaptiveProxyRouter interface. Specific strategies can
be created, using as many generic filters as possible (e.g. filter
out candidates which adaptation space does not overlap with
a snapshot of the current state).
Consequences: Because of the explicit declaration of adapta-
tion space, strategies can easily reason about how a component
can behave in a situation. For example, a strategy can use
the fact that a component’s space is too specific or too wide.
Any component can be made adaptive and does not require
modifications to other components. Because of the support
for both parametric adaptation and component substitution,
the basic structure proposed in this pattern is suitable for
virtually any adaptive mechanism based on monitored data and
components adaptation spaces.
Constraints: Like stated in Section III-A, interacting adap-
tive components must subscribe to the same monitor event
manager to assure consistency in decision-making processes.
While arbitrarily large hierarchies of adaptive components
can be composed, there is an inherent overhead induced in
the adaptation and routing process. Because a component
subscribing to some parameter value provider such as the
monitor event manager has no guarantee that this parameter is
being actively monitored, adaptive components need to define
a default behavior or immediately request a snapshot of the
current state. To minimize this effect, it is preferable to register
monitors prior to creating any adaptive component.
Related patterns: Monitor (III-A), proxy router (III-B), adap-
tive component [16], virtual component [5].

IV. PROTOTYPE

This section presents AdaptivePy, a reference library im-
plementing the three design patterns presented in this paper,

11Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 19 / 83

along with a prototype as a case study for analyzing the gains
they procure compared to an ad hoc implementation.

A. AdaptivePy
AdaptivePy implements artifacts from all three design pat-

terns described in this paper. The Python language was chosen
because it is reflective, dynamically typed and many toolkit
bindings are freely available. Beyond the patterns, AdaptivePy
provides some useful implementations, such as enum-based
discrete-value parameters, push/pull dynamic monitor decora-
tors, operations over adaptation spaces (extend, union, filter)
and an adaptation strategy based on substitution candidates’
adaptation space restrictiveness. The library is freely available
from the PyPi repository under the name “adaptivepy” and is
distributed under LiLiQ-P v1.1 license.

B. Case Study Application
The case study application is a special poll designed to fa-

vor polarization. Five yes/no questions are asked to a user and
answered by selecting the most appropriate response among a
list of options. The options provided include yes, no, mostly
yes, mostly no and 50/50. To favor polarization, statistics
from the previous answers are used to restrict the range of
options provided to the user. If the polarization is judged
insufficient because of mixed responses (low polarization),
fewer options are provided. On the contrary, if virtually all
users have answered yes (high polarization), more options in
between will be given. The workflow of the application is to
start the “quiz” using a Start button, choose appropriate options
and send the form using a Submit button. If some options
remain unselected, a prompt alerting the user is shown and
the form can be submitted again once all options are selected.

The adaptation type used is a form of alternative elements
[24]. The GUI is made plastic by replacing control widgets
displaying the available options at runtime, conserving the
option selection feature in any resulting interface. Because
there is a varied number of options, some widgets are more
appropriate than others to display them, while some cannot
display certain amounts of options. A checkbox can handle
two options, radio buttons could be used for ranges of two to
four options and a combo box for five and more options. Of
course, radio buttons can hold more options and the combo
box less, but the amounts suggested represent the ranges they
are subjectively considered most appropriate for. These can be
chosen by a designer and further refined through user testing,
which means they must be easy to edit.

Polarization levels act as adaptation data to drive adapta-
tion. An appropriate solution would allow to design the GUI
within Qt’s graphical editor “Qt Designer” and to preview of
the adaptation directly, rather than having to add the business
logic beforehand. It would also allow for gradual addition
and modification of control widget types without necessitating
changes in unaffected modules.

The toolkit used for this application is Qt 5 through the
PyQt5 wrapper library. It is a cross-platform toolkit library
which provides implementations of widgets like checkboxes,
combo boxes are radio buttons groups. The concrete work
is therefore limited to implementing how these components
can replace each other at the appropriate time and how they
are included in a main user interface. We are therefore more
interested in the underlying structure of adaptation within the

Figure 4. Adaptive case study application “Polarized Poll”

+set_text(text)
+text()
+set_options(options)
+options()
+value()
+set_selection()
+state_transfer(source)

<<Interface>>
OptionsSelector

low
medium
high

<<enumeration>>
Polarization

ComboboxQt

CheckboxQt

RadioboxQt

-questions_widgets : List<QWidget>
-candidates : Map<class, List<OptionsSelector>>
-timer : QTimer
-quiz_started : Boolean

+on_start()
+on_submit()
+initialize_widgets()
+set_option_selector_components(component)
+update_option_selectors()

QuizMainWIndow

<<use>>

Figure 5. Simplified UML diagram of ad hoc implementation of case study
application

application than specific adaptation strategies and their user-
perceived effectiveness. Once an appropriate structure is in
place, we expect these can be more easily devised, tested and
improved.

V. RESULTS

The windows shown on Fig. 4 are the resulted GUI for the
application in all three polarization states. Because this case
study’s focus is on GUI, the monitoring of past responses was
simulated and a random monitor is used instead which updates
its value by means of a polling dynamic monitor every second,
allowing to easily observe adaptation.

A. Ad hoc Application
A simplified UML diagram of the ad hoc implementation

is shown on Fig. 5. The chosen approach is to add placeholder
widgets in QuizMainWindow which will be substituted by
an appropriate component instance at runtime: CheckboxQt,
ComboboxQt or RadioboxQt. A polarization level defined in
the enum Polarization is bound to each of these types. A timer
within QuizMainWindow polls the polarization value and calls
set_options_selector_components with the appro-
priate type. Adaptation control, along with any customization
necessary, is entirely done in QuizMainWindow.

12Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 20 / 83

Figure 6. Qt Designer using plain widgets as placeholder for ad hoc
implementation

Fig. 6 shows Qt Designer as the main window is created
for the ad hoc implementation. Notice that because placeholder
components are blank, no feedback is given to the designer.
It is therefore not possible to test the controls or set the
question label. This makes the approach incompatible with
the usual GUI design workflow, which involves previewing
the application in the graphical editor before adding business
logic.

When analyzing the ad hoc code, it is obvious that separa-
tion of concerns is not respected since the option selection
logic is tangled to its owner element, the main window.
Concerns such as scheduling for recomputing polarization and
component substitution are mixed with GUI setup and handling
of the business flow. This leads to a lack of extensibility, a
tangling of concerns and limits unit testing of components.
A method is used to select which control component to use
based on the polarization, but this solution remains inflexible.
The knowledge of adaptation is hidden and cannot be used to
devise portable strategies.

One of our goals is to gradually add adaptation mechanisms
to GUI implementations, but this is difficult since modification
of important classes will add risk of introducing defects. Also,
there is no easy way to work on adaptation mechanisms
separately from the application. In fact, we cannot separately
test the adaptation logic and integrate it after. Generally, the
lack of cohesion induced by the inadequate separation of
concerns is a sign of low code quality. Because no adaptation
mechanism can easily be introduced, modified and reused in
other projects, the ad hoc implementation works for its specific
application case, but is subject to major efforts in refactoring
when requirements and features will be added throughout its
development cycle.

B. Application Using AdaptivePy
A simplified UML diagram of the application is shown

on Fig. 7. From it, we see that the polarization is a discrete
parameter and is used by AdaptiveOptionsSelector, specifically
to define its adaptation space based on the ones provided
by its substitution candidates: CheckboxQt, ComboboxQt and
RadioboxQt. Additionally to adaptation by substitution, Ra-
dioboxQt can parametrically adapt to changes of polarization
levels {low, medium}, since they respectively correspond to 2
and 4 options. Its behavior is that the appropriate number of
options is shown depending on the polarization level. Adap-
tiveQuizMainWindow is free of adaptation implementation

+set_text(text)
+text()
+set_options(options)
+options()
+value()
+set_selection()
+state_transfer(source)

<<Interface>>
OptionsSelector

+adaptation_space()

ComboboxQt

+adaptation_space()

CheckboxQt

+adaptation_space()

RadioboxQt

+choose_route()
+route(target)
+candidates()

AdaptiveOptionsSelector

AdaptiveInternalProxyRouter

<<enumeration>>
DiscreteParameterlow

medium
high

<<enumeration>>
QuizOptionPolarization

PollingDynamicMonitorDecoratorQt

+route(target)

OptionsSelectorQt

Adaptive

-questions : List<OptionsSelector>
-quiz_started : Boolean

+on_start()
+on_submit()

AdaptiveQuizMainWindow

DynamicMonitorDecoratorMonitorEventManager

<<bind>>

<<bind>>

<<use>>

Classes provided by AdaptivePy

Figure 7. Simplified UML diagram of case study application implementation
using AdaptivePy

details and simply uses the AdaptiveOptionsSelector instances
as a normal OptionsSelector. OptionsSelectorQt is a subclass to
AdaptiveOptionsSelector which is used as a graphical proxy
to candidate widgets. It also defines properties used in Qt’s
graphical editor Qt Designer, in this case the question label.

Every AdaptiveOptionsSelector instance is made a sub-
scriber to the QuizOptionPolarization parameter at initializa-
tion. They are updated when a change in the monitored value
is detected, i.e., when a monitor detects a value is different
from the previous one. This is because identical subsequent
parameter values are expected by default to lead to the same
state, so they are filtered out. In the case of AdaptiveOp-
tionsSelector, because it is a proxy router, choose_route
is called to determine which substitution candidate to route
to. Prior to using an adaptation strategy to select the most
appropriate candidate, inappropriate ones can be filtered out
using filter_by_adaptation_space. This function,
provided by AdaptivePy, takes a list of candidates along with
a snapshot of the current monitoring state and only returns
those with adaptation space supporting the current context.
Then, a strategy like choose_most_restricted is used
to choose among valid components. If no component is valid,
an exception is raised. With a candidate chosen, all that
remains is configuring the proxy router by calling the route
method with the chosen candidate. This method must also take
care of state transfer between the previous and new proxied
components. This feature is already defined in the common
interface OptionsSelector as state_transfer.

Fig. 8 shows Qt Designer as the main window is created
with the AdaptivePy-based implementation. When compared
to Fig. 6, we notice that the designer has a full view of how
the application will look. Moreover, the currently displayed
adaptation can be controlled through the setup of the monitors.
For example, it is possible to replace the random value by
one acquired from a configuration file and trigger adaptation
manually. Also, each question is simply a OptionsSelectorQt
component rather than a placeholder component and the ques-
tion is entered directly from the graphical editor using the label
property (bottom-right). A major advantage is that adaptive

13Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 21 / 83

Figure 8. Qt Designer using adaptive components developed with AdaptivePy

components can be reused in other interfaces because they
are provided as standalone components. The need for easy
edition of adaptation spaces is also addressed by modifying
or overriding the adaptation_space method of adaptive
components.

The adaptation logic is essentially located in the adaptive
proxy router class: AdaptiveOptionsSelector. Because adapta-
tion is separated from the rest of the business logic, the main
window class can use the adaptive components without the
knowledge of adaptation. The only logic remaining is with
regard to buttons handling (Start and Submit buttons). It is
clear in this implementation that the knowledge of adaptation
space which was hidden in the ad hoc implementation is
used to efficiently choose a substitution candidate. Self-healing
action such as replacing a failing component can be easily
realized by monitoring the components and including this logic
as a strategy. This is not easily realizable in the ad hoc imple-
mentation. In the prototype, a radio box could safely replace
a checkbox since it parametrically covers its full adaptation
space, overlapping on {low} polarization. Also, from this case
study, we can see that arbitrarily large hierarchies of adaptive
and non-adaptive components can be built without tangling
code or affecting other components when adding new adaptive
behavior.

VI. CONCLUSION AND FUTURE WORK

Design patterns presented in this paper can be used as
a basic structure to accomplish various levels of adapta-
tion in GUI. Adaptive components can be used with other
modules such as recommendation engines to provide more
or less automation and proactive adaptation. Monitors can
also be extended and even implemented as adaptive compo-
nents themselves, relying on other more primitive monitors.
Proxy routers allow to simplify hierarchical development of
arbitrarily large sequences of component substitutions. The
patterns form together an effective approach for the integration
of various adaptation mechanisms and, in the case of GUI,
can be used to provide a more usual workflow than the ad
hoc implementation. AdaptivePy, as a reference library, is an
example of the viability of the patterns when used in a concrete
implementation. Even though a simple application was used

to observe gains, the solution is applicable to more complex
scenarios where multiple parameters, monitoring groups and
large hierarchies of adaptive components. The patterns are
general enough that they can be used for adding adaptive
behavior based on user, environment and platform variations.

Future work will focus on exploring parameters types with
more complex value domains and try to formalize a structure
to express them. Also, the lack of adaptation quality metrics
for verification and validation methods limits the evaluation of
gains. To alleviate this limitation, new metrics using concepts
of the design patterns presented in this paper will be explored.
The goal is to better quantify the quality level of prototypes
with regard to adaptation.

REFERENCES

[1] F. Chang and V. Karamcheti, “A framework for au-
tomatic adaptation of tunable distributed applications,”
Cluster Computing, vol. 4, no. 1, pp. 49–62, 2001, ISSN:
1573-7543.

[2] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and
J.-B. Stefani, “The fractal component model and its
support in java,” Software: Practice and Experience, vol.
36, no. 11-12, pp. 1257–1284, 2006.

[3] Y. Maurel, A. Diaconescu, and P. Lalanda, “Ceylon:
A service-oriented framework for building autonomic
managers,” in 2010 Seventh IEEE International Confer-
ence and Workshops on Engineering of Autonomic and
Autonomous Systems, Mar. 2010, pp. 3–11.

[4] M. Peissner, A. Schuller, and D. Spath, “A design
patterns approach to adaptive user interfaces for users
with special needs,” in Proceedings of the 14th Inter-
national Conference on Human-computer Interaction:
Design and Development Approaches - Volume Part
I, ser. HCII’11, Orlando, FL: Springer-Verlag, 2011,
pp. 268–277.

[5] A. Corsaro, D. C. Schmidt, R. Klefstad, and C. O’Ryan,
“Virtual component - a design pattern for memory-
constrained embedded applications,” in In Proceedings
of the Ninth Conference on Pattern Language of Pro-
grams (PLoP, 2002.

[6] G. Rossi, S. Gordillo, and F. Lyardet, “Design patterns
for context-aware adaptation,” in 2005 Symposium on
Applications and the Internet Workshops (SAINT 2005
Workshops), Jan. 2005, pp. 170–173.

[7] A. J. Ramirez, “Design patterns for developing dynami-
cally adaptive systems,” Master’s thesis, Michigan State
University, 2008.

[8] T. Holvoet, D. Weyns, and P. Valckenaers, “Patterns of
delegate mas,” in 2009 Third IEEE International Con-
ference on Self-Adaptive and Self-Organizing Systems,
Sep. 2009, pp. 1–9.

[9] M. G. Hinchey and R. Sterritt, “Self-managing soft-
ware,” Computer, vol. 39, no. 2, pp. 107–109, 2006.

[10] M. Salehie and L. Tahvildari, “Self-adaptive software:
Landscape and research challenges,” ACM Transactions
on Autonomous and Adaptive Systems (TAAS), vol. 4,
no. 2, p. 14, 2009.

[11] M. L. Berkane, L. Seinturier, and M. Boufaida, “Us-
ing variability modelling and design patterns for self-
adaptive system engineering: Application to smart-
home,” Int. J. Web Eng. Technol., vol. 10, no. 1, pp. 65–
93, May 2015, ISSN: 1476-1289.

14Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 22 / 83

[12] IBM, “An architectural blueprint for autonomic com-
puting,” IBM Corporation, Tech. Rep., 2005.

[13] S. Malek, N. Beckman, M. Mikic-Rakic, and N. Med-
vidovic, “A framework for ensuring and improving
dependability in highly distributed systems,” in Archi-
tecting Dependable Systems III, R. de Lemos, C. Gacek,
and A. Romanovsky, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 173–193.

[14] V. Mannava and T. Ramesh, “Multimodal pattern-
oriented software architecture for self-optimization and
self-configuration in autonomic computing system using
multi objective evolutionary algorithms,” in Proceedings
of the International Conference on Advances in Com-
puting, Communications and Informatics, ser. ICACCI
’12, Chennai, India: ACM, 2012, pp. 1236–1243.

[15] A. J. Ramirez and B. H. Cheng, “Design patterns for de-
veloping dynamically adaptive systems,” in Proceedings
of the 2010 ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems, ACM, 2010,
pp. 49–58.

[16] W.-K. Chen, M. A. Hiltunen, and R. D. Schlichting,
“Constructing adaptive software in distributed systems,”
in Distributed Computing Systems, 2001. 21st Interna-
tional Conference on., Apr. 2001, pp. 635–643.

[17] D. A. Menasce, J. P. Sousa, S. Malek, and H. Gomaa,
“Qos architectural patterns for self-architecting soft-
ware systems,” in Proceedings of the 7th International
Conference on Autonomic Computing, ser. ICAC ’10,
Washington, DC, USA: ACM, 2010, pp. 195–204.

[18] H. Liu and M. Parashar, “Accord: A programming
framework for autonomic applications,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 36, no. 3, pp. 341–352,
May 2006, ISSN: 1094-6977.

[19] J. Zhang and B. H. C. Cheng, “Model-based develop-
ment of dynamically adaptive software,” in Proceedings
of the 28th International Conference on Software Engi-
neering, ser. ICSE ’06, Shanghai, China: ACM, 2006,
pp. 371–380.

[20] H. Gomaa, K. Hashimoto, M. Kim, S. Malek, and D. A.
Menascé, “Software adaptation patterns for service-
oriented architectures,” in Proceedings of the 2010 ACM
Symposium on Applied Computing, ser. SAC ’10, Sierre,
Switzerland: ACM, 2010, pp. 462–469.

[21] P. Kang, M. Heffner, J. Mukherjee, N. Ramakrishnan, S.
Varadarajan, C. Ribbens, and D. K. Tafti, “The adaptive
code kitchen: Flexible tools for dynamic application
composition,” in 2007 IEEE International Parallel and
Distributed Processing Symposium, Mar. 2007, pp. 1–8.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-oriented
Software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1995.

[23] H. Gomaa and M. Hussein, “Software reconfiguration
patterns for dynamic evolution of software architec-
tures,” in Software Architecture, 2004. WICSA 2004.
Proceedings. Fourth Working IEEE/IFIP Conference on,
Jun. 2004, pp. 79–88.

[24] M. Bezold and W. Minker, Adaptive multimodal interac-
tive systems. Springer Science & Business Media, 2011.

15Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 23 / 83

Goal-Compliance Framework for Self-Adaptive Workflows

Budoor Allehyani, Stephan Reiff-Marganiec

Department of Informatics
University of Leicester

Leicester, UK
Email: {baaa2,srm13}@le.ac.uk

Abstract—Workflow adaptation involves two major research top-
ics: flexibility and correctness. The former is related to the ability
to react to change and adapt workflow structure, while the
latter is related to managing this flexibility and ensuring syn-
tactical, semantical as well as behavioural consistencies. Current
approaches range from providing flexible workflows to flexible
and consistent workflows. They mostly focus on syntactical
consistency and generic properties (such as deadlock-freedom),
but rarely consider semantic aspects. However, not providing
semantic guarantees neglects the importance of preserving the
original goal. The primary focus of this research is to ensure goal
compliance during workflow reconfiguration. Thus, we analyse
the impact of workflow automatic adaptation on the goal in
question. As a result, we define goal-compliance constraints and
develop a goal-compliance framework, which automatically and
dynamically adapts workflow instances through Event-Condition-
Action policies. Furthermore, it validates the adaptation against
the goal-compliance rules and constraints through model check-
ing and ontology-based approach.

Keywords–BPMN; Reconfiguration; Goal-Compliance; Model
Checking; Ontology; Runtime Verification.

I. INTRODUCTION

The Business Process Model and Notation (BPMN) [1] is
an efficient language for modelling business processes. How-
ever, it is insufficient for analysis and verification purposes.
This is due to the fact that BPMN lacks in techniques and
tools that support process analysis. However, there exist some
successful approaches that map BPMN semantics to several
formal languages, such as Petri nets [2] and Communicating
Sequential Processes (CSP) [3], which are formal and tool sup-
ported. As the business domain is well-known for its dynam-
icity and complexity, processes should be self-adaptable and
self-manageable. Gorton [4] provides self-adaptive workflows
(WF) using (Event-Condition-Action(s)) policies to change
WF specifications at runtime and on an instance level. We
build upon his work aiming at self-management workflows,
whic correctly and safely react to change. We aim to make WF
systems as flexible as possible without sacrificing their func-
tionality. The main focus of this research is on guaranteeing
goal compliance in self-adaptive workflows. The goal model is
considered as the main reference for the WF functionality in
its entire lifetime from design to development. Therefore, any
changes or updates applied to a WF must satisfy the original
goal. The novel contributions we present in this paper are:
(1) the goal-compliance framework for runtime reconfiguration
and verification and (2) the mechanisms to preserving business
goal. This research is basically motivated by the following
research questions: 1) How can we write specifications that

are precise enough to exclude bad implementations (undesired
behavior) while at the same time being flexible enough to cope
with the kind of changes we wish to allow? 2) How can we
detect consistency with a high level specification?

The remainder of this paper is structured as follows: a
brief background about the main concepts used throughout this
paper is in Section II. Section III provides an overview about
the goal-compliance framework, Section IV gives more details
about the development of the verification mechanisms used
for goal-compliance check. We include an initial evaluation
for our framework in Section V. Section VI discusses some
related approaches and we conclude the paper in section VII.

II. BACKGROUND

We briefly introduce the main concepts used in this paper:
BPMN, goal specification, domain knowledge. The BPMN
process model can be defined through a BPMN diagram,
which illustrates what activities are to be executed and in what
order. Thus, business process functionality is captured by the
BPMN process model. An activity is defined by the BPMN
specification as a generic term for work a company performs
within its business process. It can be atomic or composite and
it is of three types: task, subprocess and call activity.
A goal can be defined as ”high-level objectives of the business,
organization or system; they capture the reasons why a system
is needed and guide decisions at various levels within the
enterprise” [5].

In Requirements Engineering, there are different techniques
and methods used to ”formally” model and declare goals.
One of the methods is requirement specification, which relates
business goals to functional system components. Keep All
Objectives Satisfied (KAOS) [6] is a goal modelling method
aimed at requirement elicitating and validating. It encompasses
five major concepts: goals, assumptions, agents, objects, and
operations. In this research, we only consider the goal concept
of KAOS and relate it to the BPMN. In KAOS, a goal model
consists of the strategic goal and its refinement objectives. The
refinement relation is of two types: 1) AND refinement where
all related objectives must be achieved and 2) OR refinement
where at least one of the related objectives is achieved.

Domain knowledge is derived according to the goal in
question. Ontologies are a common technique for knowledge
representation. An ontology is defined as ”a formal explicit
description of concepts in a domain of discourse (classes
(sometimes called concepts)), properties of each concept
describing various features and attributes of the concept (slots
(sometimes called roles or properties)), and restrictions on

16Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 24 / 83

slots (facets (sometimes called role restrictions))” [7].

Reconfiguration policies, which are introduced in [4], are
used to adapt running BPMN instances and their syntax is
defined as follows:

polrule ::= appliesto location [when triggers] [if conditions]
do actions
triggers ::= trigger | triggers or triggers
conditions ::= condition | not conditions | conditions or con-
ditions | conditions and conditions
actions ::= action | actions actionop actions actionop ::= and |
or | andthen | orelse

III. GOAL-COMPLIANCE FRAMEWORK

The presented Goal-compliance framework supports on-
the-fly WF adaptation while preserving the WF semantics.
Generally speaking, the notable aspects of the framework are:

• Online Workflow Reconfiguration at Instance Level:
The framework provides flexibility for WF systems
by inserting, deleting and replacing workflow tasks.
This flexibility is provided by three important factors
for runtime adaptation: change per instance, online
adaptation (i.e., change on running instances), au-
tomatic adaptation using ECA policies and change
management.

• Goal-Compliance Validation Capabilities: A Goal-
Compliance check is the key feature of this frame-
work. Before applying any workflow change, the
framework has the ability to check the corresponding
constraints and decide whether to accept the change
or not. Each change variability has its corresponding
constraints based on the analysis of its affect on goal
satisfaction. Therefore, a goal-task dependency check
is related to deleting a task from the running process,
while the task-domain conformance check is related
to inserting a task to the running process.

• Facilitating Other Semantic Checking: Using the on-
tology within the framework could also facilitate other
types of semantic checks by enhancing/reusing the
ontology to add more constraints or define different
rules. Furthermore, it could be used for querying the
ontology while performing such a semantic verifica-
tion.

A. Architecture
The runtime framework assumes an adapted process exe-

cution engine. For simplicity, we assume here that we have an
engine that can execute BPMN processes directly (this allows
us to focus on the main aspects rather than worrying about
converting these into some executable formats). The engine is
able to pause a process instance and also to make changes to
instances. Fig. 1 presents the block diagram of the proposed
framework.

As the process instance executes it will raise triggers e.g.,
at the start of a task which are passed to the policy server (a
policy enforcement point), which either returns a no change
allowing the instance to be processed as it is or a specific
change action, e.g., the need to insert a task, which will lead
to updating the process structure of the instance. The action
that the policy server demands depend on the policies in the

repositories and of course the instance data in the process. The
policy server retrieves policies from the policy store, checks for
the applicability and then considers the actions to be applied.
Once it has determined what actions should be applied, the
process instance is updated accordingly and would continue
executing in its new shape. Through the work presented here an
extra phase is added, namely that of checking that the change
is appropriate in the sense that it maintains the goal semantics
of the original process.

As can be seen from Fig. 1, the proposed framework
accepts the original WF specification, the modification details
and the domain compliance constraints as inputs. The WF
specification is in BPMN file and is in xml format and it
is automatically transformed to CSP. The modification details
can be in a configuration file that determines the changes to
the WF specification through ECA policies.The framework
consists of three components namely, Specification Reader,
Reconfigurator and Validator. The brief description of each
one is provided below.

Figure 1. Goal-Compliance Framework Architecture

• Specification Reader: This component is responsible
to read the existing WF specification and transform it
into an in memory state for fast processing and easy
manipulation of the modification. This can be achieved
by utilizing some XML interfacing APIs (Application
Programming Interface).

• Re-configurator: The re-configurator is responsible to
process the actual modification operations e.g., inser-
tion of the new task into existing WF specification.
This component is responsible to interact with the
Ontology and WordNet tools to carry out the requested
modification on the existing WF specification.

• Validator: The validator is responsible to ensure that
the modification is according to the given specification
and it does not violate any domain compliance rules
or constraints. The domain compliance rules are the
constraints that help to ensure the preservation of the
original goals of the WF. This can be achieved by
exploiting the Failure-Divergences Refinement (FDR)
and other necessary validation tools.

17Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 25 / 83

B. Implementation
The proposed framework is implemented with Java and

works in the following sequential order:

1) Read the existing WF specification
2) Read the reconfiguration details
3) Validate the reconfiguration against goal-domain

compliance constraints
4) Adapt the WF, if the validation from (3) was success-

ful
5) Produce adapted WF specification for the running

instance

The reconfiguration component of the framework supports
three processes including insertion, deletion and replacement.
The details of each process are included in the following sub
sections.

1) Insert: The insert process refers to the facility where
the proposed framework allows the modification of existing
workflow by allowing the insertion of a new task into the given
WF specification. The new inserted tasks can be of any of the
following kind of tasks:

• Atomic sequential: This refers to the insertion of a new
task in sequential order immediately after a given task.
This operation requires the new task name as well as
the name of an existing task.

• Atomic parallel: This refers to the insertion of the new
task in parallel to an existing task. The operation will
insert the parallel gateway to connect the new task and
existing task in parallel. The new and existing task
names must be provided to perform the operation.

• Composite: The composite task is itself a collection of
multiple tasks. The framework allows the insertion of
a new composite task. In this operation, the framework
will receive multiple task names, which collectively
represents the composite task. The framework will
then insert those tasks as a composite task in reference
to an existing task.

The procedure developed for the insertion of the new
task to an existing workflow is the same irrespective of the
above mentioned types. The domain-conformance constraint is
implemented for insertion verification with ontology support.
The short explanation is provided below.

a) In the first step, the framework reads the existing WF
specification and then obtains the new task name from the
configuration file that contains the modification details. This
name is then searched from the available ontology. This search
query targets that the task name must match an individual name
in the ontology satisfying the constraint that the individual
must belong to the same domain as the domain of the WF
specification. If the search succeeds, then the Re-configurator
will allow the insertion of the new task. Otherwise, it will
carry out Step-b. b) In case the given task name is not
available in the ontology, then the framework will attempt
to explore the possibility to confirm the suitability of the
task name through WordNet. The framework assumes that the
task name must consist of two words separated by a special
character (e.g.,). The first word represents action, while the
second word represents object (e.g., Register Student). The
framework interacts with WordNet repository to obtain the
synonyms of both words (i.e., action and object). The object

part and their synonyms help to identify the corresponding
domain of the workflow, whereas the action part hints at
the type of the action. For example, ”Register” indicates that
the task should be of type ”Registration” and the ”Students”
indicates the BPMN domain ”UniversityAdmission”.
c) Once the synonyms are retrieved, then they are searched in
the ontology. The framework will allow the insertion of new
task, if any of the synonyms of both parts are found in the
ontology. Otherwise, the framework will not allow the insertion
of new task.

2) Delete: The delete process of the proposed framework
refers to the facility of modifying a given WF specification
through allowing the deletion of an existing task. Similarly,
to the insert process, the framework allows the deletion of
Sequential atomic, Parallel atomic and composite tasks. The
goal-task constraint is implemented here with FDR support.
The brief description of the main steps is provided below.

a) The framework reads the WF specification file and the
configuration file that contains information on the task that
is to be deleted. The framework first ensures that the task to
be deleted exists in the specification. b) The framework then
ensures that the deletion operation does not violate any of the
domain compliance rules or any other constraints. If not, then
the requested task is deleted from in-memory representation
of the WF specification. A modified WF specification must
be produced at the end of the process. c) If the deletion of
the task violates any of the domain compliance rules or other
constraints, then the framework will not allow the deletion of
the task.

3) Replace: The replace process of the proposed frame-
work allows the replacement of an existing task with a new
one. Within the ontology, all semantically equivalent tasks are
defined using the ontology semantical relation ”SameIndivid-
ualAs” to indicate they hold the same semantic. Therefore,
replacing one with another does not affect the process seman-
tic. The brief description is provided below.

a) The framework reads the WF specification file and the
configuration file that contains information of the existing
task and the new tasks that will be needed to replace. The
framework first ensures that the existing task that has to be
replaced exists in the specification. b) The framework then
searches the ontology to identify whether both of the tasks are
the same individuals or not (i.e., they must be semantically
equal). If both tasks are the same individual in the ontology,
then the framework will allow the replacement.

However, there could be different ways to define semantical
relations among task individuals, which might be used to define
other constraints for the replace policy.

IV. GOAL-COMPLIANCE ASSURANCES FOR RUNTIME
VERIFICATION

We individually analyse the impact of the reconfiguration
policies on goal satisfaction based on the action indicated
within the policy; insert, delete or replace. Therefore, two types
of constraints are defined: goal-task dependency and domain-
task conformance. The former is defined as a result of deleting
BPMN tasks while the latter for inserting or replacing tasks.
Model checking is used to validate the goal-task dependency
constraint and this is due to its applicability for this type of
validation, where a property capturing a certain behaviour must

18Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 26 / 83

satisfy a model specification. However, inserting new tasks to
the BPMN differs from removing existing ones. Therefore, it
implies different type of constraints using an ontology-based
approach as it encompasses everything about the domain and
facilitates this type of verification. If the new task is consistent
with the domain, it should satisfy the goal.

Figure 2. Conformance relationship among workflow, its domain and goal

There exists a satisfaction/conformance relationship be-
tween the running process (workflow), the goal in question
and its domain, depicted in Fig. 2. Goal specification is located
in the top layer since it is considered the main reference for
workflow designing as well as development. The middle layer
is domain knowledge, which represents concepts of a specified
domain and their relationship/semantical relations. The WF
specification is localised at the bottom layer. The original as
well as the adapted WF specification must satisfy the domain
and the goal in question. If the WF satisfies the domain rules,
this will lead to goal satisfaction. In the following subsections,
we are going to discuss the goal-compliance constraints and
their implementation in details.

1) Goal-Task dependency: We define goal-compliance
properties based on original goal specification in order to
keep it consistent during workflow reconfiguration. As goal
and process models are dependent, we establish a link of
satisfaction based on the dependency between goals in goal
model and tasks in process model called goal-task dependency
link. Note that the establishment of this task was inspired
from [8] but we consider goal satisfaction at a high level of
abstraction. KAOS is used to model the goal formally allowing
for specification in LTL (Linear Temporal Logic) with variant
patterns [8]: (1) Achieve goals, (2) Cease goals, (3) Maintain
goals, (4) Avoid goals. The first and third patterns help to
verify the availability of certain desired behaviour.

The establishment of the goal-task dependency link allows
us to indicate property specifications, which in turn guarantee
goal achievement. Hence, the constraint formulae are written
as WF |= P, where P is property specification. CSP is candidate
as a process and property specification language. The process
model we have is expressed as BPMN diagram and this BPMN
is transformed to CSP using Wong's tool [3]. Goal specification
is expressed in LTL patterns and they are converted to CSP
specifications using Wong's property specification patterns [9].
The above constraint formulae then can be automatically
checked using the FDR tool [10] through refinement assertions.

The following represents the steps we follow in order to
implement the verification of goal-task dependency constraint:

1) Define the goal for a given domain
2) Identify goal-related tasks based on goal-task depen-

dency link
3) Define property specifications using the result from

(1). Property specifications should state the availabil-
ity of all goal-related tasks and must be consistent
with goal specification

4) Convert property specifications from (3) into CSP
specifications

5) Check the refinement relation (satisfaction function
”P [=R WF”), which indicates that the process spec-
ification satisfies the property under Refusal refine-
ment (R).

There are three types of goal-task relationships:

1) One task is contributing to achieve a single objective
2) Groups of tasks are contributing to achieve a single

objective and this could be:
a) OR-grouped tasks
b) AND-grouped tasks

Those variants are classified according to the refinement
relation among their corresponding objectives in KAOS goal
specification. CSP refinement notion together with the hid-
ing operator make it possible to model check self-adaptive
workflows in a sufficient way. In particular, it facilitates to
check the availability of certain events (tasks). So, in property
specification we identify the functional behaviour that is re-
lated to a goal specification. Then, this property specification
is tested through refinement assertion with hiding particular
events. Based on the type of the property, the hiding is
provided. For properties that are of type (1), we need to hide all
process alphabets from WF specification in the right hand side
excluding the event that the property holds in the left hand side.
This allows the model checker to check for a certain behaviour.
In case of properties of type (2), when property specification
states at least one of the events is available, then the removed
tasks by policy should be hidden from WF specification.

For example, suppose a BPMN process consists of se-
quenced tasks A, B and C. A OR B are contributing to achieve
an objective O 1. C is contributing to achieve O 2. The CSP
property specification that captures the availability of A OR B
is defined as follows:

P= let Spec0= A → Spec2 Spec1= B → Spec2 Spec2= C
→ SKIP within Spec0 u Spec1

Now, suppose a policy wants to delete task A from process
specification. The framework is going to verify this by check-
ing the refinement relation between P and WF as follows:

assert P vR WF \ (A) where \ indicates ”hide” and it
means hide A from WF specification because it is the targeted
task by the policy. In this case, the refinement relation holds
because B is still running in the process. If A and B are going
to be removed, the assertion will fail.

2) Domain-Task Conformance: All desirable actions or
functionalities that any organization wishes to achieve are
determined basically through goal specification. Those func-
tionalities in predefined order are captured by WF systems.
The insert function is used to add extra functionality to the
workflow. It can insert a new workflow item (activity or
operator) at any position. As a result, it might have a significant
impact on achieving the original goal if left uncontrolled. We

19Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 27 / 83

Figure 3. Ontology Structure

focus on the semantical impact in which the functionality
being added deviates from the goal or is inconsistent with the
knowledge in a given domain. Semantical impact is conceived
as undesirable actions that might causes unexpected outcome,
which in turn might affect business outcome. Hence, the
satisfaction between a workflow and its domain will lead to
goal satisfaction. As a result, we develop an ontology for
verifying the consistency of adapted BPMNs.

The ontology is consistent with the goal in question. We
assume it encompasses everything about the BPMN domain
in terms of BPMN tasks, their classification and relationships.
The classification allows to group tasks based on their semantic
in order to be able to verify consistency. For example, for
verification purposes, we classify BPMN tasks according to
the work they are designed for, (e.g., the tasks ”Notify Can-
cellation” and ”Notify Timeout” are classified as Notification
tasks). However, they could be classified according to different
criteria for other types of checking.

Although BPMNs are domain specific, i.e., domains differ
in their goals and the purpose they are designed for, we
develop a generalized semantic constraint. For example, Flight-
Booking is a different domain than Pizza-Delivery as the
concepts used within the processes as well as their outcomes
are different. The domain is captured in an ontology following
the structure Domain-Type-Task. It is defined in the Web
Ontology Language (OWL) using Protégé [11].

The ontology combines three classes: Domain class in-
cludes different domains, Type class includes type classifica-
tions of domain tasks and Task class encompasses all BPMN
tasks related to specific domains. Individuals of the three
classes are linked using OWL object properties. Basically, we
have two object properties: hasType linking tasks with types
and hasDomain linking types with domains, see Fig. 3. In this
work, BPMN tasks are considered to be the domain concepts as
they are the main artifacts in process execution since they are
designed to perform work within the process. We use domain
knowledge to reason about goal satisfaction. This is due to
the fact that goal specification holds the desirable actions but
is abstracted from any detail about the process it is designed
for. For this reason, we use the domain knowledge to prove
consistency with the goal as it holds more details about the
executed process and adheres to the goal.

V. RELATED WORK

The correctness of self- adaptive workflow systems has
been an active research area in recent years. Correctness is
a broad concept and it varies according to adaptation level.
Adaptation could be at process, infrastructure, domain or
resource level [12]. Generally speaking, process correctness
can be divided into three major criteria; syntactic, semantic and
behaviour. Each of these can further be divided into several
criteria, for example syntactic correctness covers properties
like reachability and inheritance. Current approaches focus
on syntactic and behaviour correctness. However, semantic
assurances, such as data flow correctness, task compatibility,
rule compliance are also important aspects to ensure safe
adaptation. In the literature, three semantic constraints are
defined for workflow validation.

(1) Task-task dependency [13], which is developed to
ensure compatibility among tasks in terms of order correctness
among running tasks.

(2) Mutual exclusion and Coexistence constraints [14],
which express the incompatibility between two tasks to avoid
running them together and vice versa.

They are implemented over semantic conformance-oriented
ontology for verifying workflow correctness at design time.
[15] developed dependency models in order to manage process
model variants not instance variants. Satisfying goal is another
semantic criteria that must be addressed for self-adaptive
systems. Koliadis and Ghose [8] developed GoalBPMN for
studying and analysing the effect of changing goal specifica-
tion in respect with its BPMN. BDI agent technology was used
to develop agile goal-oriented business processes [16]. This ap-
proach handeled both modeling as well as adapting processes
but they assume changing at goal level and restructure the
process model accordingly.

In this work, we provide assuarances on goal-compliance
(adapted process model is compliance to its original require-
ments) considering instance variants for running workflows at
a high-level of abstraction.

VI. CONCLUSION AND OUTLOOK

A. Conclusion
In this paper, we presented a goal-compliance framework,

the motivating approach behind it and its implementation.
Basically, our approach focuses on providing assurances that
the goal of self-adaptive workflows is still satisfied. As a
result, we introduced two major compliance constraints: goal-
task dependency and domain-task conformance constraints.
The goal satisfaction is considered at a very high-level of
abstraction neglecting the implementation details following the
fact that workflows are designed to capture business goal. This
allows to prevent errors and inconsistency at the abstract level,
which in turn will reduce the effort, error and cost at data level.

B. Outlook
The Goal-Compliance framework performs runtime veri-

fication in a feasible as well as straightforward fashion. We
run ana evaluation process based on the following criteria:
1) framework performance, 2) framework adequacy and 3)
ontology accuracy. The performance is to measure time taken
to read a BPMN, change its structure as required by policies
and verify its compliance to the constraints. The main objective

20Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 28 / 83

to measure the time is because the framework supposed to do
its work at runtime and ensuring that its performance is reliable
in practice. This point is planned as a future work and JProfiler
[17] was chosen for this purpose.

However, we measure the ime taken by FDR to perform
the verification related to the delete policy. FDR showed
that the average time to calculate a simple assertion (e.g.,
the availability of the task ”Confirm Booking” to achieve
the objective ”FlightBooked” in the Travel domain) is 0.81s.
Note that some objectives are achieved by the contribution of
more than one task and the property is defined based on the
refinement relations between their corresponding objectives in
goal specification. For example, the tasks ”Quote Flight” OR
”Quote Hotel” OR ”Quote Car” are contributing to achieve
the objective ”TravelPlanGenerated”. For these types of prop-
erties, the average time taken is 0.2s.

The framework adequacy is concerned with the workflow
patterns [18] as they are widely accepted and capture most of
the WF behaviours. Case by case analysis shows that 33 out
of 43 of those patterns are supported within our framework.
The unsupported patterns are those that are not implemented
by BPMN.

The proposed ontology can be generalised to represent
any BPMN domain. It is based on an assumption that it
encompasses all tasks (designed and un-designed) that belong
to a specific domain. However, predicting all tasks related to
instance variants is impossible at modelling time. As a result,
WordNet was integrated within the framework for synonyms
search. We analysed the proposed ontology taking its accuracy
into consideration. The accuracy is classified as a correctness
metric and it includes precision, recall and coverage as the
main measures [19]. We conducted a number of experiments
on different BPMN(s) from different domains. In general, the
number of verified tasks, which matched with Task individuals
in the ontology, was 33 out of 39. Six tasks were not found in
the ontology directly, but 4 were matched through synonyms
finding with WordNet, making a total of 37 matches. However,
two tasks failed to meet the domain-conformance constraints
and as a result were rejected.

Based on theses results, the precision of the D-T-T ontology
is 94.8% and the recall is 100%. The results show that this is
a very promising approach, as long as the structure of the task
name is ’well formed’ in a verb-noun form (action followed by
object: Send Mail or Place Order). The approach will extend
to more complex task names, but more parsing and intelligence
in the matching with the ontology is required.

REFERENCES

[1] “Object management group business process model and notation,” URL:
http://www.bpmn.org [accessed: 2016-10-25].

[2] P. C.A., Kommunikation mit Automaten. PhD thesis, Institut fur
instrumentelle Mathematik, 1962.

[3] P. Wong, Formalisations and Applications of Business Process Mod-
elling Notation. PhD thesis, University of Oxford, 2011.

[4] S. Gorton, Policy-driven Reconfiguration of Service-targeted Business
Processes. PhD thesis, University of Leicester, 2011.

[5] A. Antón, “Goal-based requirements analysis,” in Requirements Engi-
neering, 1996., Proceedings of the Second International Conference on.
IEEE, 1996, pp. 136–144.

[6] A. Lapouchnian, “Goal-oriented requirements engineering: An overview
of the current research,” University of Toronto, 2005, p. 32.

[7] N. Noy and D. McGuinness, “Ontology develop-
ment 101: A guide to creating your first ontology,”
URL: http://protege.stanford.edu/publications/ontology

development/ontology101-noy-mcguinness.html [accessed: 2016-
09-14].

[8] G. Koliadis and A. Ghose, “Relating business process models to goal-
oriented requirements models in kaos,” in Advances in Knowledge
Acquisition and Management. Springer, 2006, pp. 25–39.

[9] P. Wong and J. Gibbons, “Property specifications for workflow mod-
elling,” in Integrated Formal Methods. Springer, 2009, pp. 56–71.

[10] “Fdr3 released, oxford university computing laboratory,” URL:
http://www.cs.ox.ac.uk/projects/concurrency-tools/ [accessed: 2016-10-
12].

[11] “Protege,” URL: http://protege.stanford.edu [accessed: 2016-08-22].
[12] Y. Han, A. Sheth, and C. Bussler, “A taxonomy of adaptive workflow

management,” in Workshop of the 1998 ACM Conference on Computer
Supported Cooperative Work, 1998.

[13] L. T. Ly, S. Rinderle, and P. Dadam, “Semantic correctness in adaptive
process management systems,” in International Conference on Business
Process Management. Springer, 2006, pp. 193–208.

[14] T.-H.-H. N. Tuan Anh Pham and N. L. Thanh, “Ontology-based
workflow validation,” in Computing Communication Technologies -
Research, Innovation, and Vision for the Future (RIVF), 2015 IEEE
RIVF International Conference on, Jan 2015, pp. 41–46.

[15] C. Sell, M. Winkler, T. Springer, and A. Schill, “Two dependency
modeling approaches for business process adaptation,” in International
Conference on Knowledge Science, Engineering and Management.
Springer, 2009, pp. 418–429.

[16] B. Burmeister, M. Arnold, F. Copaciu, and G. Rimassa, “Bdi-agents
for agile goal-oriented business processes,” in Proceedings of the 7th
international joint conference on Autonomous agents and multiagent
systems: industrial track. International Foundation for Autonomous
Agents and Multiagent Systems, 2008, pp. 37–44.

[17] “ej technologies,” URL: https://www.ej-
technologies.com/products/jprofiler/overview.html [accessed: 2016-09-
20].

[18] “Workflow patterns,” URL: http://www.workflowpatterns.com [ac-
cessed: 2016-09-22].

[19] H. Hlomani and D. Stacey, “Approaches, methods, metrics, measures,
and subjectivity in ontology evaluation: A survey,” Semantic Web
Journal, 2014, pp. 1–5.

21Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 29 / 83

Pure Embedding of Evolving Objects

Max Leuthäuser

Software Technology Group
TU Dresden

Email: max.leuthaeuser@tu-dresden.de

Abstract—Scripting languages are extraordinarily popular due
to their very flexible object model. Dynamic extensions (i.e.,
adding, removing and manipulating behavior and state) allow
for the evolution and adaption of objects to context changes
at runtime. Introducing this flexibility into a statically typed,
object-oriented language would improve programmability and
separation of concerns beyond the level of what one could usually
gain with inheritance, mixins, traits or manually adapted design-
patterns. They often lead to object-schizophrenia or the need for
hand-crafted, additional management code. Although there were
already attempts bringing flexible objects into statically typed
languages with the benefits of an explicitly crafted core calculus
or type system, they need their own compiler and tooling which
limits the usability, e.g., when dealing with existing legacy code.
This work presents an embedding of dynamically evolving objects
via a lightweight library approach, which is pure in the sense,
that there is no need for a specific compiler or tooling. It is
written in Scala, which is both a modern object-oriented and
functional programming language. Our approach is promising
to solve practical problems arising in the area of dynamical
extensibility and adaption like role-based programming.

Keywords–Scala; evolving objects; object-oriented program-
ming; dispatch.

I. INTRODUCTION

Scripting languages like Python, JavaScript, Ruby, Perl
or Lua offer very flexible object semantics to the developer.
On the one hand side, programmers can rely on classical
object-oriented features, such as inheritance, encapsulation and
polymorphism, and on the other, they are able to add and
remove members (e.g., attributes and functions) from existing
objects or merge them at any given point in their life-cycle [1].

This is usually not available in statically typed object-
oriented languages. Imagine you have a client that wants to
execute some behavior at a (core-) object of interest but that
desired behavior is not available (Fig. 1). Using inheritance,
mixins, traits or design-patterns is not desirable. The first
three techniques will result in a very static system design and
exponentially many classes, while the use of patterns often
leads to object-schizophrenia [2] and the need of additional
management code. Adding and removing members from ex-
isting objects at runtime are indeed very useful operations for
todays software-systems, that have a very high demand for
adaptivity and need to cope with complexity and change [3].

Is bridging the gap between statically-typed, object-
oriented languages and evolving objects at runtime via pure
embedding possible without too much effort? To answer that,
the main contributions of this paper are:

• An introduction and summarizing technological overview
on SCROLL [4], a lightweight library that allows for pure
embedding of evolving objects in a modern, statically
typed object-oriented language (Scala [5]), utilizing only
those features that are available through its standard com-
piler. This library itself is small (∼1400 lines of code),
allows for easy integration of legacy code and a high sepa-
ration of concerns. It is limited on the side of type-safety
as one might expect. Nevertheless, having a statically-
typed host language for evolving objects supports the
developer with the best of both worlds: static typing leads
to an earlier detection of programming mistakes through
static code analysis, better documentation in form of type-
signatures, compiler-optimization, runtime-efficiency and
an improved design-time development experience, while
the latter supports easy prototyping, change to unknown
requirements or unpredictable data and application in-
tegration. In summary: “Static typing where possible,
dynamic typing when needed!” [6].

• An abstraction of that library into a more general im-
plementation pattern by requiring only three fairly basic
techniques to the host language.

• An example application showing that dynamically evolv-
ing objects are useful in the domain of role-based pro-
gramming.

Scala was chosen as host language for SCROLL not only
because of its combination of object-oriented and functional
programming features, but as well due to its scalability and
interoperability with the Java virtual machine providing easy
integration of legacy code and the use of already established
tools. SCROLL in particular takes advantage of Scala’s features
such as higher order functions, general operator notations, flex-
ible syntax, implicits, compiler rewrites and implicit definitions
of parameters.

The remainder of the paper is structured as follows. First,
we will introduce in Sec. II the way evolving objects can be
implemented with SCROLL. Additionally, the most important
application programming interface- (API-) calls are explained.
Following that, the actual implementation is described and
will be abstracted into a more general implementation pattern
by laying out its required three basic techniques (Sec. III).
The abstraction from roles to evolving objects is demonstrated
in Sec. IV and shows how role-based programming can be
handled as well. Finally, the SCROLL approach is compared
to more naive solutions using various design-patterns (Sec. V)
and other coeval approaches from the related work (Sec. VI).

22Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 30 / 83

CoreClient
uses

Problem

Call to behavior() will fail.
Not avaliable!

Apply the library
ExtensionB

behavior()

ExtensionA

ExtensionC

CoreClient
uses

Solution

Call dynamic extension
on the compound object

Figure 1. Problem: Imagine you have a client that wants to execute some behavior at a (core-) object of interest but that desired behavior is not available (see
left box). Solution: Applying the library allows for dynamically adding new behavior at runtime while wrapping all the extension parts (ExtensionA,

ExtensionB and ExtensionC) of the augmented object (Core) into one logical compound object (see right box).

E
xt

en
si

on
s

C
or

e

CoreBehavior

Service

move()

ExtensionA

Navigation

getTarget()

ExtensionB

Observer

readSensor()

ExtensionC

Vehicle

getActor()

Robot
name

Merge

Figure 2. The class Robot is constructed (dotted arrows) from different extensions and acquires the contained behavior.

II. EVOLVING OBJECTS IN SCROLL

This section provides a brief introduction into the way one
can use evolving objects as provided by SCROLL by example
(see Fig. 2 and 3). A standard Scala case class (Robot)
should be augmented with new behavior encapsulated in
three different extensions (ExtensionA, ExtensionB and
ExtensionC). Each of them provides a new aspect of
the robot via functions (like finding a target to move to
or observing sensor values) attached to case classes. This
allows for a high degree of separation of concerns with
multiple hierarchically nested components. The core behavior
(with case class Service) aggregates all of the provided
functionality without having to worry about its actual location.
There are several calls to SCROLL in the example. Those shall
be explained in the following:

• +-Operator (e.g., at line 6 in Fig. 3): In Scala,
method calls can be written as infix operators. +this
is equivalent to this.+(). Because extensions should
be merged into any given object, we cannot assume that
this object actually provides this +-operator. Thus, Scala’s
implicit conversion [7] is used to wrap the core object
into an equivalent compound object exposing the re-
quired programming interface. In summary, by calling the
+-operator the developer is able to forward arbitrary calls
to some extension he assumes should be available on the
core object without worrying about their actual location.

The function-lookup resolution technique is explained in
more depth in Sec. III.

• play (e.g., at line 32 in Fig. 3): This method attaches
the selected behavior to the core object. The name stems
from role-based programming, where roles can be seen as
some kind of dynamic extension (Sec. IV). There, playing
a role is equivalent to acquiring its behavior and state.

• Compartment (e.g., at line 3 in Fig. 3): A compartment
is an objectified collaboration with a limited number
of participating roles and a fixed scope [8] and stems
from role-based programming as well. It was introduced
to clearly distinguish from the heavily overloaded term
context. While a context (e.g., a cold and rainy day in
London) is prescriptive, without its own identity, intrinsic
behavior or existential parts and with an indefinite lifetime
- a compartment (e.g., a first-class train car) is descrip-
tive. Its instances carry identity, have behavior, state, a
defined lifetime and contain roles as its parts. Mixing
in the Compartment trait exposes SCROLL’s basic
programming interface to the current class. Contained
classes or case classes can be seen as containers for
new behavior and state that should be attached later on.
From the developer’s point of view, one could rewrite the
introductory sentence to “a compartment is an objectified
collaboration with dynamic behavior and state and a fixed
scope”.

23Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 31 / 83

• merge (e.g., at line 33 in Fig. 3): The relationship
between a core object and all of its extensions is stored
compartment-specific (as explained in Sec. III-C). So,
executing behavior spanning over multiple extensions
like in CoreBehavior requires a merging of all the
participating extensions (i.e. compartments) with their
specific storage.

When running the example code, the console output as
shown in Fig. 3 will be generated. There are several slightly
more advanced examples available online [9].

1 case class Robot(name: String)
2

3 object CoreBehavior extends Compartment {
4 case class Service() {
5 def move() {
6 val name: String = +this name()
7 val target: String = +this getTarget()
8 val sensorValue: Int = +this readSensor()
9 val actor: String = +this getActor()

10 info(s"I am $name and moving to the $target
↪→ with my $actor w.r.t. sensor value of
↪→ $sensorValue.")

11 }
12 }
13 }
14

15 object ExtensionA extends Compartment {
16 case class Navigation() {
17 def getTarget = "kitchen"
18 }
19 }
20

21 object ExtensionB extends Compartment {
22 case class Observer() {
23 def readSensor = 100
24 }
25 }
26

27 object ExtensionC extends Compartment {
28 case class Vehicle() {
29 def getActor = "wheels"
30 }
31 }

32 val myRobot = Robot("Pete") play Service() play
↪→ Navigation() play Observer() play
↪→ Vehicle()

33 CoreBehavior merge ExtensionA merge ExtensionB
↪→ merge ExtensionC

34 myRobot move()

35 I am Pete and moving to the kitchen with my
↪→ wheels w.r.t. sensor value of 100.

Figure 3. The robot is constructed from multiple extensions dynamically at
runtime. Running the example generates the console output shown above.

III. IMPLEMENTATION

This section explains the basic technologies used by
SCROLL for the pure embedding of evolving objects. Together,
these form an implementation pattern that is useful for adapting
this library approach to other host languages.

A. Implicit Conversions

We want to be able to mix in extensions to any given
object of any type in Scala. Implicit conversions [7] provide a

lightweight way to expose SCROLL’s programming interface
for adding, removing and transferring behavior or state to any
object. Listing 1 gives a brief excerpt.

1 implicit class Player[T](val wrapped: T) {
2 /* Applies lifting to Player */
3 def unary_+ : Player[T] = this
4

5 def play(role: Any): Player[T] = /* ... */
6 def drop(role: Any): Player[T] = /* ... */
7 def transfer(role: Any) = new {
8 def to(player: Any) { /* ... */ }
9 }

10

11 /* ... */
12 override def equals(o: Any) = /* ... */
13 }

Listing 1. The generic implicit class Player.

Scala’s implicit conversion is used to wrap the core object
into an equivalent compound object exposing the required
API in a type-safe manner. Furthermore, the issue of object-
schizophrenia needs to be addressed with a clear notion of
object identity. This term has not been introduced explicitly
by any publication, but appeared in a set of web-pages in the
field of context-oriented programming and can be described
like this: “Object Schizophrenia results when the state and/or
behavior of what is intended to appear as a single object are
actually broken into several objects (each of which has its
own object identity).” [10]. It can be seen as another instance
of the split object problem [11]. Here, the identity of an object
should be the same independent of which extension is attached.
Consequently, object identity should reflect this properly. Four
kinds of comparison are possible:

1) core == core + extension

2) core + extension == core

3) core + extension == core + extension

4) core + extensionA == core + extensionB

To implement this, we modify the identity-related method
of the compound object represented by Player as shown in
the above code-listing. In fact, == and the equals-method
are equivalent in Scala. That is, the expressions x == y and
x.equals(y) give the same result. We define the equals-
method in such way that it maps to the implementation of
the core object, and, in case the right-hand operator of ==
is an evolving object as well, compare with its core object.
This solves the problem for expressions 2 to 4, but unfortu-
nately does not for expression 1, since we cannot modify the
equals-method of arbitrary objects using a library approach.
If the comparison of a plain core object is required apply the
+-Operator (see Sec. II) to it. This will trigger the dynamic
conversion using the implicit class Player and applies the
desired comparison.

B. Dynamic Trait

Behavior and state from extensions that is not natively
available to the core object needs to be addressed somehow.
Scala’s Dynamic trait [12] is used to implement that be-
havior. Once the proper extension is identified and selected
(see Sec. III-C and III-D) the actual invocation should take
place. To do so, calls to extension-specific functionality, that

24Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 32 / 83

would normally fail during type-checking phase, are rewritten
according to the rules by the compiler itself [13] as shown in
Listing 2:
1 foo.method("blah")
2 foo.applyDynamic("method")("blah")
3

4 foo.method(x = "blah")
5 foo.applyDynamicNamed("method")(("x",

↪→ "blah"))
6 foo.method(x = 1, 2)
7 foo.applyDynamicNamed("method")(("x", 1),

↪→ ("", 2))
8

9 foo.field
10 foo.selectDynamic("field")
11 foo.variable = 10
12 foo.updateDynamic("variable")(10)

Listing 2. Compiler rewrite rules from the Dynamic trait [13].

That is exactly the point where type safety is lost. The
actual set of dynamic extensions that are bound to the core
object is not statically known, hence static type-safety is not
available. As an example, the method call to the robots name
attribute from Fig. 3 (line 6) is translated as shown in Listing 3.
1 +this.name
2 this.unary_+().name
3 new Player[Robot](this).name
4 new Player[Robot](this).selectDynamic("name")

Listing 3. Rewriting for dynamical access to the Robot attribute name.

SCROLL hooks into those rewritten methods and triggers
the actual invocation and error handling. We refrain from using
runtime exceptions or similar exception-based error handling in
case of not being able to find the functionality the developer is
querying for. Instead, Scala’s Either container type is used
by the library. It has two sub types, Left and Right. If
an Either[A,B] object contains an instance of A, then the
Either is a Left. Otherwise, it contains an instance of B and
it is a Right. Although, there is nothing in the semantics of
this type that would specify one or the other sub type to repre-
sent an error or a success, by convention it is used to carry the
error case as Left (e.g., DynamicBehaviorNotFound),
whereas the Right contains the success value (i.e., the result
of executing the dynamic behavior). Together with a sealed
type hierarchy with data types using case classes that represent
errors, very readable messages compared to actual stack-traces
from standard Java exceptions are generated.

C. Graph-based Backend

In SCROLL, a graph is used for storing the relations be-
tween core objects and its extension instances. That allows for
easy querying of extension-specific behavior that was attached
to the core object. Furthermore, there are many graph libraries
implementing various aspects like caching and distribution. In
general, a (labeled) graph H is a 4-tuple (V,E, Lab, LΣ) with:

• V is a finite set of vertices (nodes) with |V | ≥ 0,

• E is the set of edges, where E is a relation E ⊆ V × V ,

• LΣ is the set of labels and

• Lab : V ∪E → LΣ is the labeling function, which assigns
a label to each node in V and edge in E.

For SCROLL this can be adapted to:

• V is the set of objects (core and all extension instances),

• E is the set of relations between core objects and its
extension instances,

• LΣ is the set of type names for all objects in V and

• Lab : V → LΣ assigns each object in V its type.

JGraphT [14] was chosen as underlying graph library
providing already the necessary graph-theory objects like pre-
defined edge- and node-types, as well as simple algorithms
for traversing the graph. SCROLL abstracts from that making
it easy to plug-in any other convenient library, e.g., for easy
scaling or distribution of the graph if required. Another imple-
mentation making use of Google’s Guava framework [15] for
caching is available, too. That speeds up querying the core for
the actual behavior hidden in some extension if asked by the
client. Additionally, with Kiama’s pure embedding of attribute-
grammars in Scala [16], a third backend is provided. Querying
and updating the graph is implemented as (cached-) attributes
and rewrites respectively.

ExtensionA

behavior()

ExtensionB

x = 3

behavior()

Core

1 implicit val dispatchDescription =
2 From(_.isInstanceOf[Core]).
3 To(anything).
4 Through(anything).
5 Bypassing(_ match {
6 case ExtensionA() => true
7 case ExtensionB(x) if x == 3 => false
8 case _ => true // default case
9 })

Figure 4. An example for the need of customizable dynamic dispatch.

D. Customizable Dynamic Dispatch

Dispatching in adaptive systems is context-dependent. Se-
lecting the appropriate extension that should be selected for
answering a call to the required behavior may be ambiguous.
The developer should be able to key out the desired selection.
SCROLL supports this with function composition and Scala’s
pattern matching making use of an explicit dispatch description
which is passed down to the actual method invocation as
implicit argument. The given selection functions are applied
while traversing the graph-based storage holding the relations
between core objects and its extension instances. See Fig. 4
for an example. We construct a new dispatch description
using four factory methods provided by the API and pass our
selection functions into them. We are only interested in our
core object (_.isInstanceOf[Core]) so we are using
this for the From-selector. Now, lets assume we do not care
for the types of extensions that are actually around so we pass
anything to the To-selector, which will always evaluate to
true, so every extension instance will be considered while
traversing the graph. Same goes for Through on intermediate
nodes. Finally, for the Bypassing-selector we want to define
that an instance of ExtensionB with the state x = 3
should be selected, hence never bypassed. With an explicit

25Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 33 / 83

dispatch description, the developer defines a sub-graph of the
underlying graph as follows: let H = (V,E, Lab, LΣ) and
H ′ = (V ′, E′, Lab′, LΣ

′) be those storage graphs. Then H ′ is
a sub-graph generated for dispatching out of H with H ′ ⊆ H ,
if V ′ ⊆ V , E′ ⊆ E, Lab′ ⊆ Lab : V ′ ∪ E′ → LΣ

′ and
LΣ

′ ⊆ LΣ.

E. The SCROLL Implementation Pattern

So far, we have shown how arbitrary objects can be aug-
mented dynamically with new functionality or state grouped
together in extension. Moreover, obstacles arising from object-
schizophrenia can be solved with a compound object enabled
by dynamic conversions and an adapted notion of object
identity (i.e., the identity of an object should be the same
independent of which extension is attached). Using Scala’s
Dynamic trait together with a graph-based backend allows for
easy querying for behavior that is not natively available at the
core object. How to transfer and adapt this? An implementation
pattern is a reusable and adaptable solution to a certain problem
and shows best practice for developers while offering insights
to relationships and interactions between its components.

As introduced in the previous subsections, SCROLL re-
quires the concept of a marker trait (1) for triggering compiler
rewrites handing over calls to the library for finding behavior
that is not natively available at the core object. For assembling
a compound object from the core plus all its extension implicit
conversions (2) are needed. The storage of the relationships
between each individual core object and its extensions can be
done easily with any graph-based backend (3), or alternatively
with tables or maps. If one is able to find or emulate these
three techniques in the desired statically-typed, object-oriented
language it is easy to provide an alternative implementation of
SCROLL.

IV. SEPARATION OF CONCERNS

The main goal of having extensions to dynamically evolve
objects is the separation of different entity concerns while
being able to plug them altogether at runtime if a context-
dependent change to the system occurs. This not only increases
adaptability of the overall infrastructure, it improves separation
of concerns as well. That pretty much resembles the paradigm
and main goal of role-based programming. Although, the
concept of roles has been around for decades, starting in the
field of databases [17], the research landscape on it is very
diverse and fragmented.

Over time researchers have proposed several implemen-
tation approaches targeting the contextual nature of roles and
their representation at runtime. Unfortunately, until today there
is no common definition of what a role actually is. Most of the
resulting languages are reinventing the wheel over and over
again, implementing different role features for their specific
research area [8]. We argue that evolving objects (core objects
with addable or removable extension) are the generalization of
role-playing objects as a novel reuse and adaptability unit in
dynamic collaborations.

The following main features of roles extracted from the
literature [8], [18] can be fulfilled by evolving objects as
implemented by SCROLL while other coeval approaches will
fail to do so (this is explained in more depth in Sec. VI).

• Roles have properties and behaviors. An extension adds
new functionality or state to its core.

• Objects may acquire and abandon roles dynamically.
Adding and removing new behavior is the main idea of
evolving objects. In particular, a role can be transferred
from one object to another.

• Objects may play the same role (type) several times.
With the grouping of extension in compartments as first-
class citizens representing contextualized collaborations,
one can easily allow for attaching multiple instances of
the same extension type in different contexts to one core
object.

As a brief example for applying SCROLL for role-based
programming, see Fig. 5 and 6. We implement a manual
transport (class ManualTransport) of a Person with a
Car to a certain Location by augmenting these core classes
with being a NormalCar and a Driver respectively. For
the autonomous transport (class AutonomousTransport),
it is the SmartCar and Passenger with different behavior
for driving or using the brakes. Target and Source roles
added to locations are used in the actual transportation by the
method travel() in TransportationRole. That role
will augment a specific transportation (either the manual or
the autonomous one) and alters its behavior. All important
API-calls (like the +-Operator or play) are explained in
Sec. II. Note, that the query-function one[SomeType]()
(e.g., on line 18 in Fig. 5, right side) allows for querying
exactly one instance of the given type that should be contained
in the current instance of a Compartment.

In summary, with respect to the effects on separation of
concerns, both role-playing objects and dynamically evolv-
ing objects as generalization provide a handy abstraction of
context-dependent dynamic behavior and state.

V. COMPARISON WITH MANUAL IMPLEMENTATIONS AND
PATTERNS

The following section demonstrates the advantages of the
proposed library approach for pure embedding of evolving
objects by comparing it to simple, manually instantiated im-
plementations and design patterns widely used when people
try to cope with the required dynamics [19]. For a summary,
see Table I.

The most basic solution would be to use one Single Type
for your core object and all extensions. If they do not differen-
tiate in behavior and you do not plan for future changes, that
would be a valid solution without any over-engineering. On
the downside, that leads to one single complex type, that may
be hard to maintain later on. If extensions introduce many
different features, one may think about implementing them
as Separate Types. That removes coupling and unnecessary
tangling of relationships between them. Sadly, it introduces the
duplication of features and a loss of integrity with shared state
and behavior. Using Subtypes for every extension and putting
the common things into the supertype for each extension may
overcome this issue while being conceptually simple. On the
downside the resulting inheritance hierarchy may be hard to
adapt with multiple or changing extensions as each of them
requires the interface of the supertype to be changed as well.

26Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 34 / 83

1 class Person(val name: String)
2 class Car(val licenseID: String)
3 class Location(val name: String)
4

5 class Transportation() extends Compartment {
6 object AutonomousTransport extends Compartment

↪→ {
7 class SmartCar() {
8 def drive() {
9 info("I am driving autonomously!")

10 }
11 }
12 class Passenger() {
13 def brake() {
14 info(s"I can’t reach the brake. I am

↪→ ${+this name} and just a
↪→ passenger!")

15 }
16 }
17 }
18

19 object ManualTransport extends Compartment {
20 class NormalCar() {
21 def drive() {
22 info(s"I am driving with a driver called

↪→ ${+one[Driver]() name}.")
23 }
24 }
25 class Driver() {
26 def brake() {
27 info(s"I am ${+this name} and I am hitting

↪→ the brakes now!")
28 }
29 }
30 }
31

32 class TransportationRole(source: Source,
↪→ target: Target) {

33 def travel() {
34 val kindOfTransport = this player match {
35 case ManualTransport => "manual"
36 case AutonomousTransport => "autonomous"
37 }
38 info(s"Doing a $kindOfTransport

↪→ transportation with the car
↪→ ${one[Car]().licenseID} from
↪→ ${+source name} to ${+target
↪→ name}.")

39 }
40 }
41

42 class Target()
43 class Source()
44 }

1 new Transportation {
2 val peter = new Person("Peter")
3 val harry = new Person("Harry")
4 val googleCar = new Car("A-B-C-001")
5 val toyota = new Car("A-B-C-002")
6

7 new Location("Munich") play new Source()
8 new Location("Berlin") play new Source()
9 new Location("Dresden") play new Target()

10

11 harry play new ManualTransport.Driver()
12 toyota play new ManualTransport.NormalCar()
13

14 +toyota drive()
15 ManualTransport play
16 new TransportationRole(
17 one[Source]("name" ==# "Berlin"),
18 one[Target]()
19) travel()
20

21 peter play new AutonomousTransport.Passenger()
22 googleCar play new

↪→ AutonomousTransport.SmartCar()
23

24 +googleCar drive()
25 AutonomousTransport play
26 new TransportationRole(
27 one[Source]("name" ==# "Munich"),
28 one[Target]()
29) travel()
30

31 +peter brake()
32 +harry brake()
33 }

Figure 5. The SmartCar example (instance code, top) and the corresponding
model code (left).

1 I am driving with a driver called Harry.
2 Doing a manual transportation with the car A-B-C

↪→ -002 from Berlin to Dresden.
3 I am driving autonomously!
4 Doing a autonomous transportation with the car A-

↪→ B-C-001 from Munich to Dresden.
5 I can’t reach the brake. I am Peter and just a

↪→ passenger!
6 I am Harry and I am hitting the brakes now!

Figure 6. Running the example generates the console output shown above.

The classification of domain objects inheritance introduces
is static. An alternative to that, would be to use the Role-
Object-Pattern [20]. The core object now has a multi-valued
association to its extensions as separate types with a com-
mon supertype. This is a very direct implementation without
the need of changing some interface when introducing new
extensions. It can become complicated when dealing with
constraints between those extensions and again, with shared
state. Additionally, object-schizophrenia needs to be targeted
explicitly which applies to extensions when trying to imple-
ment them with the Role-Object-Pattern. One has to deal with
method call dispatch, encapsulation and object comparison
manually [21]. We continue with Multiple Inheritance or
Traits. Although these concepts are semantically fine to im-

plement extensions, they will lead to a very static system again
with an exponential blowup in the number of required classes
for every new context one needs to add. Additionally, parallel
object hierarchies may occur where cross-tree constraints are
very hard to maintain. Delegation on the other hand mimics
the inheritance mechanism on object level. This requires (the
generation of) a lot of management code and leads to object-
schizophrenia, too. Finally, Delegation-Layers define layers
that group behavior for sets of objects and for sets of classes.
Sadly, it implies fixed hierarchies and thus a system design
that is too static.

27Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 35 / 83

Table I. COMPARISON OF APPROACHES FOR ESTABLISHING DYNAMIC OBJECTS AT RUNTIME (SOLELY BASED ON [19]). � INDICATES
THAT THERE IS A PROBLEM IN THE GIVEN CATEGORY. PLEASE NOTE, THAT THIS COMPARISON ONLY CONSIDERS APPROACHES THAT

DO NOT RELY ON CUSTOM COMPILERS, GENERATORS OR OTHER TOOLING.

Si
ng

le
co

m
pl

ex
ty

pe

Sh
ar

ed
St

at
e

/
B

eh
av

io
r

Sc
al

ab
ili

ty

In
te

rf
ac

e

C
ha

ng
e

C
on

st
ra

in
ts

O
bj

ec
t

Sc
hi

zo
ph

re
ni

a

E
xp

on
en

tia
l

bl
ow

up

St
at

ic
D

es
ig

n

Pa
ra

lle
l

H
ie

ra
rc

hi
es

M
an

ag
em

en
t

C
od

e

Single Type � � � � �

Separate Type � � � �

Subtype With Internal Flag � � � � � � � �

Subtype With Hidden Delegation � � � � � � � �

Subtype With State Object � � � � � � �

Role Object Pattern � � � �

Multiple Inheritance / Traits � � � � �

Delegation / Delegation Layers � � � �

VI. RELATED WORK

This section summarizes and compares how different run-
time environments or technical spaces could be used to realize
evolving objects.

A. Evolving objects with other statically-typed, object-oriented
languages

First, SCROLL requires the concept of a marker trait, i.e.,
a mixin to an object for triggering compiler rewrites handing
over calls to the library for finding behavior that is not natively
available at the core object (trait Dynamic, as explained in
Sec. III-B). Second, a technical solution for assembling a
compound object from the core plus all its extension bypassing
object-schizophrenia [2] is needed. Third requirement is the
storage of the relationships between each individual core
object and its extensions, which should be easy with any
graph-based backend, or alternatively with simple tables or
maps. If one is able to find or emulate these three techniques
in the desired statically-typed, object-oriented language it is
easy to provide an alternative implementation of SCROLL. In
conclusion, this proposed implementation pattern (requiring
the before-mentioned three basic technologies) is applicable
to many host languages. With the ExpandoObject [22] C# can
be considered as the most promising option to provide such
an implementation of SCROLL in another language. The Ex-
pandoObject represents an object that allows for dynamically
adding and removing its members at runtime. However, this
works at another level of granularity compared to SCROLL.
Only single members, like a function or an attribute, can be
attached or removed at a single point in time. With SCROLL
you are allowed to group them together (e.g., into classes, case
classes or objects) and add or remove all contained members
at once. Better separation of concerns is achieved that way.

B. Evolving objects with Aspect- / Subject-oriented program-
ming languages

Aspect-oriented programming allows to implement cross-
cutting concerns via join-points and pointcuts. Often the com-
position is done statically although there exist a few dynamic

approaches. ObjectTeams/Java (OT/J) [23] uses dynamic as-
pect weaving at bytecode-level for adding behavior. Subject-
oriented programming utilizes different class hierarchies from
different perspectives. On the downside there is no real compo-
sition language and the set of composition operators is fixed.
Furthermore, no real control flow on the composition itself
exists.

C. Evolving objects with role-based programming languages

Although dynamically evolving objects are the more gen-
eral concept compared to role-playing objects as outlined
in Sec. IV, we consider them to be useful for a technical
realization as well. Interestingly, most of the existing role-
based programming languages are extensions to Java. They
are either compiled to Java source code [24], [25], [26], [27]
or to bytecode [23] directly.

Chameleon [24] provides roles through constituent meth-
ods allowing to overwrite methods of their players, which
work like advices in aspect-oriented programming. As a major
drawback of Chameleon its roles extend the player to gain
access to it, which is conceptually wrong [18] and limits the
flexibility of roles. Rava [25] overcomes this by employing
the Role-Object-Pattern [20] extended with the Mediator-
Pattern [28]. They use special keywords to steer the generation
of management code. Due to the use of the Role-Object
Pattern and generation to plain Java, this solution suffers from
object-schizophrenia [29]. JavaStage [27] solves this problem,
by only supporting static roles. They are directly compiled
into the players as inner classes. To avoid name clashes, a
customizable method renaming strategy is applied. Its main
advantages are the capability to specify a list of required
methods instead of a specific player class. This approach limits
itself to static roles as well, unable to represent their relational
and context-dependent nature. Rumer [30] offers first-class
relationships and modular verification over distributed state.
Furthermore, it provides several intra-relationship constraints
usable to restrict these relationships. Roles are the named
places of a relationship with attributes and methods but without
inheritance. Roles are only accessible within a relationship

28Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 36 / 83

and not from their player. ScalaRoles [31] is probably the
closest relative to SCROLL. It is implemented as Scala library
as well and utilizes dynamic proxies (from the Java API) to
implement roles. The practical implementation using Scala‘s
traits as roles reveals the problem that the order of role
binding influences the resulting type, e.g., a person playing
the father role first and then the student role is another
type than the same person playing those roles the other way
around. The most sophisticated and mature approach so far is
ObjectTeams/Java (OT/J) [23]. Like Chameleon above, OT/J
allows to override methods of a player by aspect weaving.
It introduces Teams to represent compartments whose inner
classes automatically become roles. Notably, OT/J supports
both the inheritance of roles and teams whereas the latter leads
to family polymorphism [32]. On the downside, it does neither
support multiple unrelated player types for a role type nor
first class relationships and only a limited form of constraints.
This is similar to powerJava [33], which also introduces com-
partments, denoted Institutions, whose inner classes represent
roles. However, powerJava features the distinction between
role interface and role implementation where the former is
callable from outside a specific institution and the latter is
the institution-specific implementation of the same interface.
Both Rava and powerJava are the only research prototypes
providing a working compiler. Sadly, the project has been
abandoned [34]. A more recent approach towards context-
oriented programming is NextEJ [35] as the successor of
EpsilonJ [36]. It provides Contexts as first class citizens which
do not only group roles but also represent an activation scope
at runtime. These context activation scopes can be nested and
act as a barrier where all roles are instantiated and bound
automatically. So far, they only published their type-system
of the core calculus and no compiler.

In summary, it is necessary to investigate how well the
implementation with SCROLL for binding roles as technical
realization for evolving objects blends into contemporary ap-
proaches. We use an already published classification scheme
from the literature [8], [18]. A compact overview is given in
Table II. Most of the role features in question are supported.

VII. FUTURE WORK

Several developments are currently work in progress or
targeted for investigation in the near future. Because the actual
set of dynamic extensions that are bound to a core object
can not be statically determined, static type-safety is lost
at a certain point as already mentioned in Sec. III-B. The
SCROLLCompilerPlugin [38] is a plugin for the standard Scala
compiler and runs right after its typing phase. It allows for
validating the source code (i.e., traversing the syntax tree)
and generates meaningful warnings and errors, e.g., if the
developer is requesting behavior from a dynamic extension
that was never bound. In interdisciplinary collaborations, we
aim for other use-cases for applying the concept of dynam-
ically evolving objects. They should help the domain expert
to cope with its specific implementation concerns. Specif-
ically in systems biology, and more generally in scientific
computing (e.g., with a Next-Generation Parallel Particle-
Mesh Language [39]) using this concept looks promising. The
separation of concerns achieved this way greatly improves
the quality of code written in these field of research. With
respect to the required performance, methods for translating

Table II. COMPARISON OF COEVAL APPROACHES FOR ROLES AT
RUNTIME BASED ON 26 CLASSIFYING FEATURES EXTRACTED

FROM THE LITERATURE [8], [18]. IT DIFFERENTIATES BETWEEN
FULLY (�), PARTLY (�) AND NOT SUPPORTED (�) FEATURES.

Fe
at

ur
e

[8
]

C
ha

m
el

eo
n

[2
4]

O
T

/J
[2

3]

R
av

a
[2

5]

po
w

er
Ja

va
[2

6]

R
um

er
[3

0]

Sc
al

aR
ol

es
[3

7]

N
ex

tE
J

[3
5]

Ja
va

St
ag

e
[2

7]

SC
R

O
L

L

1. � � � � � � � � �

2. � � � � � � � � �

3. � � � � � � � � �

4. � � � � � � � � �

5. � � � � � � � � �

6. � � � � � � � � �

7. � � � � � � � � �

8. � � � � � � � � �

9. � � � � � � � � �

10. � � � � � � � � �

11. � � � � � � � � �

12. � � � � � � � � �

13. � � � � � � � � �

14. � � � � � � � � �

15. � � � � � � � � �

16. � � � � � � � � �

17. � � � � � � � � �

18. � � � � � � � � �

19. � � � � � � � � �

20. � � � � � � � � �

21. � � � � � � � � �

22. � � � � � � � � �

23. � � � � � � � � �

24. � � � � � � � � �

25. � � � � � � � � �

26. � � � � � � � � �

the specific binding and behavior-lookup for dynamic objects
to a native and fast performing technological platform need to
be developed. Another promising direction is the investigation
of the invokedynamic bytecode keyword introduced with
Java 7 to provide an alternative to SCROLL. An appropriate
implementation and comparison of those two approaches in
terms of runtime-efficiency and improvement design-time de-
velopment experience is currently targeted.

VIII. CONCLUSIONS

In summary, this work presents an attempt to bridge the
gap between statically-typed, object-oriented languages and
evolving objects at runtime by introducing SCROLL as a
lightweight library that allows for pure embedding of dynam-
ically evolving objects in a modern, statically typed object-
oriented language. Arbitrary objects can be augmented with
extensions allowing for adding and removing behavior and
state at runtime. They are combined to one logical compound
object through the library solving object-schizophrenia. The
library allows for easy integration of existing (Java Virtual
Machine based) legacy code and a high separation of concerns,
e.g., when applied to roles in contexts. Ultimately, following
the rules of the proposed implementation pattern as the core
idea of SCROLL one could easily implement a very similar
library in another host language.

29Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 37 / 83

ACKNOWLEDGMENT

This work is funded by the German Research Founda-
tion (DFG) within the Research Training Group “Role-based
Software Infrastructures for continuous-context-sensitive Sys-
tems” (GRK 1907) and in the Collaborative Research Center
912 “Highly Adaptive Energy-Efficient Computing”. Special
thanks go to Sebastian Götz, Ulrike Schöbel and Anthony
Sloane for improving this paper.

REFERENCES

[1] P. H. Menon, Z. Palmer, A. Rozenshteyn, and S. Smith, “Types for
flexible objects,” Technical report, The Johns Hopkins University, Tech.
Rep., 2013.

[2] U. Aßmann, Invasive Software Composition. Springer-Verlag, 2003.
[3] J. F. Furrer, “Zukunftsfähige Softwaresysteme,” Informatik-Spektrum,

2015, pp. 1–9. [Online]. Available: http://dx.doi.org/10.1007/
s00287-015-0909-6

[4] M. Leuthäuser, “SCROLL,” https://github.com/max-leuthaeuser/scroll,
2016, [last viewed 01.12.2016, 09.00].

[5] EPFL, “Scala Website,” http://www.scala-lang.org/, 2016, [last viewed
01.12.2016, 09.00].

[6] E. Meijer and A. Peter Drayton, “Static typing where possible,”
Dynamic Typing When Needed: The End of the Cold War Between
Programming Languages, 2004.

[7] M. Odersky, L. Spoon, and B. Venners, “Programming in scala: a
comprehensive stepby-step guide,” Artima Inc, August, 2008.

[8] T. Kühn, M. Leuthäuser, S. Götz, C. Seidl, and U. Aßmann,
“A metamodel family for role-based modeling and programming
languages,” in Software Language Engineering, ser. Lecture Notes in
Computer Science, B. Combemale, D. Pearce, O. Barais, and J. Vinju,
Eds. Springer International Publishing, 2014, vol. 8706, pp. 141–160.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-11245-9 8

[9] M. Leuthäuser, “SCROLL Examples,” https://github.com/
max-leuthaeuser/SCROLL/tree/master/examples/src/main/scala/scroll/
examples, 2016, [last viewed 01.12.2016, 09.00].

[10] B. Harrison, “Subject-oriented Programming vs. Design Patterns,” http:
//www.research.ibm.com/sop, 1997, [archived as of May 1997].

[11] C. Dony, J. Malenfant, and P. Cointe, “Prototype-based languages:
From a new taxonomy to constructive proposals and their validation,”
in Conference Proceedings on Object-oriented Programming Systems,
Languages, and Applications, ser. OOPSLA ’92. New York,
NY, USA: ACM, 1992, pp. 201–217. [Online]. Available: http:
//doi.acm.org/10.1145/141936.141954

[12] EPFL, “Scala Dynamic Trait SIP,” http://docs.scala-lang.org/sips/
completed/type-dynamic.html, 2016, [last viewed 01.12.2016, 09.00].

[13] EPFL, “Scala Dynamic Trait ScalaDoc,” https://github.com/scala/
scala/blob/2.12.x/src/library/scala/Dynamic.scala, 2016, [last viewed
01.12.2016, 09.00].

[14] B. Naveh and Contributors, “jGraphT,” http://jgrapht.org/, 2016, [last
viewed 01.12.2016, 09.00].

[15] Google, “Guava,” https://github.com/google/guava, 2016, [last viewed
01.12.2016, 09.00].

[16] A. M. Sloane, L. C. Kats, and E. Visser, “A pure embedding of attribute
grammars,” Science of Computer Programming, vol. 78, no. 10, 2013,
pp. 1752–1769.

[17] C. W. Bachman, “The programmer as navigator,” Commun. ACM,
vol. 16, no. 11, 1973, pp. 635–658.

[18] F. Steimann, “On the representation of roles in object-oriented and
conceptual modelling,” Data & Knowledge Engineering, vol. 35, no. 1,
2000, pp. 83–106.

[19] M. Fowler, “Dealing with roles,” in Proceedings of PLoP, vol. 97, 1997.
[20] D. Bäumer, D. Riehle, W. Siberski, and M. Wulf, “The role object

pattern,” in Washington University Dept. of Computer Science, 1997.
[21] S. Herrmann, “Demystifying object schizophrenia,” in Proceedings of

the 4th Workshop on MechAnisms for SPEcialization, Generalization
and inHerItance. ACM, 2010, p. 2.

[22] Microsoft, “Expando Object,” https://msdn.microsoft.com/en-us/
magazine/ff796227.aspx, 2016, [last viewed 01.12.2016, 09.00].

[23] S. Herrmann, “Programming with roles in ObjectTeams/Java.” AAAI
Fall Symposium, Tech. Rep., 2005.

[24] K. B. Graversen and K. Østerbye, “Implementation of a role lan-
guage for object-specific dynamic separation of concerns,” in AOSD03
Workshop on Software-engineering Properties of Languages for Aspect
Technologies, 2003.

[25] C. He, Z. Nie, B. Li, L. Cao, and K. He, “Rava: Designing a java
extension with dynamic object roles,” in Engineering of Computer
Based Systems, 2006. ECBS 2006. 13th Annual IEEE International
Symposium and Workshop on. IEEE, 2006, pp. 7–pp.

[26] M. Baldoni, G. Boella, and L. van der Torre, “Roles as a coordination
construct: Introducing powerjava,” Electr. Notes Theor. Comput. Sci,
vol. 150, no. 1, 2006, pp. 9–29.

[27] F. S. Barbosa and A. Aguiar, “Modeling and programming with roles:
introducing javastage,” Instituto Politécnico de Castelo Branco, Tech.
Rep., 2012.

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Pearson Education,
1994.

[29] S. Herrmann, “Demystifying object schizophrenia,” in Proceedings of
the 4th Workshop on MechAnisms for SPEcialization, Generalization
and inHerItance, ser. MASPEGHI ’10. New York, NY, USA: ACM,
2010, pp. 2:1–2:5.

[30] S. Balzer, T. Gross, and P. Eugster, “A relational model of object
collaborations and its use in reasoning about relationships,” in ECOOP,
ser. Lecture Notes in Computer Science, E. Ernst, Ed., vol. 4609.
Springer, 2007, pp. 323–346.

[31] M. Pradel and M. Odersky, “Scala roles: Reusable object collaborations
in a library,” in Software and Data Technologies. Springer Berlin
Heidelberg, 2009, pp. 23–36.

[32] S. Herrmann, C. Hundt, and K. Mehner, “Translation polymorphism in
object teams,” TU Berlin, Tech. Rep., 2004.

[33] E. Arnaudo, M. Baldoni, G. Boella, V. Genovese, and R. Grenna, “An
implementation of roles as affordances: powerJava,” Aug. 31 2009.

[34] G. Wielenga, “On powerjava: ”roles” instead of ”objects”,”
https://blogs.oracle.com/geertjan/entry/on powerjava roles instead of,
jan 2013, [Online; accessed 28-May-2014].

[35] T. Kamina and T. Tamai, “Towards safe and flexible object adaptation,”
in International Workshop on Context-Oriented Programming. ACM,
2009, p. 4.

[36] T. T. S. Monpratarnchai, “The design and implementation of a role
model based language, EpsilonJ.” in Proceedings of the 5th International
Conference on Electrical Engineering/Electronics, Computer, Telecom-
munications and Information Technology (ECTI-CON 2008), 2008.

[37] M. Pradel and M. Odersky, “Scala Roles - A lightweight approach to-
wards reusable collaborations,” in International Conference on Software
and Data Technologies (ICSOFT ’08), 2008.

[38] M. Leuthäuser, “SCROLLCompilerPlugin,” https://github.com/
max-leuthaeuser/SCROLLCompilerPlugin, 2016, [last viewed
01.12.2016, 09.00].

[39] S. Karol, P. Incardona, Y. Afshar, I. F. Sbalzarini, and J. Castrillon,
“Towards a next-generation parallel particle-mesh,” in Proceedings
of the 3rd Workshop on Domain-Specific Language Design and
Implementation (DSLDI 2015), T. van der Storm and S. Erdweg,
Eds., 2015, vol. abs/1508.03536, pp. 7–8. [Online]. Available:
http://arxiv.org/abs/1508.03536

30Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 38 / 83

A Component Framework for Adapting to Elastic Resources in Clouds

Ichiro Satoh
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
ichiro@nii.ac.jp

Abstract—The notion of elasticity, which enables capabilities
and resources to be dynamically provisioned and released, is an
adaptive mechanism for managing resources in cloud comput-
ing. However, most existing applications for cloud computing
cannot support elastic capabilities and resources. To solve
this problem, this paper proposes an approach for adapting
distributed applications in response to elastic changes in their
resource availability. The approach can divide a component
into more than one components and merge more than one
components whose program codes are common into a compo-
nent by using user defined functions for dividing and merging
the data stored at key-value stores. It was constructed as a
middleware system for general-purpose software components
with the two functions. This paper presents the basic ideas,
design, and implementation of the approach evaluates the
proposed approach.

Keywords: Cloud computing, Elasticity, Software deploy-
ment

I. INTRODUCTION

Cloud computing has recently emerged as a compelling
paradigm for managing and delivering services over the
Internet. The notion of elasticity, which enables capabilities
and resources to be dynamically provisioned and released,
is an adaptive mechanism for managing resources in cloud
computing as a material property with the capability of
returning to its original state after a deformation. For ex-
ample, the NIST definition of cloud computing [10] states
that capabilities can be elastically provisioned and released,
in some cases automatically, to scale rapidly outward and
inward in accordance with demand. To the consumer, the
capabilities available for provisioning often appear to be
unlimited and can be appropriated in any quantity at any
time.
In a cloud computing platform, services are delivered with

transparency not considering the physical implementation
within the platform. However, the conventional design and
development of applications for cloud computing are not
able to adapt themselves to elastically provisioning and
deprovisioning resources in cloud computing. Furthermore,
it is difficult to deprive parts of the computational resources
that such applications have already used. There have been
a few attempts to solve this problem. For example, Mesos
[4] is a platform for sharing commodity clusters between
distributed data processing frameworks such as Hadoop and
Spark. These frameworks themselves are elastic in the sense

that they have the ability to scale their resources up or down,
i.e., they can start using resources as soon as applications
want to acquire the resources or release the resources as
soon as the applications do not need them.
This paper assumes that applications are running on dy-

namic distributed systems, including cloud computing plat-
forms, in the sense that computational resources available
from the applications may be dynamically changed due to
elasticity. We propose a framework for enabling distributed
applications to be adapted to changes in their available
resources on elastic distributed systems as much as possible.
The key ideas behind the framework are the duplication and
migration of running software components and the integra-
tion of multiple same components into single components
by using the notion of the MapReduce processing [2]. To
adapt distributed applications, which consist of software
components, to elasticity in cloud computing, the frame-
work divides applications into some of the components and
deploys the components at servers, which are provisioned,
and merges the components running at servers, which are
deprovisioned, into other components running at other avail-
able servers. We construct a middleware system for adapting
general-purpose software components to changes at elastic
resources in cloud computing.
This paper consists of the following sections. In Section

II, we surveys related work. Section III present the basic
ideas of the approach presented in this paper. Section IV
describes the design and implementation of the system. We
show the systems’ evaluation in Section V and give some
concluding remarks Section VI.

II. RELATED WORK

Before presenting our framework, we discuss existing
dynamic resource managements in cloud computing, includ-
ing elastic resource allocation. Cloud computing platforms
allow for novel ways of efficient execution and management
of complex distributed systems, such as elastic resource
provisioning and global distribution of application compo-
nents. Resource allocation management has been studied for
several decades in various contexts in distributed systems,
including cloud computing. We focus here on only the most
relevant work in the context of large-scale server clusters
and cloud computing in distributed systems. Several recent
studies have analyzed cluster traces from Yahoo!, Google,

31Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 39 / 83

and Facebook and illustrate the challenges of scale and
heterogeneity inherent in these modern data centers and
workloads. Mesos [4] splits the resource management and
placement functions between a central resource manager and
multiple data processing frameworks such as Hadoop and
Spark by using an offer-based mechanism. Resource allo-
cation is performed in a central kernel and master-slave ar-
chitecture with a two-level scheduling system. With Mesos,
reclaim of resources is handled for unallocated capacity that
is given to a framework. The Google Borg system [11] is
an example of a monolithic scheduler that supports both
batch jobs and long-running services. It provides a single
RPC interface to support both types of workload. Each Borg
cluster consists of multiple cells, and it scales by distributing
the master functions among multiple processes and using
multi-threading. YARN [13] is a Hadoop-centric cluster
manager. Each application has a manager that negotiates for
the resources it needs with a central resource manager. These
systems assume the execution of particular applications,
e.g., Hadoop and Spark, or can assign resources to their
applications before the applications start. In contrast, our
framework enables running applications to adapt themselves
to changes in their available resources.
Several academic and commercial projects have explored

attempts to create auto-scaling applications. Most of them
have used static mechanisms in the sense that they are
based on models to be defined and tuned at design time.
The variety of available resources with different character-
istics and costs, variability and unpredictability of workload
conditions, and different effects of various configurations of
resource allocations make the problem extremely hard if not
impossible to solve algorithmically at design time.
Reconfiguration of software systems at runtime to achieve

specific goals has been studied by several researchers. For
example, Jaeger et al. [6] introduced the notion of self-
organization to an object request broker and a publish /
subscribe system. Lymberopoulos et al. [9] proposed a spec-
ification for adaptations based on their policy specification,
Ponder [1], but it was aimed at specifying management and
security policies rather than application-specific processing
and did not support the mobility of components. Lupu and
Sloman [8] described typical conflicts between multiple
adaptations based on the Ponder language. Garlan et al.
[3] presented a framework called Rainbow that provided
a language for specifying self-adaptation. The framework
supported adaptive connections between operators of com-
ponents that might be running on different computers. They
intended to adapt coordinations between existing software
components to changes in distributed systems, instead of
increasing or decreasing the number of components.
Most existing attempts have been aimed at provisioning of

resources, e.g., the work of Sharman at al. [12]. Therefore,
there have been a few attempts to adapt applications to
deprovisioned resources. Nevertheless, they explicitly or

implicitly assume that their target applications are initially
constructed on the basis of master-slave and redundant
architectures. Several academic and commercial systems
tried introducing live-migration of virtual machines (VMs)
into their systems, but they could not merge between ap-
plications, because they were running on different VMs.
Jung et al.[7] have focused on controllers that take into
account the costs of system adaptation actions considering
both the applications (e.g., the horizontal scaling) and the in-
frastructure (e.g., the live migration of virtual machines and
virtual machine CPU allocation) concerns. Thus, they differ
from most cloud providers, which maintain a separation of
concerns, hiding infrastructure-level control decisions from
cloud clients.

III. BASIC APPROACH

To use elastic resources provided in cloud computing
platforms, applications need to adapt themselves to changes
in their available resources due to elasticity. To solve this
problem, we will propose a framework to adapt applications
to the provisioning and deprovisioning of servers, which may
be running on physical or virtual machines, and software
containers, such as Docker, by providing an additional
layer of abstraction and automation of virtualization. Our
framework assumes that each application consists of one or
more software components that may be running on different
computers. It has four requirements.

• Supports elasticity: Elasticity allows applications to
use more resources when needed and fall back after-
wards. Therefore, applications need to be adapted to
dynamically increasing and decreasing their available
resources.

• Self-adaptation: Distributed systems essentially lack
a global view due to communication latency between
computers. Software components, which may be run-
ning on different computers, need to coordinate them-
selves to support their applications with partial knowl-
edge about other computers.

• Non-centralized management: There is no central en-
tity to control and coordinate computers. Our adaptation
should be managed without any centralized manage-
ment so that we can avoid any single points of failures
and performance bottlenecks to ensure reliability and
scalability.

• Separation of concerns: All software components
should be defined independently of our adaptation
mechanism as much as possible. This will enable devel-
opers to concentrate on their own application-specific
processing.

There are various applications running on a variety of
distributed systems. Therefore, the framework should be
implemented as a practical middleware system to support
general-purpose applications. We also assume that, before
the existence of deprovisioning servers, the target cloud

32Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 40 / 83

computing platform can notify servers about the deprovi-
sioning after a certain time. Existing commercial or non-
commercial cloud computing platform can be classified into
three types: Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), and Software as a Service (SaaS). The
framework is intended to be used in the second and third,
but as much as possible it does not distinguish between the
two.
To adapt applications to changes in their available re-

sources due to elasticity, the framework adapts the ap-
plications to dynamically provisioning and de-provisioning
resources (Fig. 1).

• Dynamically provisioning resources When provision-
ing servers, if a particular component is busy and the
servers can satisfy the requirement of that component,
the framework divides the component into two compo-
nents and deploys one of them at the servers, where the
divided components have the same programs but their
internal data can be replicated or divided in accordance
with application-specific data divisions.

• Dynamically deprovisioning resources When depro-
visioning servers, components running on the servers
are relocated to other servers that can satisfy the
requirements of the components. If other components
whose programs are the same as the former components
co-exist on the latter servers, the framework instructs
the deployed components to be merged to the original
components.

The first and second adaptations need to deploy components
at different computers. Our framework introduces mobile
agent technology. When migrating and duplicating compo-
nents, their internal states stored in their heap areas are
transmitted to their destinations and are replicated at their
clones.
The framework provides another data store for dividing

and merging components. To do this, it introduces two
notions: key-value store (KVS) and reduce functions of the
MapReduce processing. The KVS offers a range of simple
functions for manipulation of unstructured data objects,
called values, each of which is identified by a unique key.
Such a KVS is implemented as an array of key and value
pairs. Our framework provides KVSs for components so that
each component can maintain its internal state in its KVS.
Our KVSs are used to pass the internal data of components
to other components and to merge the internal data of
components into their unified data. The framework also
provides a mechanism to divide and merge components with
their internal states stored at KVSs by using MapReduce
processing. MapReduce is a most typical modern computing
models for processing large data sets in distributed systems.
It was originally studied by Google [2] and inspired by the
map and reduce functions commonly used in parallel list
processing (LISP) and functional programming paradigms.

• Component division Each duplicated component can
inherit partial or all data stored in its original com-
ponent in accordance with user-defined partitioning
functions, where each function map of each item of
data in its original component’s KVS is stored in
either the original component’s KVS or the duplicated
component’s KVS without any redundancy.

• Component fusion When unifying two components
that generated from the same programs into a single
component, the data stored in the KVSs of the two
components are merged by using user-defined reduce
functions. These functions are similar to the reduce
functions of MapReduce processing. Each of our reduce
functions processes two values of the same keys and
then maps the results to the entries of the keys. Figure
1 shows two examples of reduce functions. The first
concatenates values in the same keys of the KVSs of
the two components, and the second sums the values
in the same keys of their KVSs.

IV. DESIGN AND IMPLEMENTATION

This section presents the design and implementation of
our framework. It consists of two parts: component runtime
system and components. The former is responsible for
executing, duplicating, and migrating components. The later
is autonomous programmable entities like software agents.
The current implementation is built on our original mobile
agent platform as existing mobile agent platforms are not
optimized for data processing.

A. Adaptation for elastic resources

When provisioning servers, the framework can divide a
component into two components whose data can be divided
before deploying one of them at the servers. When deprovi-
sioning servers, the framework can merge components that
are running on the servers into other components.
1) Dividing component: When dividing a component into

two, the framework has two approaches for sharing between
the states of the original and clone components.

• Sharing data in heap space Each runtime system
makes one or more copies of components. The runtime
system can store the states of each agent in heap space
in addition to the codes of the agent in a bit-stream
formed in Java’s JAR file format, which can support
digital signatures for authentication. The current system
basically uses the Java object serialization package for
marshalling agents. The package does not support the
capturing of stack frames of threads. Instead, when an
agent is duplicated, the runtime system issues events to
it to invoke their specified methods, which should be
executed before it is duplicated, and it then suspends
their active threads.

• Sharing data in KVS When dividing a component
into two components, the KVS inside the former is

33Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 41 / 83

Program Code

Heap space

Program Code

Heap space

Program Code

Heap space

Program Code

Heap space

Program Code

Heap space

Server 1 Server 2 Server 1 Server 2 Server 1 Server 2Server 1 Server 2

Partitioning function &

Provisioned server

Duplication with
partitioning function

Migration

gram CodeProgram C

Heap space

Adaptation of component to provisioning server

Program Code

Heap space

Program Code

Heap space

Program Code

Heap space

Program Code

Heap space

Server 1 Server 2 Server 1 Server 2 Server 1
(deprovisioned)

Server 2Server 1 Server 2
Deprovisioned server
after certain time

Merging components with
reduce function

Migration

Program Code

Heap space

Program Code

Heap space

e.g., Reduce function
(sum)

Key Value Key Value
“A1”
“A2” “A3”

“A2” 100
20030

50 ,
Key Value
“A1”
“A2”
“A3”

50
130
200

=

Adaptation of component to deprovisioning server

Step 1. Step 3.Step 2.

Step 1. Step 3.Step 2.

Figure 1. Adaptation to (de)provisioning servers

divided into two KVSs in accordance with user-defined
partitioning functions in addition to built-in functions,
and the divided KVSs are maintained inside the latter.
Partitioning functions are responsible for dividing the
intermediate key space and assigning intermediate key-
value pairs to the original and duplicated components.
In other words, the partition functions specify the com-
ponents to which an intermediate key-value pair must
be copied. KVSs are constructed as in-memory storage
to exchange data between components. It provides tree-
structured KVSs inside components. In the current
implementation, each KVS in each data processing
agent is implemented as a hash table whose keys, given
as pairs of arbitrary string values, and values are byte
array data, and it is carried with its agent between
nodes,

where a default partitioning function is provided that uses
hashing. This tends to result in fairly well-balanced parti-
tions. The simplest partitioning functions involve computing
the hash value of the key and then taking the mod of
that value using the number of the original and duplicated
components.
2) Merging components: The framework provides a

mechanism to merge the data stored in the KVSs of different
components instead of the data stored inside their heap
spaces. Like the reduce of MapReduce processing, the
framework enables us to define a reduce function that merges
all intermediate values associated with the same intermediate
key. When merging two components, the framework can
discard the states of their heap spaces or keep the state of
the heap space of one of them. Instead, the data stored in

the KVSs of different components can be shared. A reduce
function is applied to all values associated with the same
intermediate key to generate output key-value pairs. The
framework can merge more than two components at the same
computers because components can migrate to the computers
that execute co-components that the former wants to merge
to.

V. EVALUATION

Although the current implementation was not constructed
for performance, we evaluated the performance of our cur-
rent implementation. We evaluated the performance of our
framework with CoreOS, which is a lightweight operating
system based on Linux with JDK version 1.8 with Docker,
which is software-based environment that automates the
deployment of applications inside software containers by
providing an additional layer of abstraction and automation
of operating-system-level virtualization on Linux, on Ama-
zon EC2. For each dimension of the adaptation process with
respect to a specific resource type, elasticity captures the
following core aspects of the adaptation:

• Adaptation latency at provisioning servers The re-
sponse time of scaling up is defined as the time it
takes to switch from provisioning of servers by the
underlying system, e.g., cloud computing platform.

• Adaptation latency at deprovisioning servers The re-
sponse time of scaling down is defined as the time it
takes to switch from deprovisioning of servers by the
underlying system, e.g., cloud computing platform.

The latency at scaling up or down does not correspond
directly to the technical resource provisioning or deprovi-

34Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 42 / 83

sioning time. Table I shows the basic performance. The
component was simple and consisted of basic callback
methods. The cost included that of invoking two callback
methods. The cost of component migration included that of
opening TCP transmission, marshaling the agents, migrating
the agents from their source computers to their destination
computers, unmarshalling the components, and verifying
security.

Table I
BASIC OPERATION PERFORMANCE

Latency (ms)
Duplicating component 10
Merging component 8
Migrating component between two servers 32

Figure 2 shows the latency of the number of divided
and merged components at provisioning and deprovisioning
servers. The experiment provided only one server to run
our target component, which was a simple HTTP server
(its size was about 100 KB). It added one server every ten
seconds until there were eight servers and then removed
one server every ten seconds after 80 seconds had passed.
The number of components was measured as the average
of the numbers in ten experiments. Although elasticity is
always considered with respect to one or more resource
types, the experiment presented in this paper focuses on
cloud computing platforms for executing components, e.g.,
servers. There are two metrics in an adaptation to elastic
resources, scalability and efficiency, where scalability is the
ability of the system to sustain increasing workloads by
making use of additional resources, and efficiency expresses
the amount of resources consumed for processing a given
amount of work.

• A is the average time to switch from an underpro-
visioned state to an optimal or overprovisioned state
and corresponds to the average latency of scaling up or
scaling down.

• U is the average amount of underprovisioned resources
during an underprovisioned period.

∑
U is the ac-

cumulated amount of underprovisioned resources and
corresponds to the blue areas in Fig. 2.

• D is the average amount of overprovisioned resources
during an overprovisioned period.

∑
D is the accu-

mulated amount of underprovisioned resources and
corresponds to the red areas in Fig. 2.

The precision of scaling up or down is defined as the abso-
lute deviation of the current amount of allocated resources
from the actual resource provisioning or deprovisioning. We
define the average precision of scaling up Pu and that of
scaling down Pd. The efficiency of scaling up or down is
defined as the absolute deviation of the accumulated amount
of underprovisioned or overprovisioned resources from the
accumulated amount of provisioned or deprovisioned re-

sources, specified as EU or ED .

Pu =
∑

U

Tu
Pd =

∑
D

Td
Eu =

∑
U

Ru
Ed =

∑
D

Rd

where Tu and Td are the total durations of the evaluation
periods and Ru and Rd are the accumulated amounts of
provisioned resources when scaling up and scaling down
phases, respectively. Table II shows the precision and effi-
ciency of our framework.

Table II
BASIC OPERATION EFFICIENCY

Rate
Pu (Precision of scaling up) 99.2 %
Pd (Precision of scaling down) 99.1 %
Eu (Efficiency of scaling up) 99.6 %
Ed (Efficiency of scaling down) 99.4 %

In the experiment the target component is a simple HTTP
server, since web applications have very dynamic workloads
generated by variable numbers of users, and they face
sudden peaks in the case of unexpected events. Therefore,
dynamic resource allocation is necessary not only to avoid
application performance degradation but also to avoid under-
utilized resources. The experimental results showed that
our framework could follow the elastically provisioning and
deprovisioning of resources quickly, and the number of the
components followed the number of elastic provisioning and
deprovisioning of resources exactly. The framework was
scalable because its adaptation latency was independent of
the number of servers.

VI. CONCLUSION

This paper presented a mechanism for adapting
application-level software to changes in available resources
in cloud computing platforms. The mechanism was con-
structed as a framework that enabled distributed applications
to adapt themselves to changes in their available resources
in distributed systems, in particular cloud computing plat-
forms. It was useful for adapting applications to elasticity
in cloud computing. The key ideas behind the framework
are dynamic deployment of components and dividing and
merging components. The former enabled components to
relocate themselves at new servers when provisioning the
servers and at remaining servers when de-provisioning the
servers, and the latter enables the states of components to be
divided, and passed to other components, and merged with
other components in accordance with user-defined functions.
We believe that our framework is useful because it enables
applications to be operated with elastic capabilities and
resources in cloud computing.

REFERENCES

[1] N. Damianou, N. Dulay, E. Lupu, and M. Sloman: The Ponder
Policy Specification Language, in Proceedings of Workshop on
Policies for Distributed Systems and Networks (POLICY’95),
pp.18–39, Springer-Verlag, 1995.

35Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 43 / 83

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
um

be
r

of
 s

er
ve

rs

2

4

6

8

Time (sec)

Number of (de)provisioning servers notified from Cloud
Number of components by the proposed framework
Under-provisioning state (the numbers of components and available servers)
Over-provisioning state (the numbers of components and available servers)

Figure 2. Number of components at (de)provisioning servers

[2] J. Dean and S. Ghemawat: MapReduce: simplified data pro-
cessing on large clusters, in Proceedings of the 6th conference
on Symposium on Opearting Systems Design and Implemen-
tation (OSDI’04), 2004.

[3] D. Garlan, S.W. Cheng, A.C.Huang, B. R. Schmerl, P.
Steenkiste: Rainbow: Architecture-Based Self-Adaptation with
Reusable Infrastructure, IEEE Computer Vol.37, No.10, pp.46-
54, 2004.

[4] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph,
R. Katz, S. Shenker, and I. Stoica. Mesos: a platform for fine-
grained resource sharing in the data center In Proceedings
of USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2011.

[5] C. Inzinger, at al., Decisions, Models, and Monitoring–A
Lifecycle Model for the Evolution of Service-Based Systems,
In Proceedings of Enterprise Distributed Object Computing
Conference (EDOC), pp.185-194, IEEE Computer Society,
2013.

[6] M. A. Jaeger, H. Parzyjegla, G. Muhl, K. Herrmann: Self-
organizing broker topologies for publish/subscribe systems,
in Proceedings of ACM symposium on Applied Computing
(SAC’2007), pp.543-550, ACM, 2007.

[7] G. Jung, et. al.: A Cost-Sensitive Adaptation Engine for
Server Consolidation of Multitier Applications, In Proceedings
of Middleware’2009, LNCS, Vol.5896, pp.163183, Springer,
2009.

[8] E. Lupu and M. Sloman: Conflicts in Policy-Based Distributed
Systems Management, IEEE Transaction on Software Engi-
neering, Vol.25, No.6, pp.852-869, 1999.

[9] L. Lymberopoulos, E. Lupu, M. Sloman: An Adaptive Policy
Based Management Framework for Differentiated Services
Networks, in Proceedings of 3rd International Workshop on
Policies for Distributed Systems and Networks (POLICY
2002), pp.147-158, IEEE Computer Society, 2002.

[10] P. Mell, T. Grance: The NIST Definition of Cloud Computing,
Technical report of U.S. National Institute of Standards and
Technology (NIST), Special Publication 800-145, 2011.

[11] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E.
Tune, and J. Wilkes: Large-scale cluster management at Google
with Borg, EuroSys15, ACM 2015.

[12] U. Sharma, P. Shenoy, S. Sahu, A. Shaikh: A cost-aware
elasticity provisioning system for the cloud In Proceedings of

International Conference on Distributed Computing Systems
(ICDCS’2011), pp.559570, IEEE Computer Society, 2011.

[13] V. K. Vavilapalli, el. al.,: Apache Hadoop YARN: Yet Another
Resource Negotiator, In Proceedings of Symposium on Cloud
Computing (SoCC’2013), ACM, 2013.

[14] World Wide Web Consortium (W3C): Composite Capabil-
ity/Preference Profiles (CC/PP), http://www.w3.org/TR/NOTE-
CCPP, 1999.

36Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 44 / 83

A Component Model for Limited Resource Handling in Adaptive Systems

Karina Rehfeldt, Mirco Schindler, Benjamin Fischer and Andreas Rausch

Technische Universitt Clausthal
Clausthal-Zellerfeld, Germany

email: {karina.rehfeldt, mirco.schindler, benjamin.fischer, andreas.rausch}@tu-clausthal.de

Abstract—Dynamic adaptive systems are systems that change
their behavior at run time, based on system, user, environment
and context information and needs. System configuration in
terms of structure and behavior of open, self-organized systems
cannot completely be predicted beforehand: New components
may join, others may leave the system, or the behavior of
individual components of the system may change over time. These
components may compete for limited resources. Especially in
Internet of Things (IoT) applications where service consumers
directly interact with service providers, the necessity for a fair
and lightweight resource access method arises. Therefore, we
have elaborated a method which allocates provided services
to applications based on a fair and distributed process. Our
approach has been implemented on top of our component model
called Dynamic Adaptive System Infrastructure (DAiSI).

Keywords–dynamic adaptive systems; decentralized configura-
tion; resource allocation.

I. INTRODUCTION

Software-based systems pervade our daily life at work as
well as at home. Public administration or enterprise organiza-
tions can scarcely be managed without software-based systems.
We come across devices executing software in nearly every
household. The continuous increase in size and functionality
of software systems has made some of them among the most
complex man-made systems ever devised [1].

In the last two decades, the trend towards ’everything, every
time, everywhere’ has been dramatically increased through a)
smaller mobile devices with higher computation and commu-
nication capabilities, b) ubiquitous availability of the Internet
(almost all devices are connected with the Internet and thereby
connected with each other), and c) devices equipped with
more and more connected, intelligent and sophisticated sensors
and actuators. These trends also pushed research subjects like
Internet of Things (IoT) and applications for smart devices,
like smart City, smart home or applications in financial and
health technology.

Nowadays, these devices are increasingly used within an
organically grown, heterogeneous, and dynamic IT environ-
ment. Users expect them not only to provide their primary
services but also to collaborate autonomously with each other
and thus to provide real added additional value. The challenge
is therefore to provide software systems that are correct, stable
and robust in the presence of increasing challenges such as
change and complexity [2]. Especially in the Internet of Things
Domain small autonomous devices are expected to interact and
collaborate on their own. Nevertheless, the provided services
should be stable and reliable.

In open IoT Systems new sensors, actuators and services
may enter the system environment at any time and others may

leave the system. Hence, it is essential that our systems are able
to adapt to maintain the satisfaction of the user expectations
and environmental changes in terms of an evolutionary change.

Dynamic change, in contrast to evolutionary change, occurs
while the system is operational. Dynamic change requires that
the system adapts at run time. Therefore, we must plan for
automated management of adaptation. The systems themselves
must be capable of determining what system change is required
and initiate and manage the change process wherever needed.
This is the aim of self-managed systems.

Providing dynamic adaptive systems is a great challenge in
software engineering [2]. In order to provide dynamic adaptive
systems, the activities of classical development approaches
have to be partially or completely moved from development
time to run time. For instance, devices and software com-
ponents can be attached to a dynamic adaptive system at
any time. Consequently, devices and software components can
be removed from the dynamic adaptive system or they can
fail as the result of a defect. Hence, for dynamic adaptive
systems, system integration takes place during run time. In
our research group, we have for more than ten years developed
a framework for dynamic adaptive (and distributed) systems,
called Dynamic Adaptive System Infrastructure (DAiSI).

DAiSI is a service-oriented and component based platform
to implement dynamic adaptive systems. Components can be
integrated into or removed from a dynamic adaptive system
at run-time without causing a complete application to fail. To
meet this requirement, each component can react to changes
in its environment and adapt its behavior accordingly.

At first, it was only possible for components to ask for a
special service based on a domain interface they referred to. In
[3], we extended the DAiSI component model by the concept
of interface roles which takes runtime information in account
for the composition and connection of services. With interface
roles a domain interface can be enriched. It allows specifying
the role of the interface on the basis of runtime information,
like the value of a specific parameter.

In DAiSI, the components connect on local optimization
views. Each and every component tries to achieve their best
local configuration but the resulting overall system configu-
ration might not meet any global optimization goals or fails
to meet context requirements. Therefore, we have elaborated
an approach to specify context requirements. We introduced
the concept of service application specification and component
templates in [4]. A service application specification consists of
a set of component templates. A template is a placeholder for
a set of component with specific properties. The template can
be described without knowing individual components. During

37Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 45 / 83

run time, DAiSI matches existing components to templates
autonomously. With this approach an application is build which
meets context requirements.

The development of DAiSI was always motivated through
running application examples and demonstrators. As DAiSI has
been developed for more than ten years, we have demonstrated
the application of our approach and our infrastructure in
a couple of different research demonstrators and industrial
prototypes and products [5] or [6].

Nowadays, IoT-Applications are an emerging field. IoT is
different to classic monolithic software systems. Instead of
one big application multiple applications for various users are
needed. In the EU project BIG IoT [7], an architecture for
interoperable IoT-Systems is introduced. The general idea is
to use a central marketplace where service and data providers
register their service offerings and service consumers are
able to search for their required services and data. But to
keep the system scalable, the marketplace only takes care of
establishing the connection between consumer and provider. If
the consumer directly interacts with providers the necessity to
control resource access arises. Since there is no central instance
to take care of resource management a distributed method is
needed. But also, the method to allocate provider resources for
consumers should be fair and lightweight.

The goal of this paper is to introduce such a method on
top of the DAiSI component model. The rest of this paper is
structured as follows: In Section II, we give an overview of
relevant related work. Section III gives a short overview of the
DAiSI component model with a few hints for further reading.
Our extension for limited resource handling is introduced
in Section IV, before the paper is wrapped up by a short
conclusion in Section V.

II. RELATED WORK

In the field of large-scale systems component-based devel-
opment is a solid and state-of-the-art approach [8], [9], [10].

In many cases the used framework influences the archi-
tectural structure of a system or the other way around a
framework is chosen cause of the underlying architecture and
its concepts. One example for component based development
are middlewares, which not only defines services and establish
an infrastructure, but also specifies a component model on
top [11]. The CORBA Component Model (CCM) [12] from
CORBA [13], a component based middleware, describes differ-
ent types of communication as synchronous or asynchronous
calls by the port type. These ports are characterized in the
interface description of the component.

Another example is the middleware DREAM [14], which
defines atomic and composed components, so the intercon-
nection between components could be hierarchical. The con-
nection of components takes place at runtime, but it allows
only asynchronous communication. The component model
of the middleware RUNES [15] allows the dynamic adding
and termination of components at runtime, too as CORBA
and DREAM. Furthermore it supports the implementation
of a separate algorithm, which realize the arrangement of
components.

One of the first frameworks, which supports dynamic
adaptive reconfiguration was CONIC. A CONIC application
was maintained by a centralized configuration manager [16].

Besides it provides a description technique to adapt and modify
the structure of the integrated modules of an application.
Another framework, building on the knowledge gained through
the research in CONIC, was a framework for Reconfigurable
and Extensible Parallel and Distributed Systems (REX) [17].
This frameworks defines its own interface description language
to specify the interconnection. Components were considered
as types, allowing multiple instances of any component to
be present at run-time. The framework allowed the dynamic
change of the number of running instances and their wiring
[18]. Both, the CONIC and REX framework allowed the dy-
namic adaptation of distributed applications, but only through
explicit reconfiguration programs for every possible reconfig-
uration.

R-OSGi [19] takes advantage of the features developed for
centralized module management in the OSGi platform, like
dynamic module loading and unloading. It introduces a way
to transparently use remote OSGi modules in an application
while still preserving good performance. Issues like network
disruptions or unresponsive components are mapped to events
of unloaded modules and thus can be handled gracefully a
strength compared to many other platforms. However, R-OSGi
does not provide means to specify application architecture
specific requirements. As long as modules are compatible with
each other they will be linked. The module developer has to
ensure the application architecture at the implementation level.
Opposed to that, our approach proposes a high level description
of application architectures through application templates that
can be specified even after the required components have been
developed.

There are many service-oriented approaches and service-
orientated Architectures (SOA) [20], which are capable to
handle a dynamic behavior. Unknown components can be
integrated into it. However, they have the uncomfortable
characteristic that the system itself does not care for the
dynamic adaptive behavior. The component needs to register
and integrate itself. Also, it has to monitor itself whether
the used services are still available and adapt its behavior
accordingly, if that is no longer the case. But components can
be developed independently and reused [21].

In the context of IoT, Stankovic highlighted in [22] eight
research topics and challenges. One of them are ”Architec-
ture and Dependencies”, he mentioned that the sharing of
components across simultaneously running applications can
result in many systems-of-systems interface problems. The
main reason for this is the interaction with actors. A simple
example is described in [22] also, imagine a Smart Home
system controlling windows, shades and thermostats. If the
sensors and actuators are shared between applications, than it
could lead to conflicts when these applications have there own
assumptions and strategies to modify the room temperature. As
shown in [23] this problem occurs always if a resource like
an actuator is limited or applications are competing for these
resources. This leads to specific infrastructures like DepSys
[24] a sensor and actuator infrastructure for smart homes
that provides comprehensive strategies to specify, detect, and
resolve conflicts.

Anders and Lehner presented a decentralized graph-based
approach for agent networks to solve resource allocation
problems [25]. Their approach works for structures where you
can easily derive such a network like in smart grid systems.

38Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 46 / 83

But we are looking at systems where the agents are changing
at runtime and where no clear network for resource exchange
can be determined.

Therefore we are using a market-based approach like
the ones introduced in [26]. Market-based approaches are
generally useful because of their simplicity but effectiveness
to achieve a sustainable solution by using little information
like price and offer and simple interaction like trading. As
presented in the next sections our approach builds up on
distributed component models and handles the conflicts of
limited resources in a general and generic way.

III. DAISI COMPONENT MODEL

In this section, we want to shortly introduce the existing
DAiSi component model. We build our extension on top of
the existing component model in section IV. We will use a
common example throughout the whole paper which we will
introduce next.

Imagine a biathlon training center. The training center
consists of a skiing track and a shooting range with sev-
eral shooting lanes. Biathlon teams are able to train under
their trainer’s watch. The training center provides a training
overview system for each trainer where he can see the current
training data of his athletes. For that purpose, each athlete is
equipped with at least a pulse sensor. Moreover, a device which
measures the currently used skiing technique is attached to the
athlete’s gear.

Figure 1. A DAiSI component representing an athlete.

The DAiSI component model is best explained with an
example. In Fig. 1, a DAiSI component representing a biathlon
athlete is shown. The actual component is the blue rectangle
in the background. A DAiSI component consists of different
configurations, each of them including one or more provided
and required services. The athlete has three different configu-
rations depicted by yellow boxes. Configurations in DAiSI are
ordered manually by the designer. The top-most configuration
is the best one and therefore the one a component strives
to achieve. In Fig. 1, each configuration offers the service
IAthlete depicted with a full-circle based on the UML lollipop
notation. Accordingly, a required service is depicted by a
semicircle. The best configuration in our example requires
three different services: ITechnique, a service provided by the
skiing technique measuring device; IPulse, a service provided
by the pulse device and IShootingLine which is the shooting
line evaluating the shooting performance of an athlete.

Fig. 2 shows the DAiSI component model. The different
aspects are covered in various papers which were published
throughout the years. Therefore, we will stick to a general
introduction here and refer to the detailed papers. The orange
parts are the extensions introduced in this paper.

The domain architecture of a DAiSI application defines
domain interfaces. On the basis of these domain interfaces
is decided whether required and provided services can be
connected. In [3], the domain interfaces are extended by
interface roles. As already mentioned in the introduction inter-
face roles allow the specification of additional constraints for
the compatibility of interfaces that use run-time information,
bound services and the internal state of a component.

Applications are used to specify context requirements.
They narrow down the possible structure of a application
configuration. Blueprints for components, so called Templates
specify (needed and offered) RequiredTemplateInterfaces and
ProvidedTemplateInterfaces which refer to DomainInterfaces
and thus form a structure which can be filled with actual
services and components by the infrastructure. A more detailed
discussion about templates and applications can be found in
[4].

Figure 3. Example for an application with two different component
templates.

Fig. 3 shows an example for the usage of templates and
applications. biathlonApp specifies an application consisting
of two component templates. The first component template
tTrainer can be filled with components providing a service
referring to the domain interface ITrainer and requiring a ser-
vice referring to IAthlete. Following this, the second template
tAthlete is compatible with components provding an IAthlete
service.

With the interface roles and template extension we are
now able to describe an application. But in the case of IoT-
Domains with many different applications competing for lim-
ited resources we have to be able to describe the dependencies
between different application instances. In the next section, we
will show application scenarios in our biathlon training center
introducing our mechanisms and structures for distributed
limited resource handling.

IV. LIMITED RESOURCE HANDLING ON TOP OF DAISI
Recall our biathlon example. We have different biathlon

teams training in a training center with a limited amount of
shooting lanes. Driven by scenarios on top of this example,
we will introduce our extensions to the DAiSI component
model which were introduced to handle limited resources.
The mapping of components to templates and the creation of
applications will then no longer be done simply on interface
matching criterias but also with regards to resource assign-
ments.

39Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 47 / 83

Figure 2. DAiSI component model with Application Instances.

40Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 48 / 83

The configuration mechanism of DAiSI which is lengthly
introduced in [27], is extended by an agent-based mechanism
to broker the association of resources. We will not introduce
the technical algorithm here but the component model exten-
sion.

A. The Need for Application Instances

Two kind of teams are training in our training center:
amateur teams and professional teams. They differ in their
configuration and usage of training devices.

Figure 4. Application for amateur team.

Fig. 4 shows the application and templates for an amateur
team. One trainer is training with up to 4 athletes. Each athlete
has a pulse measuring device and can use a shooting line. On
the other hand, Fig. 5 shows the professional team application.
A professional athlete will always use a technique device also.

With the help of our component model until now, we can
specify these two application types. But in the training center
more than one amateur or professional team might be training.
Therefore, the need to introduce an instance level arises.
Application and template instances are the first extension made
to the DAiSI component model.

Figure 5. Application for professional team.

The orange parts in Fig. 2 are the extensions made to the
component model for limited resource handling. To be able to
model a system based on instances, we introduce application
instances and template instances. They represent the instance
level of our component model. Consequently, the components
and provided/required services are no longer bound to the
template types but to template instances.

Another new structure is the system. A system is a set of
various application instances. It describes the overall config-
uration of a set of components in these application instances.
Each of these application instances may use resources and may
even share a resource if the resource allows.

With the help of this extension, we can now describe a
system consisting of two amateur team application instances
and one professional team application instance.

B. Application Priority
In our example, we have a clearly limited resource: the

shooting lanes. Each shooting lane can only be used by one
athlete at a time. So the shooting lanes directly influence how
many athletes can train on the track. We assume that it is
acceptable for a training amateur team to share the shooting
lanes. But the professional athletes must have exclusive usage
of a shooting lane to train under competitive conditions.

Also, the training of professional athletes is more impor-
tant, so they should always be preferred to amateur teams.
To be able to describe this in our component model, we use
ApplicationPriority. ApplicationPriorities are priority classifi-
cations for application types. A DomainArchitecture (in our
case the biathlon training domain) defines a set of ordered
priorities. These priorities are considered by the configuration
mechanism when it comes to limited resources. To put it
simple, an application type with a higher priority will always
be preferred to applications with lesser priority when it comes
to limited resources.

Applied to our biathlon example it means that professional
team application gets a higher priority than amateur team
application. When a professional team wants to use the training
center, the assignment of resources will always be in their
favor. Application priorities act on type level. But we also need
a mechanism for priority on instance level, for example when
two different amateur team instances are training. This priority
should include run time information because the priority of an
application instance may change over time. In the next section,
we will introduce our concept and motivate it by another
example.

C. Weight
Now that we are able to account for priority on type level,

we introduce our concept for priority on instance level. Every
ApplicationInstance has a weight. The weight is an indicator
for the configuration mechanism how valuable an application
instance is for the overall system. During the assignment of
resources the weights are used to decide which application
ultimately gets the resource.

In our biathlon training center, a training schedule exists. It
defines training times for teams. We assign each team instance
a weight based on the training schedule. Thereby, we want to
make sure that each team may train on their assigned training
time but if there are still available shooting lanes in the center,
additional teams may train. To be able to achieve that, we
assign a team exactly on their training schedule the weight 1.
The more the current time differs from their assigned training
time, the lower the team’s weight gets until it reaches 0. So
for instance, until half an hour before their training schedule
a team gets the weight 0, a quarter to their training schedule
they get the weight 0.5 and exactly on their training schedule
they get the weight 1.

Going back to our resource assigning mechanism, if two
teams are competing for a shooting lane the team with higher
weight, thus closer to their training schedule, will get the
assignment of the shooting lane. But a team with weight

41Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 49 / 83

0 is also able to get the shooting lane, if no team with a
higher weight is asking for it. In the case of same weights,
the assignment has to be done randomly. In the end, we have
extended our DAiSI component model by an instance level and
priorities on type and instance level. With the help of these new
features we are now able to handle limited resources on top
of DAiSI. It exists a proof-of-concept implementation which
will be published in the PhD-Thesis of Benjamin Fischer.

V. CONCLUSION

We introduced an enhancement to our DAiSI component
model which allows modeling for limited resource handling.
Limited resources are especially a problem in systems with
competing applications or shared actuators, for instance IoT
systems. To be able to model more than one possible appli-
cation, which is necessary for IoT systems, an instance level
was created. The assignment of resources may be decided on
application type level on the basis of application priorities.
Additionally, weights are used on application instance level to
model the significance of an application instance to the overall
systems.

Klus et. al [4] presented a configuration algorithm to assign
components to applications. The introduced enhancement of
the component model in this paper may be used in an extended
configuration algorithm which also deals with the assignment
of limited resources. A possible implementation is conceived
and will be published in the PhD-Thesis of Benjamin Fischer.

REFERENCES
[1] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger,

T. Longstaff, R. Kazman, M. Klein, D. Schmidt, K. Sullivan et al.,
“Ultra-large-scale systems: The software challenge of the future,” DTIC
Document, Tech. Rep., 2006.

[2] J. Kramer and J. Magee, “A rigorous architectural approach to adaptive
software engineering,” Journal of Computer Science and Technology,
vol. 24, no. 2, 2009, pp. 183–188.

[3] H. Klus, D. Herrling, and A. Rausch, “Interface Roles for Dynamic
Adaptive Systems,” Proceedings of ADAPTIVE, 2015, pp. 80–84.

[4] H. Klus, A. Rausch, and D. Herrling, “Component Templates and Ser-
vice Applications Specifications to Control Dynamic Adaptive System
Configurations,” in AMBIENT 2015, The Fifth International Confer-
ence on Ambient Computing, Applications, Services and Technologies,
vol. 5. Nice, France: IARIA, Jul. 2015, pp. 42 – 51.

[5] A. Rausch, D. Niebuhr, M. Schindler, and D. Herrling, “Emergency
management system,” in Proceedings of the International Conference
on Pervasive Services 2009 (ICSP 2009), 2009.

[6] C. Deiters, M. Köster, S. Lange, S. Lützel, B. Mokbel, C. Mumme,
and D. Niebuhr, “Demsy-a scenario for an integrated demonstrator in
a smartcity,” NTH Computer Science Report, vol. 1, 2010.

[7] B. I. project. Bigiot - bridging the interoperability gap of the internet
of things. [Online]. Available: http://big-iot.eu/ (2016)

[8] C. Szyperski, Component Software: Beyond Object-Oriented
Programming (2nd Edition), 2nd ed. Addison-Wesley Professional,
2002. [Online]. Available: http://amazon.com/o/ASIN/0201745720/

[9] A. MacCormack, J. Rusnak, and C. Y. Baldwin, “The impact of
component modularity on design evolution: Evidence from the software
industry,” SSRN Electronic Journal, 2007.

[10] B. Councill and G. T. Heineman, “Definition of a software component
and its elements,” Component-based software engineering: putting the
pieces together, 2001, pp. 5–19.

[11] P. A. Bernstein, “Middleware: a model for distributed system services,”
Communications of the ACM, vol. 39, no. 2, 1996, pp. 86–98.

[12] N. Wang, D. C. Schmidt, and C. O’Ryan, “Overview of the corba
component model: Component-based software engineering,” G. T.
Heineman and W. T. Councill, Eds. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc, 2001, pp. 557–571. [Online].
Available: http://dl.acm.org/citation.cfm?id=379381.379581

[13] Object Management Group - OMG, “Corba component model
specification,” 2006. [Online]. Available: http://www.omg.org/spec/
CCM/4.0/PDF

[14] M. Leclercq, V. Quéma, and J. Stefani, “Dream: a component frame-
work for constructing resource-aware, configurable middleware,” IEEE
Distributed Systems Online, vol. 6, no. 9, 2005, p. 1.

[15] P. Costa, G. Coulson, C. Mascolo, G. P. Picco, and S. Zachariadis,
“The runes middleware: A reconfigurable component-based approach
to networked embedded systems,” in 2005 IEEE 16th International
Symposium on Personal, Indoor and Mobile Radio Communications,
vol. 2, 2005, pp. 806–810.

[16] J. Magee, J. Kramer, and M. Sloman, “Constructing distributed systems
in conic,” IEEE Transactions on Software Engineering, vol. 15, no. 6,
1989, pp. 663–675.

[17] J. Kramer, J. Magee, M. Sloman, and N. Dulay, “Configuring object-
based distributed programs in rex,” Software Engineering Journal,
vol. 7, no. 2, 1992, pp. 139–149.

[18] J. Kramer, “Configuration programming-a framework for the devel-
opment of distributable systems,” in COMPEURO’90: Proceedings
of the 1990 IEEE International Conference on Computer Systems
and Software Engineering-Systems Engineering Aspects of Complex
Computerized Systems. IEEE, 1990, pp. 374–384.

[19] J. S. Rellermeyer, G. Alonso, and T. Roscoe, “R-osgi: distributed
applications through software modularization,” in Proceedings of the
ACM/IFIP/USENIX 2007 International Conference on Middleware.
Springer-Verlag New York, Inc., 2007, pp. 1–20.

[20] H. Li and Z. Wu, “Research on distributed architecture based on soa,”
in 2009 International Conference on Communication Software and
Networks, pp. 670–674.

[21] M. Turner, D. Budgen, and P. Brereton, “Turning software into a
service,” Computer, vol. 36, no. 10, 2003, pp. 38–44.

[22] J. A. Stankovic, “Research directions for the internet of things,” IEEE
Internet of Things Journal, vol. 1, no. 1, 2014, pp. 3–9.

[23] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun, “Supporting
concurrent applications in wireless sensor networks,” in Proceedings
of the 4th International Conference on Embedded Networked Sensor
Systems, ser. SenSys ’06. New York, NY, USA: ACM, 2006, pp. 139–
152. [Online]. Available: http://doi.acm.org/10.1145/1182807.1182822

[24] S. Munir and J. A. Stankovic, “Depsys: Dependency aware integration
of cyber-physical systems for smart homes,” in 2014 ACM/IEEE
International Conference on Cyber-Physical Systems (ICCPS), pp. 127–
138.

[25] G. Anders and P. Lehner, “Self-Organized Graph-Based Resource
Allocation,” in Self-Adaptive and Self-Organizing Systems (SASO),
2016 IEEE 10th International Conference on, Sept 2016.

[26] S. H. Clearwater, Market-based control: A paradigm for distributed
resource allocation. World Scientific, 1996.

[27] H. Klus, A. Rausch, and D. Herrling, “DAiSIDynamic Adaptive System
Infrastructure: Component Model and Decentralized Configuration
Mechanism,” International Journal On Advances in Intelligent
Systems, vol. 7, no. 3 and 4, 2014, pp. 595 – 608. [Online]. Available:
http:sse-world.deindex.phpdownloadfileviewinline370

42Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 50 / 83

A Holistic Approach for Managed Evolution of
Automotive Software Product Line Architectures

Christoph Knieke, Marco Körner, Andreas Rausch,
Mirco Schindler, Arthur Strasser, and Martin Vogel

TU Clausthal, Department of Computer Science, Software Systems Engineering
Clausthal-Zellerfeld, Germany

Email: {christoph.knieke|marco.koerner|andreas.rausch|
mirco.schindler|arthur.strasser|m.vogel}@tu-clausthal.de

Abstract—The automotive industry aspires a high degree of reuse
in software development in order to reduce the development
costs. The reuse is achieved by a product-wide development for
different vehicle variants, as well as by reuse in subsequent
products. However, the increasing complexity and degree of
variability of automotive software systems hinders the capabilities
for reusability and extensibility of these systems to an increasing
degree. After several product generations, software erosion is
growing steadily, resulting in an increasing effort of reusing
software components, and planning of further development.
Here, we give a holistic approach for a long-term manageable
and plannable software product line architecture for automotive
software systems. Furthermore, we consider automotive product
development and prototyping based on software product lines,
and propose an approach for architecture compliance checking
to avoid software erosion. We demonstrate our methodology on a
real world case study, a brake servo unit (BSU) software system
from automotive software engineering.

Keywords–Architecture Evolution; Software Product Lines;
Software Erosion; Architecture Compliance Checking; Automotive.

I. INTRODUCTION

In the development of electronic control unit (ECU) soft-
ware for vehicles, the reduction of development costs and the
increase of quality are essential objectives. A significant mea-
sure to achieve these goals is the reuse of software components
[1]. The reuse is mainly achieved by a product-wide develop-
ment for different vehicle variants: Different configurations of
driver assistance systems, comfort functions, or powertrains
can be variably combined, creating an individual and unique
product. Furthermore, for each new vehicle generation, the
software of preceding generations of the vehicle is reused or
adopted [2].

However, the possibilities for reuse and extensibility of
existing functions can not be fully exploited in many cases.
Rather, it can be observed that due to the increase in so-called
“accidental” complexity [2] (see Section V-B), the reusability
and further developability reaches its limits. One reason for
this is the lack of a product-line-oriented overall planning,
based on the concepts of software product line engineering
already established in other domains. A central factor here is
the planning based on a product line architecture (PLA), on the
specification of which the individual products are derived. The
PLA describes the structure of all realizable products. Each
product that is developed has an individual product architecture
(PA) whose structure should be mapped onto the PLA.

However, an overall specification of a PLA is often missing
in the automotive domain [3]: The knowledge of the overall,

product independent structure is not explicitly documented,
and therefore exists only implicitly in the minds of the par-
ticipants. Here, we refer to the results shown in a preceding
paper [3] to create a PLA as a prerequisite for our approach
by applying strategies for architecture recovery and discovery.

However, the application of the software product line
development must take into account the special properties,
boundary conditions and requirements that exist in the auto-
motive environment [4]. Therefore, a method adapted to the
automotive environment is required and is presented in this
paper.

An important aspect is the design and planning of further
developments of the product line architecture. When designing
the product line architecture, the architecture must be based on
architecture principles appropriate for the automotive domain,
aiming at reusability and further development [2]. Since a wide
range of products can be affected by the further development
of the product line architecture, changes must be carefully
planned: High demands are placed on the reliability of the
systems, but the reliability is endangered by extensive adapta-
tions.

In the further development, it must be ensured that the
product architecture remains compliant with the product line
architecture. However, due to the high time and cost pressure
in the automotive sector, it is not possible, for every further
development to be controlled via the product line. Rather,
some product-specific adjustments have to be made. This can
lead (intentionally or unintentionally) to a product architecture
that differs in comparison to the product line architecture: the
architecture erodes. In the long term, this leads to reduced
reusability and extensibility of the software artifacts. Due to the
size of the product line architecture, an automated consistency
check is necessary, which is an essential part of our approach
to counteract architectural erosion.

The major objectives of our approach can be summarized
as follows:

• Long-term minimization of architecture erosion.
• High degree of reusability.
• Scalability to manage a huge number of variants in

real world automotive systems.

The paper is structured as follows: Section II gives an
overview on the related work. In Section III, we propose a
methodology for managed evolution of automotive software
product line architectures. Section IV introduces parts of the
architecture description language, which we will refer to in the

43Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 51 / 83

following sections. In Section V, we apply our approach on
a real world example, a brake servo unit, from automotive
software engineering. The results of a corresponding field
study are evaluated and discussed in Section VI. Section VII
concludes.

II. RELATED WORK

To the best of our knowledge, no continuous overall
development cycle for automotive software product line ar-
chitectures exists. Several aspects of our process are already
covered in literature:

A. Reference Architectures

The purpose of the reference architecture is to provide
guidance for future developments. In addition, the reference
architecture incorporates the vision and strategy for the future.
The work in [5] examines current reference architectures
and the driving forces behind development of them to come
to a collective conclusion on what a reference architecture
should truly be. Furthermore, in [5], reference architectures
are assumed to be the basis for the instantiation of product
line architectures (so-called family architectures, see [5]).

Nakagawa et. al. discuss the differences between reference
architectures and product line architectures by highlighting
basic questions like definitions, benefits, and motivation for
using each one, when and how they should be used, built,
and evolved, as well as stakeholders involved and benefited
by each one [6]. Furthermore, they define a reference model
of reference architectures [7], and propose a methodology to
design product line architectures based on reference architec-
tures [8][9].

B. Software Erosion

In [10], de Silva and Balasubramaniam provide a survey
of technologies and techniques either to prevent architecture
erosion or to detect and restore architectures that have been
eroded. However, each approach discussed in [10] refers to
architecture erosion for a single PA, whereas architecture
erosion in software product lines are out of the scope of the
paper. Furthermore, as discussed in [10], none of the avail-
able methods singly provides an effective and comprehensive
solution for controlling architecture erosion.

Van Gurp and Bosch [11] illustrate how design erosion
works by presenting the evolution of the design of a small
software system. The paper concludes that even an optimal
design strategy for the design phase does not lead to an optimal
design. The reason for this are unforeseen requirement changes
in later evolution cycles. These changes may cause design
decisions taken earlier to be less optimal.

The work in [12] describes an approach to flexible ar-
chitecture erosion detection for model-driven development
approaches. Consistency constraints expressed by architectural
aspects called architectural rules are specified as formulas on
a common ontology, and models are mapped to instances
of that ontology. A knowledge representation and reasoning
system is then utilized to check whether these architectural
rules are satisfied for a given set of models. Three case studies
are presented demonstrating that architecture erosion can be
minimized effectively by the approach.

C. Software Product Line Architectures
As discussed in [3] an overall automotive product line

architecture is often missing due to software sharing. Thus,
architecture recovery and discovery has to be applied by
concepts of software product line extraction [3]. The aim of
software product line extraction is to identify all the valid
points of variation and the associated functional requirements
of component diagrams. The work in [13] shows an approach
to extract a product line from a user documentation. The Prod-
uct Line UML-based Software Engineering (PLUS) approach
permits variability analysis based on use case scenarios and the
specification of variable properties in a feature model [14]. In
[15], variability of a system characteristic is described in a
feature model as variable features that can be mapped to use
cases. In contrast to our approach, these approaches are based
on functional requirements whereas our approach is focused
on products.

In numerous publications, Bosch et. al. address the field
of product line architecture, software architecture erosion, and
reuse of software artifacts: The work in [16] proposes a method
that brings together two aspects of software architecture: the
design of software architecture and software product lines.
Deelstra et al. [17] provide a framework of terminology and
concepts regarding product derivation. They have identified
that companies employ widely different approaches for soft-
ware product line based development and that these approaches
evolve over time. The work in [18] discusses six maturity levels
that they have identified for software product line approaches.
In [19], a methodical and structured approach of architecture
restoration in the specific case of the brake servo unit (BSU) is
applied. Software product lines from existing BSU variants are
extracted by explicit projection of the architecture variability
and decomposition of the original architecture.

The work in [20] gives a systematic survey and analysis
of existing approaches supporting multi product lines and a
general discussion of capabilities supporting multi product
lines in various domains and organizations. They define a multi
product line (MPL) as a set of several self-contained but still
interdependent product lines that together represent a large-
scale or ultra-large-scale system. The different product lines
in an MPL can exist independently but typically use shared
resources to meet the overall system requirements. According
to this definition, a vehicle system is also an MPL assuming
that each product line is responsible for a particular subsystem.
However, in the following, we only regard classic product
lines, since the dependencies between the individual product
lines in vehicle systems are very low, unlike MPL.

D. Software Product Line Architecture Evolution
Thiel and Hein [21] propose product lines as an approach

to automotive system development because product lines facil-
itate the reuse of core assets. The approach of Thiel and Hein
enables the modeling of product line variability and describes
how to manage variability throughout core asset development.
Furthermore, they sketch the interaction between the feature
and architecture models to utilize variability.

Holdschick [22] addresses the challenges in the evolution
of model-based software product lines in the automotive do-
main. The author argues that a variant model created initially
quickly becomes obsolete because of the permanent evolution

44Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 52 / 83

of software functionalities in the automotive area. Thus, Hold-
schick proposes a concept how to handle evolution in variant-
rich model-based software systems. The approach provides an
overview of which changes relevant to variability could occur
in the functional model and where the challenges are when
reproducing them in the variant model.

Automotive manufacturers have to cope with the erosion
of their ECU software. The work in [2] proposes a systematic
approach for managed and continuous evolution of dependable
automotive software systems. It is described how complexity
of automotive software systems can be managed by creating
modular and stable architectures based on well-defined re-
quirements. Both architecture and requirements have to be
managed in relation. Furthermore, to face the lack of flexibility
of existing hieratic automotive software systems development
approaches, they are focusing on four driving factors: systems
engineering and agile function development, feature and func-
tion driven team development, agile management principles,
and a seamless tooling infrastructure supporting continuously
and iteratively evolving automotive software systems in a
flexible manner.

To counteract erosion it is necessary to keep software com-
ponents modular. But modularity is also a necessary attribute
for reuse. Several approaches deal with the topic reuse of
software components in the development of automotive prod-
ucts [1][23]. In [1], a framework is proposed, which focuses
on modularization and management of a function repository.
Another practical experience describes the introduction of a
product line for a gasoline system from scratch [23]. However,
in both approaches a long-term minimization of erosion is not
considered.

A previous version of our approach is described in [3]
focusing on the key ideas of the management cycle for
product line architecture evolution. Furthermore, an approach
for repairing an eroded software consisting of a set of product
architectures by applying strategies for recovery and discovery
of the product line architecture is proposed.

III. OVERALL DEVELOPMENT CYCLE

Our methodology for managed evolution of automotive
software product line architectures is depicted in Figure 1.
The methodology consists of two levels of development: The
cycle on the top of Figure 1 constitutes the development
activities for product line development, whereas the second
cycle is required for product specific development. Not only
both levels of development are executed in parallel but even
the activities within a cycle may be performed independently.
The circular arrow within the two cycles indicates the depen-
dencies of an activity regarding the artifacts of the previous
activity. Nevertheless, individual activities may be performed
in parallel, e.g., the planned implementations can be realized
from activity PL-Plan, while a new PLA is developed in
parallel (activity PL-Design). The large arrows between
the two development levels indicate transitions requiring an
external decision-making process, e.g., the decision to start a
new product development or prototyping, respectively.

In the following subsections, we will explain the basic
activities of our approach in detail by referring to the terms
depicted in Figure 1. Table I gives a brief overview on the
objectives of each of the 12 activities, including inputs and
outputs.

Product line (PL)

PL-Design PL-Plan

PL-Check PL-Implement

Product (P)

P-Design P-Plan

P-Check P-Implement

PL-Requirements

P to PL

PL to P

P-Requirements

Figure 1. Overall development approach

We distinguish between the terms ‘project’ and ‘product’
in the following: A project includes a set of versioned software
components, so-called modules. These modules contain vari-
ability so that a project can be used for different vehicles. A
product on the other hand is a fully executable software status
for a certain vehicle based on a project in conjunction with
vehicle related parameter settings.

A. Planning and Evolving Product Line Architectures
(PL-Requirements) Software system and software

component requirements from requirements engineering serve
as input to the management cycle of the PLA. Errors occurring
during the phase of requirements elicitation and specifica-
tion have turned out to be major reasons for the failure
of IT projects [24]. In particular, errors occur in case the
requirements are specified erroneous or the requirements have
inconsistencies and incompleteness. Errors during the phase of
requirements elicitation and specification can be avoided by
choosing an appropriate specification language enabling the
validation of the requirements. In [25], e.g., activity diagrams
are considered for the validation of system requirements by
directly executable models including an approach for symbolic
execution and thus enabling validation of several products
simultaneously.

(P to PL) Artifacts of the developed product from the
product cycle in Figure 1 serve as further input to the manage-
ment cycle of the PLA: The product documentation contains
architectural adaptations and change proposals, which can be
integrated in the PLA. Furthermore, the modified modules in
their new implementation are committed to the management
cycle of the PLA for integration in product line.

(PL-Design) Next, we consider the design of the PLA.
Generally, a software system architecture defines the basic
organization of a system by structuring different architectural
elements and relationships between them. The specification
of “good” software system architecture is crucial for the
success of the system to be developed. By our definition, a
“good” architecture is a modular architecture which is built
according to the following: (a) design principles for high
cohesion, (b) design principles for abstraction and information
hiding, and (c) design principles for loose coupling. In [2],
we propose methods and techniques for a good architecture

45Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 53 / 83

TABLE I. EXPLANATION OF THE ACTIVITIES IN FIGURE 1.

Activity Input Objective Output
PL-Design Software system / component require-

ments and documentation from product
development.

Further development of PLA with consideration of design prin-
ciples. Application of measuring techniques to assess quality of
PLA.

New PLA (called “PLA vision”).

PL-Plan PLA vision. Planning of a set of iterations of further development toward the
PLA vision taking all affected projects into account.

Development plan including the planned
order of module implementations and
the planned related projects.

PL-Implement Development plan for product line. Implementation including testing as specified by the development
plan for product line development.

Implemented module versions.

PL-Check Architecture rules and set of imple-
mented modules to be checked.

Minimization of product architecture erosion by architecture con-
formance checking based on architecture rules.

Check results.

P-Design Project plan and product specific re-
quirements.

Designing product architecture and performing architecture adap-
tations taking product specific requirements into account. Compli-
ance checking with PLA to minimize erosion.

Planned product architecture.

P-Plan Product architecture. Definition of iterations to be performed on product level toward
the planned product architecture.

Development plan for product develop-
ment.

P-Implement Development plan for product develop-
ment.

Product specific implementations including testing as specified by
the development plan for product development.

Implemented module versions.

P-Check Architecture rules and set of imple-
mented modules to be checked.

Architecture conformance checking between PLA and PA. Check results.

PL to P Development plan for product line. Defining a project plan by selecting a project from the the product
line.

Project plan.

P to PL Developed product. Providing product related information of developed product for
integration into product line development.

Product documentation and implemen-
tation artifacts of developed products.

PL-Requirements Requirements. Specification and validation of software system and software
component requirements by requirements engineering.

Software system and software compo-
nent requirements.

P-Requirements Requirements in particular from calibra-
tion engineers.

Specification of special requirements for a certain vehicle product
including vehicle related parameter settings.

Vehicle related requirements.

design. Based on these methods and techniques a new PLA
is defined (called PLA vision) taking the new requirements
(PL-Requirements) and product related information (P
to PL) into account. To assess the quality of the designed
PLA, it is necessary to measure complexity and to describe
the results numerically. In particular, we consider properties
such as cohesion, coupling, reusability and variability in order
to draw conclusions about the quality of the PLA.

(PL-Plan) As further development of the PLA will effect
a high number of products, the changes have to be planned
carefully in order to avoid errors within the corresponding
products and to avoid architecture erosion. Thus, the planning
phase has to define a set of iterations of further development
towards the PLA vision. All allowed changes are planned as
a schedule containing the type of change and timestamp. It is
planned in which order the implementation of corresponding
modules should take place. It should be emphasized that there
are many parallel product developments, which must be taken
into account when planning. Next, either affected projects and
modules are determined or a pilot project is selected.

Some further developments can lead to extensive archi-
tectural changes. In this case the effects of the architectural
changes on the associated projects have to be closely exam-
ined. For this purpose further development projects can be
defined as prototype projects for certain iterations of the PLA.
These projects are then tested within the product cycle.

B. Automotive Product Development and Prototyping based
on Software Product Lines

(PL-Implement) The former planning activity has de-
termined the schedule for PLA adaptations and product re-
leases. Thus, on the implementation level, new versions of
the software are planned, too. Vehicle functions are modeled
using a set of modules, specifying the discrete and continuous
behavior of the corresponding function. As required by ISO

26262, each module needs to be tested separately. Established
techniques for model-based testing necessitate a requirements
specification from which a test model can be derived. In
practice, requirements are specified by natural language and
on the level of whole vehicle functions instead of modules so
that test models on module level can not be derived directly.
Therefore, in [26], a systematic model-based, test-driven ap-
proach is proposed to design a specification on the level of
modules, which is directly testable. The idea of test-driven
development is to write a test case first for any new code that
is written [27]. Then the implementation is improved to pass
the test case. Based on the approach in [26] we use the tool
Time Partition Testing (TPT) because it suits particularly well
due to the ability to describe continuous behavior [28]. The
modules may be developed in ASCET or MATLAB/Simulink.

(P-Requirements) Releasing a fully executable soft-
ware status for a certain vehicle product requires a specification
of vehicle related parameter settings. Furthermore, special
requirements for a specific product may exist necessitating fur-
ther development of certain implementation artifacts. Building
an executable software status for a certain vehicle product is
realized by the cycle at the bottom of Figure 1. In contrast,
the product line cycle in Figure 1 includes the development of
sets of software artifacts of all planned projects.

(PL to P) Automotive software product development and
prototyping starts with selecting a product from the product
line. Therefore, the project plan is transferred containing
module descriptions and descriptions of the logical product
architecture integration plan with associated module versions.

(P-Plan) The product planning defines the iterations to
be performed. An iteration consists of selected product archi-
tecture elements and planned implementations. An iteration is
part of a sequence of iterations.

(P-Implement) An iteration is completed when all

46Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 54 / 83

planned elements of an iteration are implemented according
to the test-driven approach of [26].

C. Architecture Conformance Checking for Automotive Soft-
ware Product Line Development

Architecture erodes when the implemented architecture of
a software system diverges from its intended architecture.
Software architecture erosion can reduce the quality of soft-
ware systems significantly. Thus, detecting software archi-
tecture erosion is an important task during the development
and maintenance of automotive software systems. Even in
our model-driven approach where implementation artifacts are
constructed w.r.t. a given architecture the intended architecture
and its realization may diverge. Hence, monitoring architecture
conformance is crucial to limit architecture erosion.

Each planned product refers to a set of implementation
artifacts, called modules. These modules constitute the prod-
uct architecture. The aim of PL-Check and P-Check is
the minimization of product architecture erosion. In [12], a
method is described to keep the erosion of the software to a
minimum: Consistency constraints expressed by architectural
aspects called architectural rules are specified as formulas on a
common ontology, and models are mapped to instances of that
ontology. Based on this approach we are extracting rules from
a PLA to minimize the erosion of the product architecture.
During the development of implementation artifacts the rules
can be accessed via a query mechanism and be used to check
the consistency of the product architecture. Those rules can,
e.g., contain structural information about the software like
allowed communications. In [12], the rules are expressed as
logical formulas which can be evaluated automatically to the
compliance to the PLA.

(PL-Check) After each iteration planned in activity
PL-Plan all related product architectures have to be checked.
As P-Check refers to one product only, the check is per-
formed after all related implementation artifacts of the product
are developed.

(P-Design) The creation of a new product starts with
a basically planned product architecture commonly derived
from the product line. For the development of the product,
new functionalities have to be realized and thus necessary
adaptations to the planned product architecture are made. In
order to keep the erosion to a minimum we have to ensure
the compliance to the architecture design principles of the
PLA. Therefore, we check consistency of the planned product
architecture by applying architecture rules from the PLA.

However, in the case of prototyping it may be desired
that the planned product architecture differs from PLA speci-
fications. Thus, as a consequence, the architecture rules are
violated. As pointed out in Section III-A, product related
information is returned to the management cycle of the PLA
after product delivery. If the development of a product required
a differing product architecture w.r.t. the PLA, this could
advance the erosion. Necessary changes must be communi-
cated to PL-Design and PL-Plan s.t. the changes can be
evaluated and adopted. As changes to the PLA can have severe
influences on all the other architectures the changes are not
applied immediately but considered for further development.

IV. ARCHITECTURE DESCRIPTION LANGUAGE

Evolution of the logical architecture and module architec-
ture in product line and in product development involves a huge
number of architecture elements and their relations. To handle
this complexity, model based techniques are used within our
methodology.

To develop the logical architecture and the module archi-
tecture using model based techniques we defined a description
language by a metamodel. For each activity in our approach
instances of the metamodel with several views are modeled.
Each view focuses on different architecture elements. The
product line phase deals with architecture elements for several
product architectures. To derive product architectures from the
product line phase variant handling has to be considered. We
will describe these concepts of our approach in detail in the
following.

EMAB metamodel: The Einheitliche Modulare Archi-
tektur Beschreibung (EMAB) is used to describe the decom-
position structure and connection structure of logical architec-
tures and module architectures.

Figure 2 depicts a simplified part of the metamodel that
shows the abstract syntax of the two architecture layers
DESIGN and IMPLEMENT. The architecture elements of
these two layers are used to model product lines and product
architectures. In the following, we describe the two layers in
detail.

The DESIGN layer contains architecture elements to de-
scribe abstract software aspects. LogicalArchitecture-
Element is used to decompose these aspects into groups
of corresponding implementation artifacts. Some of those
elements may have dependencies with other elements of
the logical architecture. In this case LogicalElement-
Connection connects exactly two logical architecture ele-
ments as a directed connection between one source and one tar-
get element. Each LogicalArchitectureElement can
be referenced by a number of connections. The connection
between two elements semantically allows the communication
constrained by the source/target direction.

In the IMPLEMENT layer, code relevant software as-
pects are described. Thus, ModuleArchitectureEle-
ment decomposes the software code aspects into groups.
For example, a header file and a c-code file of a cer-
tain software application are represented by a Module-
ArchitectureElement. Directed dependencies between

LogicalArchitecture
Elementsource

*

1

LogicalElement
Connection

target 1

*

ModuleArchitecture
Elementexport

*

1

ModuleElement
Connection

import 1

*

DESIGN IMPLEMENT

mapArchitectureElement
0..1 *

OCL
{Self.export.mapArchitectureElement.LogicalElementConnection->intersection(
Self.import.mapArchitectureElement.LogicalElementConnection)->size()>0}

Figure 2. Simplified EMAB metamodel

47Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 55 / 83

exactly one export and one import element are connected by
the ModuleElementConnection. Each ModuleArchi-
tectureElement can be referenced by a number of con-
nections. The connection between two elements semantically
allows the communication constrained by the import/export
direction.

LogicalArchitectureElements have to be referred
to implementation artifacts for product development. There-
fore, the EMAB metamodel determines that the Module-
ArchitectureElement can reference at most one Log-
icalArchitectureElement using the mapArchitec-
tureElement to determine the appropriate module elements
of a logical element.

Connections between two LogicalArchitecture-
Elements have to be properly considered at the imple-
mentation in the IMPLEMENT layer: Connections between
ModuleArchitectureElements have to be conform with
the connections specified in the DESIGN layer. To ensure
that connections are realized properly, conformance rules are
applied. One example OCL rule is shown in Figure 2 that
constraints the ModuleElementConnection as context
element for the check.

Views: The DESIGN layer focuses on the logical architec-
ture. Figure 3 represents the DESIGN view as block diagram
with two instances of logical architecture elements and the
connection between them. The roles source and target
indicate the direction of the connection.

LogicalArchitecture
Element1

LogicalArchitecture
Element2

source target

LogicalArchitecture
Element3

LogicalElement
Connection

DESIGN

Figure 3. DESIGN view as part of the metamodel instance

The IMPLEMENT view in Figure 4 represents the module
architecture instances as blocks and their connection as con-
nection instances. Moreover, each module architecture element
is referencing one logical architecture element represented
by dashed connections between a module element block and
logical element block.

LogicalArchitecture
Element1

LogicalArchitecture
Element2

source target

LogicalArchitecture
Element3

ModuleArchitecture
Element1

ModuleArchitecture
Element2

ModuleArchitecture
Element3

export import

export

import

mapArchitecture
Element

IMPLEMENT

ModuleElement
Connection

import export

Figure 4. IMPLEMENT view as part of the metamodel instance

Figure 5 shows an example for the CHECK view, checking
the conformance rule on connections of the DESIGN layer’s

logical architecture elements and IMPLEMENT layer’s mod-
ule architecture elements. The check of the OCL rule in the
middle of Figure 5 is fulfilled as the specified connection be-
tween the two module architectures elements correspond to the
connection between the mapped logical architecture elements.
However, the further checks of the OCL rule fail: In the first
case, the direction from import to export constitutes a violation.
And in the next case, as ModuleArchitectureElement3
maps to LogicalArchitectureElement3 no connec-
tion is allowed from ModuleArchitectureElement1.

LogicalArchitecture
Element1

LogicalArchitecture
Element2

source target

LogicalArchitecture
Element3

ModuleArchitecture
Element1

ModuleArchitecture
Element2

ModuleArchitecture
Element3

export import

export
import

mapArchitecture
Element

exportimport

CHECK

OCL rule
evaluated to {=0}

OCL rule
evaluated to {>0}

Figure 5. CHECK view as part of the metamodel instance

Variant handling: In product line development, architec-
ture elements of module and logical architectures are realized
to be reused in several software products. The architecture
models enclose decomposition variants and behavior variants.
During product development, the decomposition variants and
the behavior variants have to be determined. Therefore, a
further part of the EMAB metamodel provides the syntax to
describe structure variants, behavior variants and valid selec-
tion conditions. Selection conditions are necessary to derive
architectures and to derive behavior for product development.
The part of the EMAB metamodel dealing with variants is
out of the scope of this contribution in order to focus on the
methodology.

Version handling: Each architecture element of the prod-
uct line development and of the product development is kept
in a repository. The repository provides a version control
capability. A modified or created element is committed with
a unique version ID into the repository. Predecessor relations
are defined in case of modifications of an existing version. The
repository also enables the selection of elements for product
line development or product development. The part of the
EMAB metamodel dealing with versioning is out of the scope
of this contribution in order to focus on the methodology.

V. REAL WORLD EXAMPLE: BRAKE SERVO UNIT (BSU)

In this section, we present an example of a software system
we developed in cooperation with Volkswagen. The main task
of this system is to ensure a sufficient vacuum within the brake
booster that is needed to amplify the driver’s braking force. At
first, we describe the context the system is embedded in and a
view onto the system’s structure. We show how the system has
evolved. After the presentation of the mapping of the evolution
onto our approach, we give results and a discussion.

48Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 56 / 83

A. System Structure and Context of BSU

In vehicles, a vacuum brake booster (brake servo unit/BSU)
is mounted between the brake pedal and the hydraulic brake
cylinder. It consists of two chambers separated through a
movable diaphragm. If the driver is not braking, the air is
evacuated from both chambers. When he pushes on the brake
pedal a valve opens and atmospheric pressure air flows into one
chamber. Due to the differential air pressure within the BSU
the diaphragm starts to move towards the vacuum chamber
creating a force. This force is used to amplify the driver’s
braking force.

The vacuum can be generated using different techniques.
The BSU is either attached to the intake manifold using its
internal lower pressure or to an electrically or mechanically
driven vacuum pump. Using the intake manifold as vacuum
generator can be problematic. Special operating modes of other
vehicle’s subsystems can increase the intake manifold pressure
so much that its internal vacuum is not sufficient to evacuate
the BSU when needed.

The software system realizes a set of feedback controllers
to reduce the disturbances caused by other systems or to switch
on the vacuum pump, respectively. Since it makes no sense to
use all controllers at the same time it is necessary to coordinate
their activation. Besides the controlling of BSU vacuum and
the coordination of controllers, the software has to provide
valid pressure information all the time. In order to realize that
the software selects from several sensors the one that provides
the best quality of pressure information. The logical view of
the designed architecture is presented in Figure 6.

source

source
source

target

target

BSU Sensor 1

BSU Sensor MUX

source

System Diagnostics
DESIGN

sourceBSU Sensor 2

Control Function 1

Control Function 2

target

target

target

Sensors Control Functions

Figure 6. Logical view of the software architecture of BSU

The BSU hardware system is part of a wide range of
products within the huge family of cars. Since the diversity of
the used hardware components like sensors and actuators that
are mounted to the braking system and features that influence
the BSU software one important goal of the architecture
development was to support variability. The BSU software
system is decomposed into two major parts: sensors and
control functions. The decomposition of the sensor
component into parts for every sensor type each allows a
one to one mapping from features to components. To realize
variability in an efficient way, standardized interfaces are used
for communication. A coordinating component just has to
provide a sufficient amount of ports for the interaction with
the sensors and control functions.

The control functions component is decomposed
using a similar technique. Every control function is realized by
a specific component. These components provide standardized
interfaces for communication with subsequent vehicle func-

tions, which must follow the BSU commands, e.g., disable the
start-stop system (not depicted in Figure 6).

B. Evolution of BSU
As it was customary in the automotive domain, BSU’s

hardware and software have been implemented by various
suppliers in the past. The requirements for the functionalities
of the system were the same for all suppliers, but there
were differences in the type of implementation by the respec-
tive suppliers. During the further development of the system
over many years, new requirements had to be continuously
implemented. Examples of this are the support of various
engine variants such as otto, diesel and electric engines. As
the range of functions increased, the essential complexity
grew; however, the accidental complexity [29] has increased
disproportionately. The growth of accidental complexity results
from a “bad” architecture with strong coupling and a low
cohesion which have evolved over the time. Despite extensive
further development of the system, the original structure of the
software was not adequately adapted. Overall, the monolithic
structure of the software remained. The software consisted of a
single software module, which, however, was internally char-
acterized by increasing accidental complexity. The variability
was realized completely by annotations. Thereby, the system’s
maintainability and expandability has been complicated addi-
tionally.

In recent years, many automotive manufacturers have be-
gun to develop software primarily in-house to save costs and
to secure important know-how. However, the hardware com-
ponents are still being developed by the supplier companies
in general. Against this background, Volkswagen decided to
develop the BSU in-house in the future. Together with our
institute, Volkswagen developed its own software for the BSU
in 2012 on the basis of the existing system. Configurability,
extensibility and comprehensibility were defined as essential
quality targets. In addition, new architecture and design con-
cepts have been introduced to meet these quality objectives in
the long term and permanently.

After successful introduction of the system into series
production, the software system was continuously developed
after 2012. In all, the BSU system was reused in more than
140 project versions, some of them with adaptations. There
were, for example, the introduction of five additional control
functions that were necessary because of changes to the system
environment. This includes, in particular, the introduction of
new components such as actuators, which were essentially
driven by the electrification of the powertrain. In the following
sections, we will present our methodology by means of the
BSU’s further development and discuss the results. However,
due to the obligation of secrecy, we can not name real-world
functions. Instead, we will abstract from real control functions,
actuators, and sensors in the following sections.

C. Application of our Approach to BSU Further Development
In this section, we will outline the evolution of BSU

further development, described in the previous section, mapped
to the overall development cycle visualized in Figure 1. As
mentioned in Section V-B, the development started in 2012
and continues until today. We will pick out the milestones of
this evolution process and explain in detail, how our approach
supports the management of development. Therefore, we will

49Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 57 / 83

describe the further development of the BSU chronologically.
The architecture of the BSU at this point is equivalent to
Figure 6.

The first considerable development activities leading to
architectural evolution results from two new control functions.
These new control functions are specified as product line
requirements (PL-Requirement). In the following activity
PL-Design, the new requirements including all open require-
ments and feedbacks from the ongoing product development
activities submitted by activity P to PL, are took into ac-
count by the designing of the new PLA (called “PLA vision”).
The resulting PLA includes two new components, whereby
each component represents one of the new control functions.

After assessing and determining the new PLA vision, the
PL-Plan activity starts. It was decided to realize the new
PLA vision in two iterations, per iteration cycle, one of the new
components should be implemented completely. Regarding to
the development plan in activity PL-Implement the first
component was implemented. PL-Check activity is triggered
after the new component is fully implemented. In this activity,
the conformance of the implementation is checked against the
planned architecture (PLA vision), as illustrated in Section IV.
The outcome of the checks was positive so the next iteration
was started.

Parallel to the implementation of the second defined com-
ponent some concrete products are selected to integrate the new
developed control function in real products (activity PL to
P). It was decided to setup a new pilot product additionally.
The pilot got a special requirement by a P-Requirement
activity. The proving by prototypes or pilots is a common
approach in the automotive domain. Due to the specification of
the special requirement, which includes a new control function
with a coordinating feature, a prototyping approach was used
to realize this requirements. This simply means that we have
a main control function and a backup control function, if the
main function is not available the backup function should be
used.

The solution of the P-Design activity was a solution
which fulfills all requirements. It was decided to add a new
component representing the new control function and to es-
tablish an additional coordinator component. The coordinator
has the responsibility of the controlling of main and backup
functions and realizing the coordinating feature.

In the P-Plan activity the iterations to be performed
had to be defined and scheduled. The outcome was a devel-
opment plan with two iteration steps. In the first step, the
new control function and the coordinator component should
be implemented. And in a second step, all existing control
functions had to be adapted, because they had to be defeatable
to perform as main or backup function.

According to the development plan, the P-Implement
activity was performed. After each iteration step, a confor-
mance check was done (P-Check). In our case study we
detected a violation of an architectural rule. Consequently, it
was evaluated and discussed, if the solution of the violation
results in adapting the implementation or in adapting the
architectural rule itself - or in simple words, is there a crummy
implementation or an insufficient architecture. In terms of
internal classification we cannot go in detail at this point.

After evaluating the product realization all adaptations and

changes of architecture and implementation are forwarded to
the product line architecture level by a P to PL activity.
These are inputs for the next PL-Design activity, thereby it
had to be decided which changes should be integrated into the
product line architecture and its implementation or otherwise
which had to be declared as a “special” solution. In our case the
coordinator concept was established in the product line. The
final architecture is visualized in Figure 7 including all newly
developed control functions, the coordinator component, and
the additional connections between the control functions and
the coordinator for the controlling of activation.

In summary, the architecture of the BSU is largely stable
after the introduction of the coordinator concept until today.

source

source
source

target

target

BSU Sensor 1

BSU Sensor MUX

source

System Diagnostics
DESIGN

sourceBSU Sensor 2

Control Function 1

Control Function 2

target

target

target

Sensors Control Functions

Coordinator

Coordinator Concept

source
source

target

target

Control Function 5
target

source

target

Figure 7. Logical view of the software architecture of BSU including the
coordinator concept and the three new Control Functions

Overall we state that our approach can deal with many par-
allel activities at product line and product level. This becomes
apparent by the controlling character of the synchronization
points both in the development cycle on product line and
product level by activities PL-Check and P-Check and
between the product line and product level by activities PL
to P and P to PL. In this way, it was possible to detect
architecture erosion in an early state and to take adequate
countermeasures. Furthermore, we can take care of a planned
generalization on the one hand and a planned specialization or
exceptional case handling on the other hand. This is evidenced
by the coordinator concept: A concept which was designed
and fully realized and proved by a pilot product and than
transferred into the product line architecture and finally fully
integrated within the next development iterations in the product
line architecture and all products belonging to this architecture.

VI. EVALUATION AND DISCUSSION

To evaluate our methodology, we present the quantitative
analysis for the BSU software development that is realized
and maintained in cooperation with our project partner over
a period of 5 years. In the following, we focus on the
applicability of the product line and product development
activities. Two criteria are important to evaluate. First, the
amount and kinds of modifications on architecture elements
calling this complexity controlling. Second, the amount and
kinds of design configurations calling this variant controlling.

Table II shows the result of the quantitative analysis. The
data record for the quantitative analysis refers to the develop-
ment of the BSU software and the product realizations con-
sisting of the BSU software and further vehicle functions. The
record contains the version control graph of the past 5 years of
BSU software development, called repository in the following.
Each node is a version of an architecture element or realized

50Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 58 / 83

TABLE II. RESULT OF THE QUANTITATIVE ANALYSIS FOR THE BSU
SOFTWARE FOR THE INTERVAL OF 5 YEARS.

Count Number
of ver-
sions

Average
number of
versions

Min.
number of
versions

Max.
number of
versions

LAE 15 15 15/15 = 1 1 1
MAE 15 58 58/15 ≈ 4 1 6
Projects 21 146 146/21 ≈ 7 1 12

product. Edges connect two subsequent versions. Table II
shows the number of logical architecture element (LAE) ver-
sions, of module architecture element (MAE) versions, and of
project versions from the record. Modifications were triggered
by the realization of BSU software PL-Requirements or
by the realization of products due to P-Requirements.

Table II shows the count of 15 LAE referring to mod-
ifications at the DESIGN layer and the count of 15 MAE
referring to modifications at the IMPLEMENT layer. The kind
of modifications refers to the connection structure and to the
architecture element structure of the appropriate MAE. Each
LAE is available in exactly one version in the repository.
Thereby, the current state of the logical architecture is repre-
sented which is unmodified since the beginning of the record.
Unfortunately, the data of prior development stages of the
BSU software logical architecture is not considered by the
record due to data protection reasons. In total, 58 versions for
MAE exist. A module element of the module architecture was
modified in minimum 1 time, in maximum 6 times, and in
average 4 times. Thereby, each version of the MAE is mapped
in this case to exactly one version of the appropriate LAE.

Line “Projects” in Table II refers to the product devel-
opment of the BSU software and shows that 21 projects
containing the BSU software exist. A project defines a set
of architecture element versions from logical architecture and
from module architecture used to realize a product. In the
following, we call the set of versions of architecture elements
design configuration. Each time a project is modified, a new
version of that project is committed to be used for subsequently
realize the product. The project modifications resulting in a
new version commit always refers to changes of the design
configuration. In total, the project version number is 146. The
average number of versions is 7, the minimum number is 1,
and the maximum number is 12.

The data in Table III shows two quantitative aspects. First,
the number of BSU software architecture element versions
used in projects is 46 and the cumulated number of BSU
software architecture element versions used in all project
versions is 1611. Hence, the average degree of reuse of
each version of MAE is 35. Second, the number of different
design configurations of all project version concerning the
BSU software is 14. This induces the fact that 14 architecture
structure variants of the BSU software architecture (logical and
module) are used in projects to realize products in the past 5
years.

Complexity controlling: Complexity in BSU software is in-
duced by modifications on architecture elements of the logical
architecture and the module architecture which are triggered to
realize the two kinds of requirements described by the record.
To handle complexity, each modification must be controlled for

TABLE III. FURTHER RESULTS OF THE QUANTITATIVE ANALYSIS FOR THE
BSU SOFTWARE.

Number of
versions
used in
projects

Cumulated number
of versions used
over all project

versions

Average degree
of reuse of

each version

Number of
used design
configura-

tions

MAE 46 1611 1611/46 ≈ 35 n/a
Projects n/a n/a n/a 14

violations on architecture elements and on violations referring
quality properties.

Our methodology aims to control violations of quality
properties in the Design activity and of violations of ar-
chitecture rules in the Check activity. The Design activity
provides the modified DESIGN layer in each iteration and
the Implement activity provides the modified IMPLEMENT
layer in each iteration. The BSU software modifications are
applied to realize requirements resulting in a product depen-
dent BSU software or in a new product independent realiza-
tion of the BSU software. Therefore, PL-Requirements
corresponding to new features triggers the controlling of BSU
software modifications during the product line development
activities, using the versions of logical architecture at the
DESIGN layer and of versions of module architecture at
the IMPLEMENT layer. New project related requirements
corresponding to P-Requirements triggers the product
development activities to control all modifications consider-
ing project related versions and architecture related versions
corresponding to the appropriate layers and of the EMAB
metamodel.

After applying the methodology two important results are
observed: First, no violations on architecture quality properties
at the DESIGN layer were found. Second, after checking the
modifications of the BSU software applying inter alia the
rule described by the EMAB metamodel in Section IV, no
violations between the layers of the BSU software are found,
too. This evaluation result shows that all modifications of
BSU software in the past 5 years preserved the architecture
conformance of the IMPLEMENT layer to the DESIGN layer.
Moreover, the structure of the DESIGN layer is well realized
considering the quality properties. Therefore, the DESIGN
layer remained unmodified.

Variant controlling: The term variant in the case of BSU
software describes a software architecture variant reused to
realize a software product. Thereby, each project version
refers to exactly one design configuration to define architec-
ture elements for reuse that are contained in the software
architecture variant. Modifications of the logical and module
architecture can introduce violations on expected derivable
structure variants. To handle such violations the control of
variants must be applied to the modifications. The control of
such architecture rule violations is applied during the Check
activity of the product line development considering the ver-
sions corresponding to the IMPLEMENT layer and to the
DESIGN layer. After applying our methodology, no violations
are found in the past 5 years of development. This corresponds
to the result of complexity evaluation where conformance of
the EMAB layers is confirmed.

51Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 59 / 83

VII. CONCLUSION AND FUTURE WORK

We proposed a holistic approach for a long-term man-
ageable and plannable software product line architecture for
automotive software systems. Our approach aims at a long-
term minimization of architecture erosion, and thereby guar-
antee a constant high degree of reusability. Thus, we pro-
pose concepts like architecture design principles, architecture
quality measurements, architecture compliance checking, and
further development scheduling with specific adaptations to the
automotive domain. The focus is on scalability, to manage a
huge number of variants in real world automotive systems.

We demonstrated our methodology on a real world case
study, a brake servo unit (BSU) software system from au-
tomotive software engineering. As a result, we could avoid
architecture erosion for several years. All further developments
have followed the originally planned architectural principles.
Moreover, we were surprised at the high number of reuse of the
modules: Each module was reused on average in 35 projects.
Even the high number of potential variants could be managed
with the approach.

As a future work, we aim at realizing a tool-chain which
enables the architecture description of the different archi-
tectures (PLA, PA, including versioning), the measure and
evaluation of quality attributes, as well as the integration of
the ArCh-Framework [12]. Appropriate abstraction techniques
are crucial to cope with the huge set of adjustable parameters
within the ECU software and to manage variability. Thus, we
are currently developing a concept including a prototypical tool
environment which enables the description and visualization of
variability.

REFERENCES

[1] B. Hardung, T. Kölzow, and A. Krüger, “Reuse of Software in
Distributed Embedded Automotive Systems,” in Proceedings of the
4th ACM International Conference on Embedded Software, ser. EM-
SOFT’04. ACM, 2004, pp. 203–210.

[2] A. Rausch et al., “Managed and Continuous Evolution of Dependable
Automotive Software Systems,” in Proceedings of the 10th Symposium
on Automotive Powertrain Control Systems, 2014, pp. 15–51.

[3] B. Cool et al., “From Product Architectures to a Managed Automotive
Software Product Line Architecture,” in Proceedings of the 31st Annual
ACM Symposium on Applied Computing, ser. SAC’16. ACM, 2016,
pp. 1350–1353.

[4] A. Pretschner, M. Broy, I. H. Krüger, and T. Stauner, “Software
Engineering for Automotive Systems: A Roadmap,” in 2007 Future of
Software Engineering, ser. FOSE ’07. IEEE Computer Society, 2007,
pp. 55–71.

[5] R. Cloutier et al., “The Concept of Reference Architectures,” Systems
Engineering, vol. 13, no. 1, Feb. 2010, pp. 14–27.

[6] E. Y. Nakagawa, P. O. Antonino, and M. Becker, “Reference Architec-
ture and Product Line Architecture: A Subtle but Critical Difference,” in
Proceedings of the 5th European Conference on Software Architecture,
ser. ECSA’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 207–211.

[7] E. Y. Nakagawa, F. Oquendo, and M. Becker, “RAModel: A Refer-
ence Model for Reference Architectures,” in Proc. of the 2012 Joint
Working IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture, ser. WICSA-ECSA ’12. IEEE
Computer Society, 2012, pp. 297–301.

[8] E. Y. Nakagawa, M. Becker, and J. C. Maldonado, “Towards a Process
to Design Product Line Architectures Based on Reference Architec-
tures,” in Proceedings of the 17th International Software Product Line
Conference, ser. SPLC ’13. ACM, 2013, pp. 157–161.

[9] E. Y. Nakagawa, M. Guessi, J. C. Maldonado, D. Feitosa, and
F. Oquendo, “Consolidating a Process for the Design, Representation,
and Evaluation of Reference Architectures,” in Proceedings of the
2014 IEEE/IFIP Conference on Software Architecture, ser. WICSA ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 143–152.

[10] L. de Silva and D. Balasubramaniam, “Controlling Software Architec-
ture Erosion: A Survey,” Journal of Systems and Software, vol. 85,
no. 1, Jan. 2012, pp. 132–151.

[11] J. van Gurp and J. Bosch, “Design Erosion: Problems & Causes,”
Journal of Systems and Software, vol. Volume 61, 2002, pp. 105–119.

[12] S. Herold and A. Rausch, “Complementing model-driven development
for the detection of software architecture erosion,” in Proceedings of
the 5th International Workshop on Modeling in Software Engineering,
ser. MiSE ’13. IEEE Press, 2013, pp. 24–30.

[13] I. John and J. Dörr, “Elicitation of Requirements from User Documen-
tation,” in Proceedings of the 9th International Workshop on Require-
ments Engineering: Foundation for Software Quality (REFSQ’03), ser.
Essener Informatik Beiträge, vol. 8. Essen: Universität Duisburg-Essen,
2003, pp. 3–12.

[14] H. Gomaa, Designing Software Product Lines with UML: From Use
Cases to Pattern-Based Software Architectures. Addison-Wesley, 2004.

[15] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

[16] J. Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product-Line Approach. Addison-Wesley, 2000.

[17] S. Deelstra, M. Sinnema, and J. Bosch, “Product derivation in software
product families: a case study,” Journal of Systems and Software,
vol. 74, no. 2, 2005, pp. 173–194.

[18] J. Bosch, “Maturity and Evolution in Software Product Lines: Ap-
proaches, Artefacts and Organization,” in Proceedings of the Second
International Conference on Software Product Lines, ser. SPLC 2.
London, UK, UK: Springer-Verlag, 2002, pp. 257–271.

[19] A. Strasser et al., “Mastering Erosion of Software Architecture in
Automotive Software Product Lines,” in SOFSEM 2014: Theory and
Practice of Comp. Sc., ser. LNCS, vol. 8327. Springer, 2014, pp.
491–502.

[20] G. Holl, P. Grünbacher, and R. Rabiser, “A Systematic Review and an
Expert Survey on Capabilities Supporting Multi Product Lines,” Inf.
Softw. Technol., vol. 54, no. 8, Aug. 2012, pp. 828–852.

[21] S. Thiel and A. Hein, “Modeling and Using Product Line Variability
in Automotive Systems,” IEEE Softw., vol. 19, no. 4, Jul. 2002, pp.
66–72.

[22] H. Holdschick, “Challenges in the Evolution of Model-based Software
Product Lines in the Automotive Domain,” in Proceedings of the 4th
International Workshop on Feature-Oriented Software Development,
ser. FOSD ’12. ACM, 2012, pp. 70–73.

[23] M. Steger et al., “Introducing PLA at Bosch Gasoline Systems: Expe-
riences and Practices,” in Software Product Lines. Springer, 2004, pp.
34–50.

[24] The Standish Group International, Inc., “CHAOS Chronicles 2003
report,” West Yarmouth, MA, 2003.

[25] C. Knieke and M. Huhn, “Semantic Foundation and Validation of Live
Activity Diagrams,” Nordic Journal of Computing, vol. 15, no. 2, 2015,
pp. 112–140.

[26] H. Peters et al., “A Test-driven Approach for Model-based Development
of Powertrain Functions,” in Agile Processes in Software Engineering
and Extreme Programming. 15th International Conference on Agile
Software Development, XP 2014. Springer-Verlag, 2014, pp. 294–
301.

[27] K. Beck, Test Driven Development. By Example. Addison-Wesley
Longman, 2002.

[28] E. Lehmann, “Time Partition Testing,” Ph.D. dissertation, Fakultät IV
– Elektrotechnik und Informatik, TU Berlin, 2004.

[29] F. P. Brooks, Jr., “No Silver Bullet Essence and Accidents of Software
Engineering,” Computer, vol. 20, no. 4, Apr. 1987, pp. 10–19.

52Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 60 / 83

Automotive Software Systems Evolution:
Planning and Evolving Product Line Architectures

Axel Grewe, Christoph Knieke, Marco Körner, Andreas Rausch,
Mirco Schindler, Arthur Strasser, and Martin Vogel

TU Clausthal, Department of Computer Science, Software Systems Engineering
Clausthal-Zellerfeld, Germany

Email: {axel.grewe|christoph.knieke|marco.koerner|andreas.rausch|
mirco.schindler|arthur.strasser|m.vogel}@tu-clausthal.de

Abstract—Automotive software systems are an essential and
innovative part of nowadays connected and automated vehicles.
The automotive industry is currently facing the challenge to
re-invent the automobile. Consequently, automotive software
systems, their software systems architecture, and the way we
engineer those kinds of software systems are confronted with
the challenge of managing complexity of the desired automotive
software systems and the corresponding engineering process. We
will present an approach that helps engineers to manage system
complexity based on architecture design principles, techniques
for architecture quality measurements and processes to iteratively
evolve automotive software systems. Based on a running sample,
we will demonstrate and illustrate the main assets of the proposed
engineering approach.

Keywords–Architecture Evolution; Software Product Lines;
Software Erosion; Architecture Quality Measures; Automotive.

I. INTRODUCTION

Usually many variants of a vehicle exist – different con-
figurations of comfort functions, driver assistance systems,
connected car services, or powertrains can be variably com-
bined, creating an individual and unique product. To keep
the vehicles cost efficient, modular components with a high
reuse rate cross different types of vehicles are required. With
respect to innovative and sophisticated functions, coming with
the connected car and automated resp. autonomous driving
the functional complexity, the technical complexity, and the
networked-caused complexity is continuously and dramatically
increasing. It is, and will be in future, a great challenge to
further manage the resulting complexity.

Here, we propose an approach that helps engineers to
manage functional software systems complexity based on
modular, well-defined, and linked requirements as well as
architectures. The goal is to create solid requirements and
adequate architectures with the help of abstract principles,
patterns, and describing techniques. In addition, we present
a systematic approach for planning of development iterations
and prototyping.

A software system architecture defines the basic organiza-
tion of a system by structuring different architectural elements
and relationships between them. The specification of “good”
software system architecture is crucial for the success of
the system to be developed. By our definition, a “good”
architecture is a modular architecture which is built according
to the following:

1) Design principles for high cohesion
2) Design principles for abstraction and information

hiding

3) Design principles for loose coupling
In the evolutionary development of automotive software

systems, the range of functionalities grows steadily. Thus,
the “essential” complexity of the architecture increases con-
tinuously due to the growth of the number of functions.
However, the “accidental” complexity of the architecture of
automotive software systems grows disproportionately to the
essential complexity as illustrated in Figure 1 [1]. The growth
of accidental complexity results from a “bad” architecture with
strong coupling and a low cohesion which have evolved over
the time. “Bad” architectures increase accidental complexity
and costs, hinder reuseability and maintainability, and decrease
performance and understandability. The three design principles
for a good architecture mentioned above focus on the reduction
of accidental complexity and on the changeability of the
architecture.

Further development

Accidental complexity

Essential complexity

Figure 1. “Essential” vs. “Accidental” complexity

As an approach to manage software systems evolution, we
propose three steps:

1) Methods and techniques for a good architecture de-
sign (Section IV-A)

2) Understanding of architecture and measuring of ar-
chitecture quality (Section IV-B)

3) Systematic approach for planning of development
iterations and prototyping (Section IV-C)

To make a statement about complexity, it is necessary
to measure complexity and describe the results numerical.
These numbers allow drawing conclusions from a system.
Furthermore, it is necessary to describe complex relationships
in a system. For this purpose, meaningful and understandable
description techniques are needed. Such techniques allow com-
plexity to be manageable. Finally, a systematic approach for
planning of development iterations and prototyping is required.

53Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 61 / 83

The paper is structured as follows: Section III gives an
overview on the related work. This paper refers to an overall
development cycle for managed evolution of automotive soft-
ware product line architectures that is proposed in Section II.
In addition, Section II gives some formal definitions and in-
troduces a real world example, a longitudinal dynamics torque
coordination software, from automotive software engineering.
Based on this example, we propose our methodology for
planning and evolving automotive product line architectures
in Section IV. Section V concludes.

II. BASICS

A. Overall Development Cycle
Our methodology for managed evolution of automotive

software product line architectures is depicted in Figure 2 (see
[2]). The methodology consists of two development cycles
which are executed concurrently: One cycle constitutes the
development activities for product line development, whereas
the second cycle is required for product specific development.
Each cycle addresses the design of the logical architecture,
the planning of development iterations and product releases,
the implementation of software components, and architecture
conformance checking.

We distinguish between the terms ‘project’ and ‘product’
in the following: A project includes a set of versioned software
components, so-called modules. These modules contain vari-
ability so that a project can be used for different vehicles. A
product on the other hand is a fully executable software status
for a certain vehicle based on a project in conjunction with
vehicle related parameter settings.

In the following subsections, we will explain the basic
activities of our approach in detail by referring to the terms
depicted in Figure 2. Table I gives a brief overview on the
objectives of each of the 12 activities, including inputs and
outputs:

Software system and software component requirements
from requirements engineering (PL-Requirements) and
artifacts of the developed product from the product cycle in
Figure 2 (P to PL) serve as input to the management cycle
of the product line architecture (PLA). Activities PL-Design
and PL-Plan aim at designing, planning and evolving product

Product line (PL)

PL-Design PL-Plan

PL-Check PL-Implement

Product (P)

P-Design P-Plan

P-Check P-Implement

PL-Requirements

P to PL

PL to P

P-Requirements

Figure 2. Overall development cycle

line architectures and are explained in detail in this paper (see
Section IV).

The planned implementation artifacts are implemented
in PL-Implement on product line level whereas in
P-Implement product specific implementation artifacts are
implemented. For the building of a fully executable soft-
ware status for a certain vehicle project, the project plan
is transferred (PL to P) containing module descriptions
and descriptions of the logical product architecture inte-
gration plan with associated module versions. In addition,
special requirements for a specific project are regarded
(P-Requirements). The creation of a new product starts
with a basic planned product architecture commonly derived
from the product line (P-Design). The product planning in
P-Plan defines the iterations to be performed. An iteration
consists of selected product architecture elements and planned
implementations. An iteration is part of a sequence of itera-
tions.

Each planned project refers to a set of implementation
artifacts, called modules. These modules constitute the product
architecture. The aim of PL-Check and P-Check is the
minimization of product architecture erosion by architecture
conformance checking for automotive software product line
development. Furthermore, we apply architecture conformance
checking to check conformance between the planned product
architecture and the PLA in P-Design.

B. General structure and definitions
The relation between PLA, products, and modules is illus-

trated in Figure 3. We indicate the development points t ∈ N
by the timeline at the bottom. Next, we give brief definitions
of the terms PLA, product, and module.

PLA: On the top of Figure 3 the different versions of the
PLA are illustrated. A PLA consists of logical architecture
elements l ∈ LAE (cf. A, B, C in Figure 3) and directed con-
nections c ∈ C between these elements. At each development
point t exactly one version of the PLA exists. A certain PLA
version is denoted by plax ∈ PLA, with x ∈ N to distinguish

p1_1

m1_1

p2_1

p1_2

p2_3

time1 2 3

M
o

d
u

le
s

m3_2

m1_2

m2_1

m1'_1

m1_3

m3_1

P
ro

d
u

ct
s

A

P
ro

d
u

ct
 li

n
e

ar

ch
it

e
ct

u
re

B C

pla1

m2'_1

m2_2

p3_1

A B C

pla3

A B C

pla2

p2_2

m3_3

A B C

A

A B A B A B

A B

A

A

A

B B

B

C C C

A B C

Figure 3. Relation between products, modules and PLA

54Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 62 / 83

TABLE I. EXPLANATION OF THE ACTIVITIES IN FIGURE 2.

Activity Input Objective Output
PL-Design Software system / component require-

ments and documentation from product
development.

Further development of PLA with consideration of design prin-
ciples. Application of measuring techniques to assess quality of
PLA.

New PLA (called “PLA vision”).

PL-Plan PLA vision. Planning of a set of iterations of further development toward the
PLA vision taking all affected projects into account.

Development plan including the planned
order of module implementations and
the planned related projects.

PL-Implement Development plan for product line. Implementation including testing as specified by the development
plan for product line development.

Implemented module versions.

PL-Check Architecture rules and set of imple-
mented modules to be checked.

Minimization of product architecture erosion by architecture con-
formance checking based on architecture rules.

Check results.

P-Design Project plan and product specific re-
quirements.

Designing product architecture and performing architecture adap-
tations taking product specific requirements into account. Compli-
ance checking with PLA to minimize erosion.

Planned product architecture.

P-Plan Product architecture. Definition of iterations to be performed on product level toward
the planned product architecture.

Development plan for product develop-
ment.

P-Implement Development plan for product develop-
ment.

Product specific implementations including testing as specified by
the development plan for product development.

Implemented module versions.

P-Check Architecture rules and set of imple-
mented modules to be checked.

Architecture conformance checking between PLA and PA. Check results.

PL to P Development plan for product line. Defining a project plan by selecting a project from the the product
line.

Project plan.

P to PL Developed product. Providing product related information of developed product for
integration into product line development.

Product documentation and implemen-
tation artifacts of developed products.

PL-Requirements Requirements. Specification and validation of software system and software
component requirements by requirements engineering.

Software system and software compo-
nent requirements.

P-Requirements Requirements in particular from calibra-
tion engineers.

Specification of special requirements for a certain vehicle product
including vehicle related parameter settings.

Vehicle related requirements.

between PLA versions. The sequence of PLA versions is
indicated by the arrows between the PLAs in Figure 3.

Product: A product pi j ∈ P has a product identifier i and
a version index j, with i, j ∈ N. The sequence of versions is
indicated by the flow relation between products in Figure 3. We
assume a distinct mapping of pi j to a certain plax ∈ PLA.
A product pi j contains a product architecture pai j ∈ PA,
where pai j is a subgraph of the corresponding plax. The set of
corresponding modules of a product is indicated by the dashed
arrows in Figure 3.

Module: A module mk l ∈ M has a module identifier
k and a version index l, with k, l ∈ N. The sequence of
versions is indicated by the flow relation between modules in
Figure 3. We assume a distinct mapping of mk l to a certain
l ∈ LAE ∪{⊥}. By ⊥ we allow mk l not to be assigned to a
logical architecture element, called unbound mk l. A logical
architecture element can be assigned to several modules, but
a module can only be assigned to exactly one or no logical
architecture element. A module mk l ∈ M can belong to
several products pi j ∈ P .

As illustrated in Figure 3, we assume a high degree of
reuse: The same module version may be included in different
products. Branches of the development path are depicted by
the diamond symbol. Module m1′ 1 indicates a branch of the
development path concerning module m1 3.

C. Real World Example: Longitudinal Dynamics Torque Co-
ordination

Our approach for designing the logical architecture de-
scribed in the next section is based on our experience in
the automotive environment. In numerous projects with the
focus on software development for engine control units, we
have developed architectural principles and concepts for ar-
chitectural design and tested them on real sample projects.
The following example shows frequent problems that arise

as a result of strongly increasing accidental complexity. The
approaches described in the next section are intended to
help avoid the problems presented here by controlling the
complexity. This paves the way for long-term maintenance and
extensible architectures.

In our example, we consider the control of the braking and
acceleration process, which is controlled by the driver via the
brake and accelerator pedal, respectively. The implementation
of these controls was originally carried out on completely sep-
arate developments. In the course of time, however, additional
functions have been added: Not only the driver can act here
by actuating the throttle or brake pedal. There are a number
of additional functions, such as the ESP or ACC, which can
act as accelerator and decelerator. In the case of longitudinal
dynamics torque coordination (see Figure 4), both acceleration
and braking processes must be coordinated with one another
since there are interdependent interdependencies.

As a solution to the coordination problems, point-to-point
connections between the software components were intro-
duced, which however led to a strong increase in the accidental
complexity: The realization of the reciprocal coordination

ABSESP

Driv. BehaviorTSK

Mutual coordination

Figure 4. Automotive powertrain example: Mutual coordination

55Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 63 / 83

of the requesters was implemented in the example by the
addition of a new explicit communication for the solution of
coordination problems (see Figure 4, “mutual coordination”).
In addition, existing functions had to be replicated in another
context for the realization of the explicit communication.
As a result, redundancies were created from the heads to
the models. In addition, accidental complexity has increased
disproportionately because of the wide interfaces and strong
coupling within the architecture of the system.

III. RELATED WORK

Next, we give an overview on the related work con-
cerning software product line architecture design, evolution,
and measurement of architecture quality. Mostly, we focus
on approaches that are related to automotive and embedded
software systems.

A. Software Product Line Architecture Design
In [3], reference architectures are assumed to be the basis

for the instantiation of product line architectures (so-called
family architectures). The purpose of the reference architecture
is to provide guidance for future developments. In addition,
the reference architecture incorporates the vision and strategy
for the future. The work in [3] examines current reference
architectures and the driving forces behind development of
them to come to a collective conclusion on what a reference
architecture should truly be. Nakagawa et. al. define a reference
model of reference architectures [4], and propose a method-
ology to design product line architectures based on reference
architectures [5].

As discussed in [6] an overall automotive product line
architecture is often missing due to software sharing. Thus ar-
chitecture recovery and discovery has to be applied by concepts
of software product line extraction [6]. In [7], a methodical and
structured approach of architecture restoration in the specific
case of the brake servo unit (BSU) is applied. Software product
lines from existing BSU variants are extracted by explicit
projection of the architecture variability and decomposition of
the original architecture.

The work in [8] proposes a method that brings together
two aspects of software architecture: the design of software
architecture and software product lines.

Thiel and Hein [9] propose product lines as an approach to
automotive system development because product lines facili-
tate the reuse of core assets. The approach of Thiel and Hein
enables the modeling of product line variability and describes
how to manage variability throughout core asset development.
Furthermore, they sketch the interaction between the feature
and architecture models to utilize variability.

Patterns and styles are an important means for software
systems architecture specification and are widely covered in
literature, see, e.g., [10][11]. However, architecture patterns
are not explicitly applied for the development of automotive
software systems yet. For automotive industry, we propose the
use of architecture patterns as a crucial means to overcome the
complexity.

B. Software Product Line Architecture Evolution
In order to enable the evolution of software product line

architectures, architecture erosion has to be avoided. In [12], de

Silva and Balasubramaniam provide a survey of technologies
and techniques either to prevent architecture erosion or to de-
tect and restore architectures that have been eroded. However,
each approach discussed in [12] refers to architecture erosion
for a single product architecture, whereas architecture erosion
in software product lines is out of the scope of the paper.

Holdschick [13] addresses the challenges in the evolution
of model-based software product lines in the automotive do-
main. The author argues that a variant model created initially
quickly becomes obsolete because of the permanent evolution
of software functionalities in the automotive area. Thus, Hold-
schick proposes a concept how to handle evolution in variant-
rich model-based software systems.

The work in [14] proposes a systematic approach for
managed and continuous evolution of dependable automotive
software systems. They have identified three main challenges
to strengthen automotive software systems engineering for
the upcoming evolution: Complexity of automotive software
systems and engineering processes has still to be manageable,
flexibility has still to be provided, and dependability has still
to be guaranteed. The work in [14] describes how complexity
of automotive software systems can be managed by creating
modular and stable architectures based on well-defined require-
ments.

To counteract erosion it is necessary to keep software com-
ponents modular. But modularity is also a necessary attribute
for reuse. Several approaches deal with the topic reuse of soft-
ware components in the development of automotive products
[15][16]. In [15], a framework is proposed, which focuses
on modularization and management of a function repository.
Another practical experience describes the introduction of a
product line for a gasoline system from scratch [16]. However,
in both approaches a long-term minimization of erosion as well
as a long-term evolution is not considered.

A previous version of our approach is described in [6]
focusing on the key ideas of the management cycle for
product line architecture evolution. Furthermore, an approach
for repairing an eroded software consisting of a set of product
architectures by applying strategies for recovery and discovery
of the product line architecture is proposed in [6].

C. Measurement of Software Product Line Architecture Qual-
ity

To successfully plan and develop PLAs, it is necessary
to measure key figures. These key figures are the basis for
further developments. In [17], the SystEM-PLA framework is
presented, which uses 98 metrics to assess the quality of a
PLA. The analysis uses UML metrics to calculate key figures.
A procedure is presented in [18] to measure NFA on PLAs. It
is important to identify problems with regard to certain quality
features as early as possible. The method uses different metrics
to measure 3 NFAs: Maintainability, binary, and performance.
The procedure results in possibilities to restrict products.

The work in [19] shows how traceability supports the
evolution of SPL on feature level. For this purpose, a method
is used to merge feature models, build files and source code
with each other and to implement a change impact analysis by
using metrics. As a result, erosion and problems are recognized
at an early stage, and counter-measures can be taken.

56Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 64 / 83

In [20], PL are measured with the metric maintainability
index (MI). The “Feature Oriented Programming” is used to
map an SPL to a graph. The values are transformed into several
matrixes. Next, singular value decomposition is applied to the
matrixes. The metric maintainability index is then applied at
different levels (product, feature, product line). The results
show that by using the metric, features could be identified
that had to be revised. The number of possible refactorings
could be restricted.

In [21], several metrics are presented which are specifically
used for measuring PLAs. The metrics are applied to “vADL”
to determine the similarity, reusability, variability, and com-
plexity of a PLA. The measured values can be used as a basis
for further evolutionary steps.

IV. PLANNING AND EVOLVING AUTOMOTIVE PRODUCT
LINE ARCHITECTURES

A. Concepts for Designing Automotive Product Line Architec-
tures

For the specification of software architectures design pat-
terns, architectural patterns or styles are an important and
suitable means, also in other engineering disciplines [10]. We
subsume these under the term of architecture concepts. An
architecture concept is defined as: “a characterization and de-
scription of a common, abstract and realized implementation-
, design-, or architecture solution within a given context
represented by a set of examples and/or rules.”

At the architectural level, these are often associated with
terms as a client-server system, a pipes and filters design,
or a layered architecture. An architectural style defines a
vocabulary of components, connector types, and a set of
constrains on how they can be combined [10]. To get a better
understanding of the wide spectrum of architecture concepts
typical samples of concepts are listed in the following:

• Conventions: naming, package/folder structure, vo-
cabulary, domain model...

• Design Patterns: observer, factory, ...
• Architectural Patterns: client-server system, layered

architecture, ...
• Communication: service-oriented, message based,

bus, ...
• Structures: tiers, pipes, filters, ...
• Security: encryption, SSO, ...
• ...

Architectural concepts can be described in the form of
classical patterns, by describing a particular recurring design
problem that arises in specific design contexts and presents
a well-proven generic scheme for its solution. The solution
scheme specifies all constituent components, their responsi-
bilities and relationships, and the way in which they will
collaborate [11].

In the same way, we will illustrate some examples that we
worked out in our automotive domain projects. Generally, the
central issue is the increasing complexity of software systems
with their technical and functional dependencies. A mapping
of these dependencies to point-to-point connections will result
in a huge, complex and difficult to maintain communication
network. This leads to a likewise huge effort in the field

of maintenance and further development for these software
systems - small changes result in high costs.

This problem of a not manageable number of connections
emerged in many industrial projects we explore for our field
study. In the following we will present architectural concepts,
which are addressing this problem in particular. Figures 5
and 6 show different components, whereby the components
Coordinator and Support are atomic components and the
components labeled as Filter are not atomic components,
i.e., they can be decomposable.

1) Architecture Design Principle “Coordinator - PipesAnd-
Filters - Support”: The complexity of a component increases
artificially with every new product, without integrating new
functions. The reason for this phenomenon is due to the
fact that each component had to calculate the system state
for itself and this for each existing environment and product
the component will be used in. In general, components are
analyzing system data like sensor values for example and
process them to realize their functionality. Thereby, it happens
very often that a processing function is implemented several
times. Besides data from other components are used, but this
export data can change over time, so it can result in error
states.

The design principle introduces a classification of data. If
it is possible to classify the data, than it is possible to establish
the typing of channels, as shown in Figure 5.

<<Coordinator>>

<<Support>>

<<Filter,

External>>

<<Filter>>

<<Filter,

External>>

<<Filter>>

States/Modes

Functional Data

Functional Data and States/Modes

Atomic Element

Hierarchical Element

Figure 5. Architecture design principle: External elements

Each component has to declare a port for states and modes
to uncouple the calculation of the system state from the com-
ponent. A Coordinator component determines the global
state for a set of components and uses the new defined port
to coordinate the other components. The coordinator provides
only states/modes and no functional data. A component in
Figure 5 named as Filter, referring to the classical Pipes-
and-Filters architecture pattern, can react to a state change
automatically. Parameters are manipulated directly with the
states/modes without an additional calculation. Components
can be directly activated or stopped. The scheduling of the
coordinator is independent from the scheduling of the other
components, as each Filter checks the state/mode first.
The functionality of the system is realized by the Filter
components. For them it is allowed to exchange functional

57Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 65 / 83

data as well as state and modes. Values which are required for
the calculation within different components are provided by a
so called Support component.

2) Architecture Design Principle “External Elements”:
Today it is customary that not all components are developed in-
house, some functions are implemented by external suppliers.
But OEM components have requirements resulting in changes
of interfaces, behavior or functionalities of theses external
developed functions and components. It is not that easy to
identify these external components on architectural level, but
this information is essential for an economic development
process because changes of external components are very effort
and cost intensive.

Figure 5 shows a simple solution to handle external ele-
ments: Filter components which are developed external are
annotated with Filter, External, so it is effortless to
identify which component is external and which connections
are affected.

3) Architecture Design Principle “Hierarchical Commu-
nication”: Over the time more and more components and
functionality are added to a product. Different developers with
different programming styles are working on the same product.
Components without any reference to each other are organized
in the same package or other organizational and structural
units. Due to this accidental complexity it is not possible for a
developer, system integrator or architect to get a well-founded
knowledge of the whole system.

As presented in Figure 6, a Filter component can be
decomposable, a so called non-atomic component contains
a structure which follows the design principle visualized
in Figure 5. It includes a Coordinator and Support
component and an arbitrary number of Filter components.
Whereby the inner Filter components have explicit defined
responsibilities.

<<Filter>>

<<Coordinator>>

<<Support>>

<<Filter>>

<<Coordinator>>

<<Support>>

<<Filter>>

<<Filter>>

<<Filter>>

<<Filter>>

<<Filter>>

<<Coordinator>>

<<Support>>

<<Filter>>

<<Filter>>

<<Filter>>

<<Filter>>

Figure 6. Architecture design principle: Hierarchical communication

By this design principle a repetitive structure on each
abstraction level is established, which enables an easy and
technical independent orientation in the whole system.

4) Architecture Design Principle “Component Model”:
Components require knowledge about the behavior or the
state/mode of the connected components. This results in a high
coupling of components and the processing time increases, too.

As presented in Figure 7, a component consists of two
parts with different responsibilities - Execution control
and Function algorithms. Each part has a defined set
of interfaces, types of communication channels, and exchange
data.

Function
algorithms

Execution
control

Function
algorithms

Execution
control

Function
algorithms

Execution
control

ES

FM

Ack

VS

TV

SV

ES

FM

Ack

VS

TV

SV

ES: Execution status VS: Value to set
FM: Functional mode TV: Target value
Ack: Acknowledgment SV: Set value

Figure 7. Communication scheme

The communication scheme is divided into two areas: the
execution control and the functional algorithms. The execution
control includes, on the one hand, the activation of the compo-
nent, which is represented by the execution status. In addition,
in the execution control, the functional mode (components
internal mode) of the component is determined. The execution
control sends an acknowledgment to the predecessor compo-
nent when this component is active. The execution control
communicates only by states/modes.

The function algorithms are processed when the execution
status is set. Component specific values are calculated in the
function algorithms. As output, they supply a manipulated
variable and a target value. The manipulated variable is the
value to set by the actuator. The target value is the value
which is to be achieved in the future. The set value of the
function algorithms is the value that is set by the controller.
The functional algorithms only have functional data as input.

5) Architecture Design Principle “Feedback Channel”:
The complexity of component-based control systems is in-
creasing continuously, since there are more and more func-
tional dependencies between the individual components. A
mapping of these dependencies on point-to-point connections
between the components results in a complex, hard-to-maintain
communication network.

In component-based control engineering systems, control
cascades are generated by connecting several components
consecutively. The main data flow in this system is called
the effect chain. In more complex systems, there are several
effect chains that can partly overlap. In an effect chain, there
are functional dependencies between components that are not
directly connected one behind the other. To resolve these
dependencies, additional point-to-point connections are added,
which are technical dependencies between the components.
The additional direct point-to-point connections between the
components increase the coupling between the components
and lead to a deterioration in the fulfillment of non-functional
requirements, such as maintainability, understandability and
extensibility. For example, the technical dependencies have to
be taken into account in a further development. The worst case
is a complete graph with cross-links between all components.

As a solution to this problem we introduce feedback chan-
nels (patent pending): The introduction of feedback channels
enables the dissolution of functional dependencies without
the introduction of technical point-to-point connections (see
Figure 8). The feedback channel is parallel to the effect

58Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 66 / 83

chain. Thereby, the necessary functional information is passed
through the components of the effect chain. The feedback
is directed against the effect direction. Components of an
effect chain must provide feedback. This creates a technical
communication network with which the functional information
can be exchanged. Thus, there are only technical depen-
dencies to neighboring components in the effect chain. The
maintainability is improved as only technical dependencies
on neighboring components in the effect chain have to be
considered. Figure 8 shows the architecture design principle
feedback channel.

Component 3

Functional Data and States/Modes

Component 4Component 1

Component 2

OutputInput

Input

Feedback InputFeedback Output

Feedback Output

Figure 8. Architecture design principle: Feedback channel

All information / data from the end of the effect chain
to the beginning of the effect chain are provided via the
feedback. Thus, a component can adapt itself to the current
situation in the effect chain without the necessity to create
an explicit connection to all components in the effect chain.
Furthermore, only the dependency of a component to the
adjacent components of an effect chain exists. If the processing
order of the components is selected s.t. all inputs are processed
first and then the feedback, all components of the effect chain
have the information on the current system state available in
the next computing cycle. The effect chain to Figure 8 then
looks as follows: The four components process their inputs
in the effect direction. The components are then processed
in the reverse order and the feedback is processed, i.e., from
Component 4 to Component 1. Here, components 1 and
2 can be interchanged in their processing.

In summary, the overall system is more maintainable and
easier to expand by this architecture design principle. The
individual components do not have to be connected to all
components in order to know the system state. Through the
feedback channel there is an information exchange between
all components in the same computing cycle. Controllers can
adapt themselves directly if they do not have access to an
actuator.

Summary

The presented architectural concepts in this section were
developed within different industrial projects in the automotive
domain involving different software architects and project
members. Nevertheless, there are similarities between the pre-
sented concepts, which become explicit by generalization and
the representation by a uniform description language. Thereby,
the projects focused the same as well as varying problem issues
and requirements. With this representation technique it was
possible to reuse the concepts in other projects to increase the
quality in an early phase of development and to economize
effort, because the projects start discussing about architectural
concepts.

The architectural concepts presented in this paper are devel-
oped iteratively and in some cases the development time took
over one year. As a result from our field study we can outline
that there are similarities between the architectural evolution
of product lines and the abstract and generic development
process of concepts which is not surprising. The evolution
of an architectural concept looks like the same - reuse and
adaptation in other projects, which sometimes results in a
new concept. Besides we can observe that the different levels
of abstraction we have for architecture descriptions, we can
find for concepts, as well. For example, the architecture de-
sign principle IV-A4 (Component Model, Figure 7), describes
coordinating functionality, status and mode information and
functional data connections. All these aspects we can find in
the design principle IV-A2 (Coordinator, PipesAndFilters, Sup-
port, Figure 5), too. With the difference that the Component
Model concept is for low level control functions, whereas the
other concept deals with components on another abstraction
level - to clarify the Component Model principle can be
applied for a Filter, for example.

Architecture concepts like the ones presented before and
all other aspects mentioned in the introduction of this section,
especially the specification of wording and naming conven-
tions help to build a collective experience of skilled software
engineers. They capture existing, well-proven experience in
software development and help to promote good design prac-
tice [11].

The result of making these concepts explicit on this ab-
straction level leads to discussions about architectural problems
and generic solution schemes. In particular at the product
line architecture level the focus is shifted from the more
technical driven problems upon the more abstract and software
architecture oriented issues. Over time this leads to new ar-
chitectural concepts, which are documented, evaluated, maybe
extracted from existing products, but making them explicit and
integrating them at the right places in the further development
process.

Another very important aspect dealing with architectural
concepts is the monitoring of the concrete realizations of them.
In our approach the Check activity takes care of it. All the
presented concepts can be represented by a logical rule set, as
described in [22]. Related to the fact that all elements of the
software are subjects to the evolution process, architectural
concepts can change or had to be adapted over time. This
means that the violation of an architectural rule indicates not
always a bad or defective implementation, it can additionally
give the impulse to review the associated concept and the
context. In our approach the assessment of the rule violation
is included in the Check activity and if there is an indication
for a rule adaptation this will be analyzed and worked out
in detail in the next Design activity. Overall it leads to a
managed evolution.

B. Understanding of Architecture and Measuring of Architec-
ture Quality

Software development is an evolutionary and not a linear
process. The costs caused by errors in software in the last
years, especially in the automotive industry, are very high
(15-20% form earnings before interest and taxes). Thus, it
is necessary to understand and evaluate the architecture to
support further development. In a vehicle, software will occupy

59Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 67 / 83

a larger and larger part and the costs caused by errors will
be rising. Therefore, it is important to control the quality of
the software continuously. Problems/Errors can be detected
early so that the quality of the software increases. The quality
of the software depends in particular on the quality of the
corresponding software architecture. In our approach, we use
PLAs for automotive software product line development. PLAs
are special types of software architectures. They do not only
describe one system, but many products which can be derived
from this architecture. Variability of the architecture, reuse of
products, and the complexity are important values to assess
the quality of this architecture.

Today, metrics mainly focus on code level. The most
common metrics are Lines of Code, Halstead, and McCabe. In
object-oriented programming (OOP), MOOD metrics and CK
metrics are used. However, these metrics are not suitable for
measuring PLAs. For assessing a PLA, the most important
value is variability, as the degree of variability increases
complexity in PLAs. Further important values are complexity
and maintainability of the possible products and the PLA. As
products shall be reused for other products, a high reuse-rate
of products is an important objective of the PLA. A high
reuse-rate also implies a high focus on maintainability of the
products.

In our approach, we assess the modification effort, reuse
rate and cohesion of a PLA, since we can thus evaluate
the properties discussed above. In the following, we give
formulas for the calculation of modification effort, reuse rate
and cohesion. Here, we refer to the definitions of Section II-B,
and the system structure depicted in Figure 3.

1) Modification effort: The modification effort measures
the effort caused by the planned changes in the PLA: How
many logical architecture elements (LAE), and products are
affected by the change? The calculated result value is between
0 (no elements have to be changed) and 1 (all elements have
to be changed). Simple changes can have a high impact to
products and modules. The value supports the architect to
improve understanding the architecture. Maybe there is a better
solution to design the new PLA with less modification effort.

The modification effort E to develop a new PLA version
plax+1 for a given PLA plax is calculated as follows on the
level of PLA and products:

EPLA =
number of concerned LAE

number of all LAE
(1)

EP =
number of concerned products

number of all products
(2)

where concerned LAE/products denote the logical ar-
chitecture elements/products that have to be modified or
added/deleted when introducing the new PLA version. In
Table II we apply E on the example in Figure 3.

TABLE II. MODIFICATION EFFORT FOR THE EXAMPLE OF FIGURE 3.

E pla1 → pla2 pla2 → pla3

EPLA |{A,C}|
|{A,B,C}| = 2

3
|{B,C}|

|{A,B,C}| = 2
3

EP |{p1,p2}|
|{p1,p2}| = 2

2 = 1
|{p1,p2,p3}|
|{p1,p2,p3}| = 3

3 = 1

Consider, e.g., step pla1 → pla2 in Table II: Note that each
module is assigned to only one LAE in this example. Hence,
modules are not considered in this example. In practice an LAE
can be assigned to several modules to realize functionality. In
this step the architect adds a connection between the LAE A
and LAE C on the PLA. The modification effort for the PLA
is 2

3 , because two of three LAE are affected by this change. On
product level the modification effort EP is 1: p1 1 and p2 1

contain LAE A and are thus affected. Note that for EP we do
not specify the version index in the calculation in Table II.

In this example, all products are affected by the modifica-
tion in both development steps. There is no other way to reduce
the modification effort. However, new product versions are not
released at each point in time even if the product is concerned
by the PLA modification (see product p1 at time = 2 in
Figure 3).

2) Reuse rate: To keep the vehicles cost efficient, modular
products with a high reuse rate cross different types of vehicles
are desired. The aim is to reuse modules in different products.
The reuse rate Rm of a module m in a certain PLA version
plax is calculated as follows:

Rm =
number of usage of m in all products of plax

number of all products of plax
(3)

Average reuse rate RM :

RM =

∑
Rm

number of all modules
(4)

In Table III we apply R on the example in Figure 3.

TABLE III. REUSE RATE FOR THE EXAMPLE OF FIGURE 3.

R pla1 pla2 pla3

Rm1 2
2

1
1

2
3

Rm2 2
2

1
1

2
3

Rm3 1
2

0
1

1
3

Rm′
1 – – 1

3

Rm′
2 – – 1

3

RM 5
2/3 ≈ 0.84 2

1/3 ≈ 0.67 7
3/5 ≈ 0.47

Consider, e.g., pla1 and Rm1 in Table III: Modules m1 1

and m2 1 are both used in products p1 1 and p2 1. Thus, the
reuse rate is 2

2 = 1 (100%). In the example the average reuse
rate for pla1 is 0.84 (84%). This value constitutes a high degree
of reuse. For pla3 and Rm1 the reuse rate has to take the new
product p3 1 into account. As m1 3 is used in two products
and the number of products is three, Rm1 = 2

3 (≈ 67%).
In the example the average reuse rate in pla3 is 0.47. The

comparison between pla1 and pla3 shows that the reuse rate
has deteriorated. This is to be expected since new products
and modules are added. In the next planning phase of a new
PLA these new modules should be used in more products to
increase the reuse rate.

3) Cohesion: A high cohesion is preferable. The value for
cohesion denotes the rate, how many export values of the
modules are used inside a product. The higher the value, the
better the cohesion of the product. We call export and import
values of modules exports and imports in the following.

60Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 68 / 83

The cohesion Ap of a product p is calculated as follows:

Ap =
number of all exports of all modules used in p

number of all exports of all modules in p
(5)

The average cohesion AP of products of a PLA version is
calculated as follows:

AP =

∑
Ap

number of all products
(6)

The cohesion of the PLA APLA is calculated as follows:

APLA =

number of all exports of modules used in all products

number of all exports of all modules of all products
(7)

In the following Table IV, we set randomly chosen values
for exports and imports at time = 1 for the modules. We
assume that the architect has access to the whole information
of LAE, all products, and all modules at this time.

TABLE IV. EXPORTS AND IMPORTS AT TIME=1 IN FIGURE 3.

Module Number of export values Number of import values
m1 1 3 1
m2 1 4 3
m3 1 2 3

TABLE V. COHESION FOR THE EXAMPLE OF FIGURE 3.

A pla1 pla2 pla3

Ap1 1+1+0
3+4+2 ≈ 0.22 – 2+0+0

3+4+2 ≈ 0.22

Ap2 1+0
3+4 ≈ 0.14 1+0

3+4 ≈ 0.14 1+0
3+4 ≈ 0.14

Ap3 – – 1+0
3+4 ≈ 0.14

AP ≈ 0.18 ≈ 0.14 ≈ 0.17

APLA 1+1+0+1+0
3+4+2+3+4 ≈ 0.19 1+0

3+4 ≈ 0.14 2+0+0+1+0+1+0
3+4+2+3+4+3+4 ≈ 0.17

Consider, e.g., pla1 and Ap1 in Table V: Product p1 1 has
three modules (m1 1, m2 1, m3 1). In product p1 1 LAE A
has a connection (export) to B and B has a connection (export)
to C. In Table IV all export values are listed. The cohesion is
calculated as follows:∑

used exports of m1 1,m2 1,m3 1∑
all exports of m1 1,m2 1,m3 1 = 1+1+0

3+4+2 ≈ 0.22

For a whole PLA all used export values of modules in
all products are aggregated. The result for pla2 shows that
the change operation concerns all products and a part of the
LAE and modules. The expected cohesion in pla3 is worse
compared to pla1. The quality of the PLA has slightly dete-
riorated. Modules realize more than one functionality because
they are used in more than one project. Therefore, cohesion
is competing to the reuse rate. It is planned to evaluate these
metrics and determine the intervals of the values for “good”
and “bad” with the help of experts in one of our industrial
projects.

4) Applying change operations on a PLA: A software
architect changes the PLA to fulfill new requirements. The aim
is to implement the new requirements with the least possible
adaptation on the product/module level.

Figure 9 exemplarily describes the procedure of applying
change operations on a PLA. The procedure starts with the
current PLA and all products and modules at time = 1. To
make change operations, the software architect performs the
following steps:

1) The architect adds a new change operation to the
PLA.

2) The above metrics are performed on the intermediate
PLA b. The results are considered as bad by the
architect and the changes are rejected.

3) The architect adds a new change operation to the
PLA. The above metrics are performed on the in-
termediate PLA. The results are evaluated as good
and the PLA c serves as the basis for the next step.

4) The architect adds a new change operation to the PLA
c.

5) The above metrics are performed on the intermediate
PLA d. The results are considered as bad by the
architect and the changes are rejected.

6) The architect adds a new change operation on the
PLA c resulting in PLA e. Again, the metrics are
applied. The results are rated as good. As all require-
ments have been implemented, PLA e is the new PLA
vision and serves as input for the planning.

a

b

c

d

e

Change operation on PLA

Go back, as measurement is evaluated as bad

PLA with conducted change operations

start PLA vision

1

2

3

4

5

6

Figure 9. Example: Applying change operations on a PLA

C. Planning of Development Iterations and Prototyping
In our case the planning of the further development in-

volves several activities, e.g., performing planning of each
modification of PLA and PA. The problem arises when
PL-Requirements or P-Requirements needs to be
realized within certain development time and within certain
development costs. Planning solves the problem by defining
timed activities considering the effort limitations.

Planning consists of a sequence of iterations. Iterations
are defined as a number of architecture elements that must
be realized in a time period bounded by tstart and tend
with tstart, tend ∈ N, tstart < tend. Within each time period
the activities Design, Plan, Implement and Check are
ordered. The iteration is completed when all modifications
are realized by Design, Implement, and checked to be
conform to architecture rules by Check. An example of a

61Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 69 / 83

sequence of three iterations is shown in Figure 3. In Figure 3,
the expected result of modifications on PLA at several time
points is defined, which corresponds to PL-Plan. Moreover,
the expected result of modifications on PA are defined where
products, modules and their mapping for three time points is
shown in Figure 3.

The effort caused to realize the planned number of archi-
tecture elements is estimated by the activities Design and
Implement, to achieve the PLA and PA development within
given effort limitations. In case of a deviation between planned
and actual estimations the initial plan is modified. Therefore,
effort estimations are made by considering the necessary
effort of PLA or PA modifications from Design and from
Implement. In the following, details about effort estimations
according to PLA and PA modifications are presented to
achieve estimation based planning.

The first estimation concept is based on metrics to evaluate
the modification effort. For example, modification effort ac-
cording to connection structure and component structure is es-
timated by rating cohesion of components. Another estimation
concept is to evaluate the effort based on modification realizing
a new pattern in the appropriate PLA or PA. Hence, simple
connection or component related modifications are lightweight,
pattern based structure modifications are heavyweight. Mod-
ifications rated as heavyweight often involve a huge number
of architecture components and products. Therefore, in such a
case our methodology suggests to outsource such heavyweight
modifications into a prototype projects. This special case is
enclosed by the activity PL to P of our methodology.

V. CONCLUSION

We introduced a sophisticated approach for automotive
software systems evolution by concepts for planning and
evolving product line architectures. To manage functional
software systems complexity we proposed an approach based
on modular, well-defined, and linked requirements as well
as architectures. First, we proposed methods and concepts to
create adequate architectures with the help of abstract prin-
ciples, patterns, and describing techniques. Such techniques
allow making complexity manageable. Next, we suggested
techniques for understanding of architecture and measuring
of architecture quality. With the help of numerical results of
these measurements, we can make a statement about com-
plexity, as well as conclusions about a system. Finally, we
described how to plan development iterations and prototyping.
We demonstrated our concepts by examples especially from
the automotive domain.

REFERENCES

[1] F. P. Brooks, Jr., “No silver bullet essence and accidents of software
engineering,” Computer, vol. 20, no. 4, Apr. 1987, pp. 10–19.

[2] C. Knieke et al., “A Holistic Approach for Managed Evolution of
Automotive Software Product Line Architectures,” in Special Track:
Managed Adaptive Automotive Product Line Development (MAAPL)
along with ADAPTIVE 2017, 2016, accepted.

[3] R. Cloutier et al., “The Concept of Reference Architectures,” Systems
Engineering, vol. 13, no. 1, Feb. 2010, pp. 14–27.

[4] E. Y. Nakagawa, F. Oquendo, and M. Becker, “RAModel: A Refer-
ence Model for Reference Architectures,” in Proc. of the 2012 Joint
Working IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture, ser. WICSA-ECSA ’12. IEEE
Computer Society, 2012, pp. 297–301.

[5] E. Y. Nakagawa, M. Becker, and J. C. Maldonado, “Towards a Process
to Design Product Line Architectures Based on Reference Architec-
tures,” in Proceedings of the 17th International Software Product Line
Conference, ser. SPLC ’13. ACM, 2013, pp. 157–161.

[6] B. Cool et al., “From Product Architectures to a Managed Automotive
Software Product Line Architecture,” in Proceedings of the 31st Annual
ACM Symposium on Applied Computing, ser. SAC’16. New York,
NY, USA: ACM, 2016, pp. 1350–1353.

[7] A. Strasser et al., “Mastering Erosion of Software Architecture in
Automotive Software Product Lines,” in SOFSEM 2014: Theory and
Practice of Comp. Sc., ser. LNCS, vol. 8327. Springer, 2014, pp.
491–502.

[8] J. Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product-Line Approach. Addison-Wesley, 2000.

[9] S. Thiel and A. Hein, “Modeling and Using Product Line Variability
in Automotive Systems,” IEEE Softw., vol. 19, no. 4, Jul. 2002, pp.
66–72.

[10] M. Shaw and D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline. Prentice-Hall, Inc., 1996.

[11] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture - Volume 1: A System of
Patterns. Wiley Publishing, 1996.

[12] L. de Silva and D. Balasubramaniam, “Controlling Software Architec-
ture Erosion: A Survey,” Journal of Systems and Software, vol. 85,
no. 1, Jan. 2012, pp. 132–151.

[13] H. Holdschick, “Challenges in the Evolution of Model-based Software
Product Lines in the Automotive Domain,” in Proceedings of the 4th
International Workshop on Feature-Oriented Software Development,
ser. FOSD ’12. ACM, 2012, pp. 70–73.

[14] A. Rausch et al., “Managed and Continuous Evolution of Dependable
Automotive Software Systems,” in Proceedings of the 10th Symposium
on Automotive Powertrain Control Systems, 2014, pp. 15–51.

[15] B. Hardung, T. Kölzow, and A. Krüger, “Reuse of Software in Dis-
tributed Embedded Automotive Systems,” in Proc. of the 4th ACM
intern. conf. on Embedded software. ACM, 2004, pp. 203–210.

[16] M. Steger et al., “Introducing PLA at Bosch Gasoline Systems: Expe-
riences and Practices,” in Software Product Lines. Springer, 2004, pp.
34–50.

[17] A. G. Chiquitto, I. M. S. Gimenes, and E. Oliveira, “Symples-cvl: A
sysml and cvl based approach for product-line development of em-
bedded systems,” in Proceedings of the 2015 IX Brazilian Symposium
on Components, Architectures and Reuse Software, ser. SBCARS ’15.
IEEE Computer Society, 2015, pp. 21–30.

[18] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, and
G. Saake, “Measuring non-functional properties in software product line
for product derivation,” in Proceedings of the 2008 15th Asia-Pacific
Software Engineering Conference, ser. APSEC ’08. IEEE Computer
Society, 2008, pp. 187–194.

[19] L. Passos et al., “Feature-oriented software evolution,” in Proceedings
of the Seventh International Workshop on Variability Modelling of
Software-intensive Systems, ser. VaMoS ’13. ACM, 2013, pp. 17:1–
17:8.

[20] G. Aldekoa, S. Trujillo, G. S. Mendieta, and O. Dı́az, “Quantifying
Maintainability in Feature Oriented Product Lines,” in Proceedings of
the 12th European Conference on Software Maintenance and Reengi-
neering. IEEE, 2008, pp. 243–247.

[21] T. Zhang, L. Deng, J. Wu, Q. Zhou, and C. Ma, “Some Metrics for
Accessing Quality of Product Line Architecture,” in 2008 International
Conference on Computer Science and Software Engineering, vol. 2,
2008, pp. 500–503.

[22] S. Herold, “Architectural Compliance in Component-Based Systems.
Foundations, Specification, and Checking of Architectural Rules.” Ph.D.
dissertation, Technische Universität Clausthal, 2011.

62Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 70 / 83

Towards a Formalised Approach for Integrated Function Updates of Mechatronic

Systems

Tim Warnecke, Karina Rehfeldt, Andreas Rausch

Technische Universität Clausthal
38678 Clausthal-Zellerfeld, Germany

email: {tim.warnecke, karina.rehfeldt, andreas.rausch}@tu-clausthal.de

David Inkermann, Tobias Huth, Thomas Vietor

Technische Universität Braunschweig
38106 Braunschweig, Germany

email: {d.inkermann, tobias.huth, t.vietor}@tu-braunschweig.de

Abstract—Looking at different everyday products, we are
facing the situation that they are replaced although their technical
life time has not ended. The main reason for this is that
customers often replace products like smart phones or household
devices, because there are new ones available providing new
and additional functions and features. These functions and
features are predominately based on software and follow shorter
development and innovation cycles. From the resource point of
view the mismatch between technical life time and use period
of products leads to great disposal. In order to address this
challenge, a common concept is to update existing products. To
provide substantial new functions, such updates have to concern
both hardware and software components. Due to the complexity
of dependencies between these components, it is not an easy task
to come up with these integral and verified updates. As a first
step to tackle this problem, we propose a formalized approach to
describe integrated hardware and software upgrades. Based on
this formalism, we present our ongoing research and preliminary
results in the fields of functions and systems modeling.

Index Terms—Complex Systems; Design for Maintainability;
Release Management; Software Product Lines; Software Evolu-
tion.

I. INTRODUCTION

In most of modern products like vehicles, household devices
or machine tools, functions are realized by a combination
of hardware, electronics and software components. These
components are the results of development within different
domains and are often differing with regard to the time needed
for their realization, their innovation cycles and their specific
technological advancements. Fast technological developments,
for instance in the fields of comfort or communication in-
terfaces, are often driven by software engineering. However,
engineering and development of hardware components like
a car body or drive train are missing the speed of these
advancements. At the same time, implementation of new soft-
ware often requires specific hardware like sensors or actors.
Therefore, common practice is to implement and release new

functions only within new released product generations. This
leads to the situation that the actual use period of products
compared to their technical life span is greatly shortened [1],
[2]. Products are shut down or disposed of, although their
functionality is still given from the technical point of view [3].
This is caused by the customers buying decisions which are
tremendously influenced by features like comfort, assistance
or multimedia-based functions. Furthermore, the gap between
technical life span and actual use period leads to the disposal of
still valuable resources like materials but energy - for instance
of the manufacturing process stored within the mechanical
components - as well. In order to counteract this trend and
increase the ecological sustainability of products, there are
several restrictive laws planned. For instance, it is planned to
define a minimum service life span for electric components
[4]. Another expedient and less restrictive strategy is a so
called planned product upgrade of an existing product. Within
this paper we follow the second strategy.

A. Challenge of Integrated Product Updates

There is a great body of literature dealing with the adaptabil-
ity and changeability of products. General approaches referred
to as Design for Changeability [5], Design for Flexibility [6]
or modularization [7] provide basic strategies to adapt system
properties and functions during the life cycle. However, these
approaches are focusing on the classical life cycle understand-
ing and do not consider upgrades of existing products. The
focus of these approaches is to support the initial design of
products.

In the domain of software engineering, product updates are
generally possible if the software was designed accordingly.
However, when it comes to systems, including both hardware
and software like embedded systems, software upgrades are
limited by the installed hardware components. Furthermore,
software updates are often hindered because new software

63Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 71 / 83

Fig. 1. Illustration of the question whether an existing product variant can be updated with a new function.

is developed with current hardware components in mind and
does not consider limitations of older hardware components.
Therefore, compatibility with existing hardware components
of previous product variants is not guaranteed. This forward-
looking development drives progress, but makes the integration
of new software functions into existing products even harder.
In the domain of hardware engineering, it is even worse, since
most of the used hardware components can’t be easily changed
after the initial handover to the customer. Furthermore, it is
hard to identify and define required extensions within existing
hardware configurations to enable the implementation of new
software functions.

In order to support an integrated function update of mecha-
tronic systems, it is therefore essential to analyze the interrela-
tions between functions and features as well as the components
realizing these functions and features.

B. Focus of Research

Figure 1 highlights the problem addressed in this contribu-
tion by schematically representing the development of vehicle
variants in product lines and their constituting components.
The development is ongoing over time and new products
are based on either existing, updated or newly developed
components. To support the update of products, it is essential
to understand how their components can be adapted. This
question is directly linked to the time scale we present in
Figure 1. Here, the first two vehicles p1 and p2 represent
vehicles, which are already in use. Vehicle p1 of the first
generation uses three components k11− k31. Note, here kij is
the component ki used in development version j. The vehicle
p2 in the middle is an advanced development of p1. Product p2
uses the same component identities k1−k3 but in development
version 2, here components k12− k32. On the right hand side

of Figure 1 a vehicle in development version, p3, is illustrated.
Variant p3 uses the components k2 and k3 in version 3. In this
case, the component k12 used in vehicle p2 is reused directly,
because an improvement was not necessary. Additionally, p3
receives a new functionality, in this case a lane keeping system
(LKS), illustrated by the top most component. Because of a
proper executed development process of vehicle p3, we can
be certain that the LKS will work correctly in the component
configuration of this vehicle. Additionally, during its own
development, the previous vehicle p2 was already tested and
checked for functional correctness. In order to support the
integrated update of the vehicle p2, we are facing the question
whether the LKS system of vehicle p3 can be also integrated
and which changes have to be made with regard to existing
software and hardware components.

Our research is focusing on methods to model and ana-
lyze the compatibility and interaction between hardware and
software components. Primary objective is to provide methods
supporting estimation and evaluation of required changes of
both, hardware and software, components. Furthermore, we
aim to reduce the effort required for safeguarding of changed
product configurations after updating these. This research
will contribute to efficient upgrades of existing mechatronic
systems and, therefore, the extension of their use periods. The
research is guided by the following questions:

• How do we model the structure, behavior, functions and
requirements of systems to identify required adaptations
or updates with regard to hardware and software?

• How do we reduce test effort of a new system configu-
ration when its functions and structure are already partly
tested?

• How do we support the design of evolution friendly

64Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 72 / 83

system structures?

In this contribution, we describe a formalism to specify the first
question. Furthermore, we state the areas to work on further
more precisely. Therefore, in Section II we discuss the state
of the art and basic understanding of releases and design for
maintainability as well as approaches for systems modeling,
both from the mechanical and the software point of view.
In Section III, we define a simple formalization to describe
functions, components and their connecting structure. Based
on this, we introduce our approach to the stated problem in
Section IV. The paper is summarized by a short conclusion in
Section V.

II. BACKGROUND AND STATE OF THE ART

Based on the focus of research introduced, in this section
an overview and definitions of essential terms are given.
The focus is on basic strategies to extend the use period of
complex systems and their effects on hardware and software
components.

Release Management (RM) is originated from software de-
velopment and describes the process and activities conducted
to develop and deploy releases as a result of change requests.
A major task of RM is to maintain the integrity and minimize
the disruption of the original system during and after the
deployment release of new features. This is done by prior
planning and testing of a release [8]. A release in this context,
is a collection of “one or more changes to a service that are
built, tested and deployed together” [8]. At the beginning of
the RM process, a subset of changes (sometimes also referred
to as requirements) is selected as the scope of the release [9].
Besides the development and implementation of the release,
RM also covers the estimation of effort and the resource
management needed for planning, design and implementation
of releases. In information technology, RM is well-established.
The transfer to “hardware” products is still subject of research,
cf. [10].

Design for maintainability (DfM) comprises the considera-
tion of aspects regarding for instance serviceability, repairabil-
ity or supportability, minimizing the effort during the use phase
of the system to keep it in - or to restore it to - a usable
condition [11]. According to the IEEE Standard Glossary of
Software Engineering Terminology, maintainability is defined
as “the ease with which a software system or component
can be modified to correct faults, improve performance or
other attributes, or adapt to a changed environment” [12].
DfM is closely linked with the modularity of products whose
foundation is laid during the early design phases in form of
the product’s architecture [13].

There is a lot of research dealing with effort estimation in
software changes, design of maintainable software systems and
processes and methods for software engineering. Regarding
software changes, in the last years more and more approaches
were made in feature-oriented software evolution and changes.
[14] proposes a feature-based software evolution with auto-
matic traceability, analysis and recommendations. Passos et.

al assume that managing changes at the level of features can
help system designers in estimating costs and efforts while
having a better understanding of the impacts of a change on
the system.

Ferreira et. al [15] studied whether feature-oriented pro-
gramming really benefits variety management in software
product lines (SPL). They argue feature-oriented programming
is indeed well suited for software product lines but still has
drawbacks. The SPL tends to be more stable under cer-
tain aspects with feature-oriented programming. Nevertheless,
feature-based software evolution does not have a general
answer how new features can be integrated into whole systems
dealing with both hardware and software.

The difficulty of the considered mechatronic systems and
their updates are the deep interaction of hardware and software
components. The software is built with a specific hardware
concept in mind and vice versa. To our current knowledge
there is no model or paradigm to generally address the problem
of modeling a complex system to identify required adaptations
for upgrade of functionalities. As a first step towards a better
understanding and basis for our further research, in the fol-
lowing section we propose a formalism to describe integrated
function updates of existing mechatronic systems. Based on
the formalism, we identify further research needs.

III. DEFINITIONS

To give an idea on how we are tackling the mentioned
questions, we formalize the concepts of product variants,
hardware and software components as well as functions.
Without loss of generality, we term hardware and software
components simply as components and formalize them with
the same definition. Later, a distinction between hardware and
software components might become necessary. But for now,
we are interested in the general idea of including new functions
through new components whether hardware or software into
existing products.

First, we define that every product variant consists of a
restricted number of software and hardware components
kij with i is the identity and j is the development version
of component k. Furthermore, with regard to a development
process we denote kij−1 as the predecessor version of
component kij and kij+1 the successor version of component
kij . So, we define the set of all usable components as

K = {kij} with i, j ∈ N

We define a product variant as

pn := (Km, vm := Km ×Km) with n,m ∈ N

and the set of all possible product variants as

P := {pn} with n ∈ N

This highlights that every product variant pi ∈ P consists of
a subset of all usable components Km ⊆ K and a struc-
ture vm. vm describes the connections between the different

65Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 73 / 83

components Km to form a fully functional system. We do
not differentiate the connections between components of a
product variant. In case of a connection between two software
components, it might be an interface usage. The connection
between two hardware components might be a physical link
while the connection between hardware and software are, e.g.,
signals.

Every product variant pn is developed with the objective
to fulfill a pre-defined set of functions taking into account
specific requirements. The set of all possible functions can
be defined as

F = {fn} with n ∈ N

The function set Fq ⊆ F denotes a subset of all possible
functions. If a function set Fq is fulfilled by a product variant
pn we denote this as a satisfiability relation

Fq |= pn

In the next section, we show our formalized approach to the
problem described in the introduction.

IV. A FORMALIZED APPROACH

If products are developed as product lines, we expect that
a previous product variant pold exists. pold fulfills a known
set of functions Fold. Additionally, a new product variant
pnew exists, which fulfills Fnew. In the proposed notation,
we write Fold |= pold and Fnew |= pnew. We now formalize
our question whether pold may be upgraded to fulfill the
new function set Fnew of our new product. Moreover, which
changes in pold are necessary to be able to fulfill the functions
Fnew completely or with limitations. We assume that a product
variant called p′old derived from pold exists and fulfills the set
of functions Fnew from pnew - that is Fnew |= p′old. We define
the product variant p′old as

p′old := ({Km}, vm : Km ×Km)

with ∀kxa ∈ Π1(pnew)∃kxb ∈ Π1(p′old)

With other words, we are looking for a product variant, which
contains for every component identity ki in version a from
pnew a corresponding component identity ki in version b.
Figure 2 shows the construction of the updated product based
on the old and new product. The upper two product variants
are the old product pold, which will be updated and the new
product pnew with a new functionality. There are components
from pold, which are kept in p′old. Those are components
not touched by the update (blue) and components, which are
equal to the ones used in pnew and, therefore, kept (gray).
Components existing in different version in pold and pnew
are updated (violet). Also, in pold there are components that
are removed in p′old (red). Additional components for the new
functionality in pnew are added to p′old (green). The bottom
product variant shows a possible outcome of the updated pold,
our p′old.

Coming back to our initial question, we want to find a
way to determine whether a new function can be integrated

Fig. 2. Illustration of the construction of an updated product based on pold
and pnew .

into an old product and which changes to the old product
are necessary. On basis of our formalization, we can now
formulate essential questions regarding the necessary changes
between pold and p′old and the changes’ relation to pnew.

1) Which components of pnew are already included in pold
and, therefore, do not need to be changed in p′old?

This questions asks for components in pnew, which were
already used in the same version in pold. Therefore, we do
not need to change pold regarding these components and p′old
remains unchanged. In Figure 2 these are the components with
gray background.

2) Which components of pnew are not included in pold and,
therefore, have to be added to p′old?

This question asks for components introduced with the new
functions in pnew. These components cannot be part of pold
and, therefore, have to be added to p′old to fulfill the new
functions. In Figure 2 these are components with green back-
ground.

3) Which components kia of pnew are included in pold but
in a different version b and which version is included in
p′old?

This question asks for component identities, which are used
both in pold and pnew but in different versions. In other
words, the component used in pnew is either the predecessor
or successor of the component used in pold. The question
is, which of these version will be included in the updated
product p′old. In Figure 2 these are the components with violet
background.

66Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 74 / 83

4) Which component identities from pold are not included
in pnew but in p′old?

This question asks for the components in pold that are not
touched by the update. These components are not involved in
the new or any associated functions. In Figure 2 these are the
components with blue background.

5) Are there any components in p′old, which are neither
included in pnew nor pold?

This question asks for components that were introduced in p′old
as a kind of adapter for components from pnew. In other words,
the necessary components from pnew could not be added to
p′old because of an incompatible interface. However, an adapter
component could resolve this incompatibility. In Figure 2 this
is the glue component with green background in p′old.

To tackle these questions we are convinced that a new
modeling and engineering approach for complex systems
has to be developed. Moreover, even after integrating and
developing new components to construct a p′old from pold and
pnew, it is not obvious that the new product will work like
expected. Usually, after the integration of a new function, the
entire system has to be retested and verified to guarantee that
no unexpected side effects can occur. This includes testing
functions without direct interactions with the new one because
most side effects occur indirectly.

Naturally, it is not possible to fully test and verify already
developed products in the field. Testing is a very time and
cost consuming task, which is even harder to accomplish for
older products that no longer have a development team. So,
it is preferable that we don’t need to test and verify the
whole product with all its functions again. Instead, it would be
preferable to just focus on parts of p′old, which have changed
in comparison to pold.

We ask the question, whether it is possible to achieve
much more simple retests for the new functions with the test
results and data and control flows of pold and pnew and the
changes made to construct p′old. We are convinced that these
informations enable us to slice the architecture of p′old in such
a way that only new functions and some of their dependencies
to components from pold need to be retested.

V. CONCLUSION

We have presented the current mismatch between techni-
cal life time and the actual use period of modern products
and highlighted the need for an integrated functional update
approach for mechatronic systems. One of the main reasons
for customers to replace a product, are extended function-
alities implemented in newer product generations. In order
to address this challenge, a common concept is to provide
updates for existing products. Due to complex dependencies
between software and hardware components, it is not an easy
task to come up with these integral updates. Therefore, it is
essential to understand the interrelations between the different
components as well as the functions and components. We have

shown that a critical improvement has to be made regarding
modeling approaches for complex systems, addressing both
the structure of the system as well as the functional view
upon the system. While there exist methods to design both
mere software and hardware systems for maintainability, the
interaction of both domains in complex mechatronic systems
asks for new approaches.

The formalization introduced will be used as a starting point
for further research. The next research steps will be to develop
an integrated modeling language for requirements, structures
and components in mechatronic systems. This modeling lan-
guage will be designed with the goal to identify needs for
adaptation in case of functional upgrades. Another step will
be the development of a method to evaluate effort of integral
updates.

Our last research question is how to minimize the necessary
test cases when a product was updated. Based on slicing
techniques we want to reuse the results of formerly done
tests to reduce the necessary retests when a product was only
slightly changed.

REFERENCES

[1] K. Ishii, “Incorporating end-of-life strategies in product definition,” Proc.
of EcoDesign’99, pp. 364–369, 1999.

[2] Y. Umeda, T. Daimon, and S. Kondoh, “Life cycle option selection
based on the difference of value and physical lifetimes for life cycle
design,” Proc. of the International Conference on Engineering Design,
ICED 2007, 2007.

[3] K. Watanabe, Y. Shimomura, A. Matsuda, S. Kondoh, and Y. Umeda,
“Upgrade planning for upgradeable product design,” in Quantified Eco-
Efficiency. Springer, 2007, pp. 261–281.

[4] “Directive 2009/125/ec of the european parliament and the council of
21 october 2009 establishing a framework for setting of ecodesign
requirements for energy-related products,” 2009.

[5] E. Fricke and A. P. Schulz, “Design for changeability (dfc): Principles to
enable changes in systems throughout their entire lifecycle,” in Systems
Engineering, Vol. 8, No. 4, 2005, 2005, pp. 342–359.

[6] A. Bischof, “Developing flexible products for changing environments,”
Dissertation, Technische Universität Berlin, 2010.

[7] K. Ulrich and S. Eppinger, Product Design and Development. New
York: McGraw-Hill, 1995.

[8] “IEEE standard - adotion of the ISO/IEC 20000-2:2012, information
technology - service management - part 2: Guidance on the application
of service management systems,” 2013.

[9] P. Carlshamre, “Release planning in market-driven software product
development: Provoking an understanding,” Requirements engineering,
vol. 7, no. 3, pp. 139–151, 2002.

[10] G. Schuh and W. Eversheim, “Release-engineeringan approach to con-
trol rising system-complexity,” CIRP Annals-Manufacturing Technology,
vol. 53, no. 1, pp. 167–170, 2004.

[11] R. F. Stapelberg, Handbook of reliability, availability, maintainability
and safety in engineering design. Springer Science & Business Media,
2009.

[12] “IEEE standard glossary of software engineering terminology,” 1990.
[13] G. Schuh, S. Aleksic, and S. Rudolfs, “Module-based release manage-

ment for technical changes,” in Progress in Systems Engineering: Proc.
of the twenty-third International Conference on Systems Engineering,
2015, pp. 293–298.

[14] L. Passos, K. Czarnecki, S. Apel, A. Wasowski, C. Kästner, and J. Guo,
“Feature-oriented software evolution,” in Proceedings of the Seventh
International Workshop on Variability Modelling of Software-intensive
Systems. ACM, 2013, p. 17.

[15] G. C. S. Ferreira, F. N. Gaia, E. Figueiredo, and M. de Almeida Maia,
“On the use of feature-oriented programming for evolving software
product linesa comparative study,” Science of Computer Programming,
vol. 93, pp. 65–85, 2014.

67Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 75 / 83

Refurbishment of Automotive Electronic Components regarding Update Capability
of Applications

Nils Böcher

Robert Bosch GmbH
Business Division Automotive Aftermarket, Product Area Electronic Services

Hildesheim, Germany
Email: Nils.boecher@de.bosch.com

Abstract— In the desktop multimedia area, modern update
techniques are well known and firmly integrated. Fixed update
management systems supply nearly automatically the latest
software applications. In addition, the system based hardware
drivers are also updated until the base system becomes
obsolete and no longer supported. Additionally, functionality
for data recovery, system and user settings are also given. In
the automotive area, the application is based on platform
package integrations and delivering states. Hereby, the
application will mostly be frozen for the whole product life
cycle after the end of line manufacturing process. For future
Electrical/Electronic (E/E) architecture, with central functional
integrations and domain centralized systems, there is a new
challenge regarding the strategies over the product lifecycle.
This includes update functionality in the field and after series
production, for new functionalities (Car to Car/Environment
(C2X) communication standards, automatic driving assistance,
certificates) in consideration for latest security and safety
requirements. Solutions must be developed in order to obtain a
long life cycle regarding the obsolescence of the product.

Keywords - variant management; reuse; life cycle.

I. INTRODUCTION

The refurbishment of assembly units is a common
technique to be able to reuse an affected nonfunctional
peripheral equipment for its target operation mode. This is
mainly used in long term usage environments [1]. These
methods can be sub-classified into two main areas. The first
one is the individual repair, where only the functional
affected root cause will be mend into a valid state. The
second method is the remanufacturing. Hereby, the whole
integrity of the assembly unit will be rechecked and
reworked while setting the unit to a current state. This also
includes software versions and constitutes software states.
Today, the main focus of remanufacturing or refurbishment
is still on hardware. The number of electronic modules in the
cars on the roads is high and the trend to autonomous driving
and Car to X communication will increase further the
complexity. Customer service includes no longer only
hardware exchange. Also, there is a need for software
updates or system integration in car workshops. The global
spare parts availability and their integration have a
significant impact on success and customer satisfaction. In
relation to the economic growth, in addition to the natural
resource use, it is insufficient to overcome the even higher

demands. This rapid growth involves increasing business
risk for higher material costs, supply uncertainties and
disruptions. With this background, it is necessary to improve
the efficiency of the material, sustainable throughout the
maintenance of the systems software components. This is
especially true with regard to different life cycles for
electronics and cars, long aftermarket supply obligation
periods, longer warranty periods and increasing complexity
of encryption and aspects related to software. Refurbishment
activities have to focus more and more on the software
applications.

In the future, the requirements of an application or
platform development project will place new demands on the
methods of a usual product creation process for a new piece
of software. The software management with the
accompanying support, updates and maintenance services
has to be enhanced regarding update capability and long life
support. As a rule, a software application for a model series -
after release; it is a fixed package for serial production and
additionally for spare parts in workshops. Hereby, no
software updates in the entire life cycle are planned. Based
on the launch management in an industrial production, the
software will be specified regarding a reference architecture
within the component design. After a customer software
release, where additional calibration and review steps are
performed, the software is packed and integrated into the
product.

From Start of Production (SOP) to the stable series
production, additional derivatives for certain software
variants will usually be released, as shown in Figure 1. After
the number of variants and quantity demands from the
customer, the series production enters the stable phase. Until
this section of high rate of production, usually no new
software change, or engineering change to the product will
be implemented.

The life cycle, which is between the End of Production
(EOP) and End of Delivery (EOD) of the product, including
the latest software variants, typically covers 15 years - due to
post serial supply obligations. During this time, the product
must be available based on a given forecast. This will reduce
the impact on obsolescence due to the End of Delivery
(EOD), based on a product life cycle sales forecast over time
[1].

68Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 76 / 83

Figure 1. Product life cycle

Nowadays, a classic final stocking of finished products is
cost intensive and difficult with respect to the huge model
variation, which only differ by software variants within a
model series. Hereby, a special software version can be used
to have a bigger diversity of usable family version types.
However, the product liability and requirements for
protection against malicious manipulation and safety
classifications in the automotive environment will affect
several care strategies over the product lifecycle in the
aftermarket. In case of tuning protection techniques, based
on software signatures, a new target software without a valid
signature is an irreversible incompatibility to the existing
system - feasible despite the same hardware variant. Due to
increasing security features, a software change is equivalent
to a hardware change. A common security method is to fuse
a complete block of defined code area in the memory area,
by using a One Time Programmable (OTP) functionality of
the program flash. In this area, mostly watchdog
functionalities supervise the running application. This
technique only makes it possible to create an updating
option, by using a valid signed software. The signing
technique is usually based on an asymmetric key
cryptography. Additionally, new control unit cores use an
internal Hardware Security Module (HSM). Besides further
monitoring, runtime tuning detection regarding manipulated
memory blocks and watchdog tasks, the HSM contains a
program and data flash layout to store symmetric and
asymmetric keys, but also data settings to handle the usage
of certificates to protect public keys. This implements
password handling for read/write protection, and also for
open/close permissions to the debugger interface. A secure
log of access entries will be written.

Future Electrical/Electronic (E/E) architectures handle
the increasing complexity of the central vehicle functions,
while building up a logical centralization and physical
distributions. Hereby, the functionality can be partitioned
into cross domain based and central vehicle functions on a
multi-platform architecture [2]. The requirements for future
applications and Base Software (BSW), will bring new
challenges by increasing the number of features, which are
activated and controlled by the software. Consumer
electronic devices will be connected to the car networks,
hence a growing complexity has to be expected for the in-car
software and 3rd party software integration.

II. ADAPTIVE APPROACH TOWARDS INCREMENTAL

UPDATE TECHNIQUES

Current software automotive standards, such as the
Automotive Open System Architecture (AUTOSAR)
initiative, decouple the application from the basic software

package. In this case, the software is using a layer-oriented
model, through the introduction of abstraction layers. These
layers are separated into services areas. This abstraction
opens up new possibilities for an adequate after-series supply
strategy.

A suitable method for an adequate after-series supply
strategy is the remanufacturing method. Hereby within the
framework of the individual repair the software & spare parts
can be integrated into the system. This is used to adapt
function modules and software components, inside the BSW
without altering/affecting the application. For this purpose, a
basis must be created such as a non-volatile memory
management scheme, such as in [3]. This can be, for
example, a layer oriented partitioning so that updating a
module in the BSW does not require a complete software
container rebuild with flashing of the entire software. This
also places new demands on the handling of memory
allocation. This approach also requires new tasks with regard
to the evaluation [4], and release procedures for hardware
and software, in order to meet the latest requirements of
operating approvals and aspects of vehicle safety, such as the
Automotive Safety Integrity Level (ASIL) classification.

Another aspect is the individualization of the data records
in future Electrical/Electronic (E/E) control units. For
example this includes calibrated curves, variant coding, etc.
This individualization could be used to create a basis for the
prerequisite that already existing data from the field can be
integrated into the supplier's production, to improve the
aftermarket supply strategies. Therefore, an advanced update
management is required, regarding runtime functionalities
inside the control unit. This can be achieved by using version
control, update history or update malfunction protection.

III. CONCLUSION

The approach, of a layer oriented base software design,
provides a good opportunity to implement new requirements
for automotive applications and future service solutions for
update capability, in particular for increased complexity and
network topology in the automotive sector, regarding future
E/E architectures and its hardware requirements.

REFERENCES

[1] C. Jennings, D. Wu and J. Terpenny, "Forecasting
Obsolescence Risk and Product Life Cycle With Machine
Learning," in IEEE Transactions on Components, Packaging
and Manufacturing Technology, vol. 6, no. 9, pp. 1428-1439,
Sept. 2016.

[2] M. Becker, D. Dasari, B. Nicolic, B. Akesson, V. Nélis and T.
Nolte, "Contention-Free Execution of Automotive
Applications on a Clustered Many-Core Platform," 2016 28th
Euromicro Conference on Real-Time Systems (ECRTS),
Toulouse, 2016, pp. 14-24.

[3] J. Shin et al., "A Non-Volatile Memory Management Scheme
for Automotive Electronic Control Units," 2012 International
Conference on Connected Vehicles and Expo (ICCVE),
Beijing, China, 2012, pp. 237-238.

[4] N. Englisch, F. Hänchen, F. Ullmann, A. Masrur and W.
Hardt, "Application-Driven Evaluation of AUTOSAR Basic
Software on Modern ECUs," 2015 IEEE 13th International
Conference on Embedded and Ubiquitous Computing, Porto,
2015, pp. 60-67.

69Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 77 / 83

Memory-Map Shuffling: An Adaptive
Security-Risk Mitigation

Pierre Schnarz∗, Joachim Wietzke†, Andreas Rausch∗
∗Software Systems Engineering

Technische Universität Clausthal, Germany
Email: {pierre.schnarz—andreas.rausch}@tu-clausthal.de

†Hochschule Karlsruhe, Karlsruhe, Germany
Email: joachim.wietzke@hs-karlsruhe.de

Abstract—Automotive products, such as electronic control units,
evolve increasingly towards adaptive solutions. From many per-
spectives, solutions need to be flexible with regards to the entire
originating process and operation process. Here, the product
development cycle, the product life-cycle and even product lines
describe the dimensions a solution might have to adapt to. Certain
requirements to secure the product continuously add further
complexity to the aforementioned dimensions. Adversaries adapt
- so the protection shall as well. However, adapting, particularly,
technical solutions to products, implies the need for agnostic
approaches. In this article, we propose a security-risk mitigation
concept which aims to fit into the evolving automotive originating
process applied to a particular class of electronic control units.
Technically, the proposed approach shuffles the system memory-
map of an asynchronous multiprocessing system. On the interme-
diate layer between the hardware and software, the assignment
of memory and resources is obfuscated to a potential adversary
who managed to breach one of the higher level memory protection
mechanisms. As a result, the proposed mitigation adds either a
further level in a defense-in-depth security architecture or fixes
a structural vulnerability of certain hardware architectures.

Keywords–Security; Mixed-Criticality; Obfuscation; Automotive.

I. INTRODUCTION

When it comes to automotive security, hardened electronic
control units (ECU) are required to resist the emerging threat
and attack landscape [1] [2]. Being resistant to threats and
attacks is a continuous process. This is motivated by the
fact that the adverse actions and methods against the system
evolve over time. In other words, the adversaries change and
find new methods, entry-points and tools to compromise a
particular system. As a result, the risks that are related to the
functionality of the system would increase. New countermea-
sures are necessary to limit the likelihood of an impact on
safety, financial, operational or privacy aspects [3] [4]. The
mentioned continuous process of reacting to the evolving secu-
rity incidents has multi-dimensional impacts on the origination
process of automotive products. These dimensions include: the
product life-cycle including the development life-cycle and
on a larger scale the product-line evolution. The technical
goal of a security mitigation is the reduction of a security-
risk. Besides that, the mitigations are required to fit into
the aforementioned adaptive origination process. Depending
on the particular phase in which a certain product faces the
need for risk mitigation, the range of immutable (or static)
system components might be wide. For example, changes to
the hardware are nearly impossible after the start of production

(SOP). As a result, changes to the software components of a
product are targeted.

Adaptivity, the evolutionary environment and cost reduc-
tions are just a few arguments to move vehicular functions into
a highly integrated platform (such as ECUs). The results are
very powerful but complex systems. Important is the aspect of
mixing functions which imply diverse system quality demands.
For example, a single platform aggregates functions which on
the one hand operate break-assistance features and infotain-
ment in parallel. Such systems are usually referred to as mixed-
criticality systems (MC-system) [5]. From an organizational
point of view, these functions are required to operate as they
did on separated ECUs before. This is particularly true for
security. In particular, the separation and isolation aspects
are key in such environments. It must be ensured that no
interference between certain functions is possible. However,
for example in security, the strength might need to be adapted
over time due to the emerging threat landscape. This is even
more important, since the functions will be adapted over the
product-lifetime.

In this work, we propose a technical mitigation concept
which is adaptable to highly integrated platforms. The concept
is also driven by the evolutionary automotive product orig-
ination landscape. Technically, the mitigation approach aims
to protect memory partitions, of certain functions, from ex-
ploitation. This is achieved by shuffling of address translation
mappings of commodity virtualization mechanisms. Due to the
obfuscated memory structure, the risk of further compromisa-
tion is mitigated. Metrics to characterize the exploitability [6]
and effectiveness [7] are given.

In section V the memory-map shuffling concept is intro-
duced and analyzed. The rest of the article is structured as
follows. In section III the target of evaluation (ToE) is defined.
In the following sections the threat analysis (compare Section
IV) and the particular attack vectors (compare Section IV-B)
are described. Section VI gives an outline of the effectiveness
of the given approach. Lastly, section VII contains concluding
remarks.

A. Related Work
The idea of obfuscating addresses is not new in certain

areas. On application level, address obfuscation is adopted
by many operating systems. Particularly, in general purpose
operating systems such as Linux, Windows and Mac OSX this
technique is actually state-of-the art. As of today, this is said to
be one of the most effective countermeasures against memory

70Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 78 / 83

exploits. Recent efforts brought that technique down to the
system level, by randomizing the operating system’s (OS)
kernel address space [8]. In Linux, for example, the developers
aimed for a significant increase of system security by making
attacks into the monolithic kernel space less predictable for
adversaries. In [9] Bhatkar et al. describe address obfuscation
as an efficient approach to combat memory error exploits.
The authors argue that these attacks require an attacker to
have an in-depth understanding of the internal details of a
victim program, including the locations of critical data and/or
code. Therefore, program obfuscation is a general technique
for securing programs by making it difficult for attackers to
acquire such a detailed understanding. Kil et al. extend in
[10] the idea of address space layout permutation to enable
a finer grained randomization. Generally, they address one of
the biggest drawbacks of current address space randomization
implementations, namely the lack of a cryptographic secure
entropy. Possible adversaries are able to guess the locations
statistically in a very short amount of time, since the number
of bits used for randomization is very limited. The permutation
of address layouts facilitate to combat attacks using techniques
such as buffer-overflows, format string attacks and code re-
usage attacks like return oriented programming (ROP). In
[11] Shuo et al. introduces a method to utilize hardware
virtualization in order to prevent ROP attacks within the kernel.
In [12] Rushanan et al. elaborate on the concept of malicious
behavior based on direct memory access (DMA) transfers. The
attacks are implemented using commodity desktop hardware.
Although the implementation is not applicable to embedded
hardware, the DMA issue is transferable to the attack surface
of embedded system-on-chips (SoC).

II. SECURITY OF EVOLVING AUTOMOTIVE PRODUCTS

The issue of securing products depends on the evolutionary
state inside the product life-cycle (PLC) or outside within
the product-line. Generally, the PLC is mainly focused on
when it comes to security processes. PLCs of automotive
products are roughly dividable into two main phases. First,
in the pre-SOP phase, the product will be developed using
a suitable development cycle, such as the v-model. Second,
in the post-SOP phase, the product needs to be maintained.
From the security perspective, two major goals are spread
over these two phases. The first goal is to create a state in
which the system can be treated as secure. In other words,
to be aware of risks in the first place and to mitigate or
accept them in the second. The second goal is to keep a
certain risk threshold in which the system is still in this secure
state. Most commonly, the applied method to find security
requirements in the pre-SOP phase is risk assessment [3].
For every function the system has, a potential impact and
likelihood will be analyzed. With respect to the particular risk,
a risk treatment phase follows and the specific strategies to
mitigate those risks will be defined. Those mitigations are
fed as logical requirements and technical requirements into
a system design. In the verification and validation phase of
the v-model, appropriate security testing methods are applied
to raise confidence in the absence of severe vulnerabilities.
Security testing methods include fuzzing (negative testing) and
penetration testing. In other words, during the development,
the foundations for determining the security requirements are
built accompanied by techniques to gain confidence in the
derived logical and technical security architecture. During the

post SOP phase, the system should be observed. If an incident
occurs a proper response should be initiated. Accordingly, if
this response requires a security update (software) the devel-
opment of this update will traverse the secure development v-
model for the new function. Limiting factors for the upcoming
security mitigations are immutable components of the system
which might be functional or technical. A prominent example
is the hardware platform which is obviously hard to modify
once it is deployed. However, this immutability is not only true
for products that are already deployed, as practically within
product lines the engineering strategy such as top-down and
bottom-up might also imply further restrictions. For example, a
hardware platform is to be integrated (bottom-up) for a certain
set of software functions. Some of the functions then need to
be fitted and developed onto (top-down) the hardware platform.
This also implies restrictions for security solutions. This might
appear in many reuse situations in automotive product line
development. To summarize, security solutions need to fit into
this evolving landscape.

III. MIXED-CRITICALITY SYSTEM

Mixed-criticality systems integrate multiple organizational
domains (MC-domains), each of which potentially has differ-
ent demands on the necessity (criticality) of the fulfillment
of quality goals. Quality goals are for example dependability
aspects, performance, etc. [13]. MC-domains are facilitated by
combining several functional and technical components of a
system. As an example, technically it might contain a software
stack including OS, containers and applications. The technical
implementation of the MC-system is discussed in the following
section.

A. Facilitate MC-systems by Means of AMP
Where the definition of MC-systems describes a func-

tional and logical setup, AMP refers to the technical part.
In general, AMP is a system utilization paradigm which
aims to control hardware elements independently by multiple
operational units. As such, AMP systems can facilitate a MC-
system by assigning technical means at the hardware level
and software level. In other words, it is a configuration of
the hardware to create the logical layers on top of it. In the
following, this level is referred to as the intermediate level. As
mentioned in Section III, the separation of functionality is a
fundamental requirement to implement a proper MC-system.
From the hardware level up to the application level, there are
several technical possibilities to create a logical separation.
Technically, each layer of a system provides means to create
separated domains. For example, applications are separated
most commonly in processes and threads which are provided
by the OS. At the lower architectural layers, virtualization
technologies emerge within the automotive environment. The
aim is to combine multiple OS in one platform [14] [15].

B. Target of Evaluation
In this work, the target of evaluation (ToE) adopts the AMP

paradigm and facilitates a MC-system on the intermediate
level. In Figure 1 the ToE is depicted. It shows two MC-
domains, MC-domain1 in red color and MC-domain2 in blue
color. The figure indicates a software stack assigned to each of
the two domains. Furthermore, the hardware layer is modeled.
It shows a minimalistic set of elements of a commodity

71Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 79 / 83

Memory
Part1 Part2

PE1 PE2

MMU(2nd)

Software
Stack1

Software
Stack2

MC-domain 1 MC-domain 2

Communication Architecture

Figure 1. Target of evaluation.

SoC. The elements inlcude processor cores such as processing
elements (PE) (denoted by PE1 and PE2), a communication
architecture and main memory. PE1 is assigned to MC-
domain1. Accordingly, PE2 is assigned to MC-domain2. Each
Mc-domain includes its own memory partitions, which are
denoted by Part1 and Part2.

C. Memory-Maps in AMP Based Systems
In an AMP system, typically three types of addresses

are handled. First, the virtual address (VA) space at user
level which is maintained by the operating system to provide
horizontal memory separation of processes. Second, the phys-
ical address (PA) space which represents the address of the
main-memory. Last, the intermediate physical address (IPA)
space which is introduced to be able to separate the MC-
domains (or virtualized OS). The translation from VA to IPA is
referred to as stage 1 translation and those from IPA to PA as
stage 2 translation respectively. Depending on the particular
implementation of the PE the translation is handled by a
memory management unit (MMU) in hardware. The structure
which is used to identify corresponding addresses is referred
to as a mapping table filled with a finite set of translation
entries. In the translation process, the MMU extracts the most
significant bits of the input address to index the translation
table. The output address resides at the given index. In practice,
those entries map to a specified amount of memory which
is commonly referred to as a memory page. The granularity
differs among hardware architectures. A simplified example of
a typical address map is shown in Figure 2. The figure shows
the entire PA space (PA) on the bottom. Above, the IPA stage
mapping is depicted. The relationship between the two address
stages represents the actual mapping. In this case, the so-called
identity mapping is shown. Identity mapping means that there
is no translation (or redirection) of memory addresses between
stage 1 and stage 2. The MMU is only used for memory
protection in this case.

D. Memory Access Control
Accesses to the distinct hardware elements is enforced by a

MMU. Since this work focuses on access control, other means
such as interrupt routing are not considered any further. In this
type of AMP-based system, the access control is configured
by the memory-map table of the particular MMU. In Figure
3 the access control principle for the intermediate level is
shown. The PE are considered to be the subjects requesting

IPA

PA

MC-domain1
page

MC-domain2
page

VA

Figure 2. Identity memory-mapping principle.

access to a certain memory area. In this case, those memory
areas are the partitions (Part1 and Part2 shown in Figure 1)
and therefore the accessed objects. The MMU enforces the
memory accesses. The access control policy is manifested in
the memory-map. An important prerequisite is that the MMU
memory-map, in this particular case a second-stage MMU,
must not be accessible by any of the MC-domains itself.
This must be handled by a higher privileged instance. Most
commonly this is referred to as the hypervisor.

IV. THREAT AND ATTACK ANALYSIS

Threat and attack analysis facilitates two core methods
to identify and rate security risks. Threat analysis aims for
structured decomposition of systems and the derivation of
security threats [16]. A commonly accepted and applied threat
model is STRIDE (spoofing, tampering, repudiation, informa-
tion disclosure, denial-of-service and elevation of privilege)
which is shown in [17]. Depending on the system element,
a particular subset of the previously mentioned threats is
applicable. Attack analysis is an offensive method which
aims to foresee and factorize the behavior of an adversary.
During the assessment, the minimum effort to exploit a specific
component of the system is to be estimated. A qualitative
and quantitative statement (risk) results in the exploitability
estimation with regard to a particular threat. The exploitability
factors which are applied in this work are adopted from
the common vulnerability scoring system [6]. The ontology
between the threats and attacks are adopted from the risk model
given in [7]. To summarize up, the threats are a functional
categorization of security risks. Whereas, attacks refer to the
technical facilitation of a certain threat category.

A. Threat Landscape and Memory Asset
In the first place, our work focuses on tampering threats

on the memory partitions of the MC-domains. With regard to
the example given in Figure 3 one MC-domain tampers with
the memory partition (Parti) of another domain. Despite, the
compromising the integrity of main memory can be the root-
cause for further or even more advanced threats. It is worth to
mention, that tampering might lead to elevation of privileges
or one subsequent step of spoofing a communication link to
another entity. Even though denial-of-service attacks can be
mounted by tampering with the memory base of a system. This
is motivated by the fact, that software intensive systems rely on
their code and data base stored in the main memory. Tampering
with that does not only compromise and modify information,
but also the control flow integrity of their function. Meaning,
by having the ability to deliberately change the control flow,
an adversary might gain full or partial control of the vehicle’s

72Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 80 / 83

behavior. Impacts on safety and operation of the entire vehicle
are severe. As a result, memory storage is an important asset.

B. Attack Vector
As it is mentioned before, the factorization of attacks gives

insight on the exploitability of a particular threat. Technically,
it shall be assumed that an unintended access to main memory
is caused by a defect or vulnerability. Accordingly, in this
section, we elaborate on potential breaches. In the following,
the potential preconditions are elaborated. Ultimately, this
work considers attacks at the intermediate level. However,
in order to mount exploits on this level, the adversary is
required to break into the system first. There must be an entry
point for the attacker. In ECUs of a vehicle, this might be
facilitated by external telematic interfaces, internal vehicular
buses or entertainment media. A comprehensive analysis of
vehicular attack surfaces is shown by Checkoway et al. in
[18]. Once the adversary has successfully entered the system
further exploits might be necessary to break the memory
access control. We assume that the adversary needs to break
several levels before he reaches the intermediate layer. For
example, if he succeeded to take over an application he needs
to elevate his privileges towards OS level. This might be done
via a root/kernel exploit [19]. Once the adversary reached
the intermediate layer the memory access control mechanisms
(compare Figure 3) need to be exploited. By compromising
or circumventing these isolation controls, the main memory
then is fully exposed to further exploitation. As an example, in
various experiments, it has been demonstrated that state-of-the-
art multiprocessor SoCs running AMP-based multi operating
systems imply architectural weaknesses in memory protection
[12] [20] [21] [22]. This flaw suffers mostly from insufficient
hardware support for throughout system isolation. In addition,
the fixed and static memory layout at the intermediate system
level provides a wide surface for attacks. If an adversary
successfully circumvented the memory protection, the static
memory configuration enables an attacker to aim for partic-
ular data or information contained in the memory. Once the
memory isolation is breached, the adversary has full access to
the memory. Before the attacker can manipulate the data or
the code he must locate its target structure within the memory
space. Since multiple MC-domain partitions are present in the
main memory, the attacker first needs to determine the base
address of it’s targeted partition. Starting from this offset, the
re-interpretation of OS memory structures can be initiated. Re-
interpreting the kernel structure is a broad research field of
computer forensics, for example by Andrew Case et al. [23].
By assuming a consecutive memory structure the attack can
follow references within those structures until the target is
found. In addition to the re-interpretation of the structures,
the attacker could simply scan for specific binary patterns or
so-called magic bytes to reach its target structure.

C. Attack Complexity
With respect to the metrics in [6] the following aspects

refer to the exploitability. The required entry attack vectors and
required privileges are discussed in the previous section. With
regards to the complexity of the attack, the attacker does not
need to conduct a target-specific reconnaissance. The system
configuration is considered to be static due to the fixed memory
mapping. There is no intended variation from target to target.

MMU(2nd)

PE1 PE2

Memory

Manifest
(Mem-Map)

Subject

Part1 Part2 Object

Enforce-
ment

Figure 3. Access control at intermediate level.

As a result, once an adversary is able to breach the memory
protection for one system, the concept is applicable to other
systems in the product-line or vehicle fleet.

D. Scope and Elevation of Privilege
Due to its nature, memory protection breaches allow a wide

range of impacts on security goals. In this particular case, the
adversary is able to conduct control flow integrity attacks and
elevate the privileges of certain functions of the system. This
implies a change of scope [6], meaning the attacker is not only
able to control the targeted function but also further assets from
this position.

E. Impact to General Security Goals
With the herein assumed attack vectors a potential ad-

versary is able to disclose information from the system and
to tamper with the integrity of the information contained or
used by the respective criticality domains. The availability is
not directly affected by the given attacks. However, due to
the change-of-scope (compare with Section IV-D), denial-of-
service attacks might be conducted by further exploitation as
well.

V. MEMORY-MAP SHUFFLING

In this work, we propose a concept to increase the effort
of localizing and predicting the attack target structure in the
main memory. We aim to elaborate the certain aspects with
regards to concept, implementation aspects and integration.
Furthermore, we discuss aspects of the effectiveness of our
approach. The obfuscation of address layouts is a method
to increase the difficulty of exploiting vulnerabilities. Using
this technique it is more difficult for an attacker to determine
the location of memory structures. Address space obfuscation,
which is often referred to as Address Space Layout Random-
ization (ASLR), was originally implemented for user-space
applications. It added an artificial diversity of the memory
locations of the applications Stack, Heap and linked libraries
and positions within a process’s address pace. Thus, the ex-
ploitation of buffer-overflow and format-string vulnerabilities
became harder.

The core concept aims to create a random permutation
of a translation table. However, beyond identifying a proper
permutation procedure the concept builds on certain aspects
relevant to the target environment. Architectural or technical
constraints are relevant as well as procedural prerequisites. In
Figure 4 an overview of the causal dependencies of the concept
is shown. Usually, the AMP system configuration consists of
several configurations to produce the IPA system mapping.
These configurations include a board support package (BSP)
which describes the SoC hardware element utilization, the

73Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 81 / 83

AMP System
Configuration

Create Linear
Mapping in
IPA Space

Obfuscated
Physical
Address

Translation
Mapping

Permutation
Procedure

Figure 4. Overview of the obfuscation concept.

device assignments to split the peripherals, and the main
memory partitions for the OS-layer instances. This information
will be transferred into the suitable mapping table. This pre-
initialized mapping will then be processed by a permutation
procedure which outputs a random physical address map.

A. Obfuscation Concept

The concept aims to place the physical addresses in such
a manner that without the knowledge of the mapping table an
adversary cannot reconstruct the entire memory structure of a
memory partition. That means, after the access control breach
the attacker is able to jump to and access every position in main
memory. Nevertheless, at PA level it cannot be differentiated
to which MC-domain the memory pages belong. Furthermore,
the order of pages is not sequential after the obfuscation.
According to the ToE, Figure 5 visualizes the principle. To
summarize up, the obfuscation takes effect in two dimensions.
First, the page assignment and second, the sequential order of
the pages. Our exemplary system consists only of two MC-
domains. With a decreasing number of domains, the effect of
the obfuscation rises.

B. Permutation Procedure

The core of the obfuscation concept is the algorithm
to produce the permutation of the address mappings. The
procedure of randomizing the address space can be compared
to a shuffle of a deck of cards. Therefore, in order to transport
the overall approach, we chose the shuffling algorithm by
Fisher and Yates [24]. The Fisher-Yates shuffle is simple and
fits well to produce random permutations of finite sets. In this
particular case, the finite set is the translation table which was
previously created by the initialization process. The translation
table is denoted as a finite set TT of mapping entries E.

TT = {E1, E2, ..., En} (1)

Each entry redirects an intermediate input address to its
corresponding output address range. We assume TT is initial-
ized with an identity mapping, which means each intermediate
address is equal to the physical address IPA = PA. The entries
of the set would then be arranged as follows:

TT = {PA0x000000001, PA0x0000000040, ..., PAn} (2)

The Fisher-Yates algorithm is shown in Algorithm 1. It
iterates through TT and swaps the entry in the current position
with a random position. The random position is determined by
a randomization function which draws values out of a specified
range.

Algorithm 1 Memory-Map Table Shuffle

for all TT[] do
random ⇐ random number such that 0 ≤ random ≤
range
swap TT[random] and TT[current]

end for

C. Assumptions and Requirements
One of the key elements of the shuffling algorithm or the

permutation algorithm is a suitable random number generator.
As shown in Listing 1 a discrete random number from a
specified range (0 ≤ randomNumber ≤ Range) is drawn.
As a prerequisite, we assume a cryptographic secure random
number generation providing sufficient entropy. The required
entropy depends on the granularity of page mappings of
the system. In other words, the total number of entries in
TT . Furthermore, we require that the generated numbers are
still non-biased after truncating them to the specified range.
Performance plays an important role since this approach will
be integrated into a timing critical environment. Every time
the system is reset the memory mapping will be randomized.
Therefore, the algorithmic complexity must be kept to a
minimum so the start-up phase of the device is not significantly
delayed.

VI. DISCUSSION

With respect to the characteristics given in the threat and
attack analysis, this section discusses the effectiveness of the
given approach.

A. Effect on the Attack Complexity
By applying the random permutation at the intermediate

physical address mappings, the physical memory structure is
obfuscated. Exploits like those referenced in the threat scenario
would fail. However, adversaries would adapt to the newly
introduced circumstances and try to de-obfuscate the memory
map. In reference to crypto analysis, nevertheless, a reasonable
way to evaluate the effectiveness of this kind of statistical
security control is to estimate the effort to break it. In general,
we assume two approaches to compromise a permuted address
mapping. Either the attacker scans the whole main memory
for a page he is looking for or applies statistical analysis
to the permutation procedure. The former approach makes it
necessary to assume that the attacker is able to scan the whole
main memory. Furthermore, he needs an evaluation function
that determines whether or not the current scanned page is the
one he was looking for. This is what we also described in our
threat scenario, however, the adversary now has to deal with
the fragmentation of binary patterns. By applying this brute-
force attack, the attacker needs to scan half of all left pages on
average to find the next designated page. In other security fields
such as cryptography, the strength of a certain function, such
as encryption, is hard to define using discrete methods. Statis-
tical analysis or complexity estimations on the randomization
output forms the second approach to de-obfuscate the mapping
table. This mathematical problem is comparable to the crypto-
analysis of ciphertext. Concepts like known-chiphertext and
chosen-plaintext attacks can reveal algebraic weaknesses of
the implemented algorithms. Hence, the cryptographic secure
implementation of those procedures is the key to preventing

74Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

 82 / 83

IPA

PA

MC-domain1
page

MC-domain2
page

Figure 5. Principle of randomized memory assignment.

such information leakage. The proposed concept implies an in-
depth target-specific reconnaissance in order to de-obfuscate
the system mappings. Since the mappings are randomized on
each system individually and change over time, given exploits
are not directly applicable to a range of systems.

B. Change of Scope
The proposed approach does not influence the ability to

change the scope (such as elevation of privileges) of the target.
Once the adversary succeeds in overcoming the complexity of
the obfuscation, the scope change is still possible.

C. Protection of Confidential Information
Protecting the integrity or even the control flow integrity

in breached environments is the major target of the given
approach. Nevertheless, the disclosure of information is also
possible. Although, the adversary has increased effort to find
the targeted information. Reading the data then does not further
impact the system. In other words, the de-obfuscation could be
done offline with increased resources and without interfering
with the system. As a result, the rearrangement of data is not
sufficient to protect from information disclosure.

VII. CONCLUSION

The evolving nature of automotive origination processes
such as product-lines and product life-cycles imply special
needs of the created products. This is particularly true for the
analysis and definition of security mitigations. In this article,
we proposed a concept to mitigate the effects of breaching the
hardware memory protections of automotive mixed-criticality
systems. The particular technique to implement the multiple
compartments for the distinct criticality domains is asymmetric
multiprocessing. This technique implies a static system con-
figuration on runtime. In the threat and attack analysis, we
identified that this can be misused to mount direct-memory-
access-based attack vectors. The proposed mitigation approach
aims to obfuscate the intermediate address mapping based
on the introduction of random permutations of a normal,
continuous memory-map arrangement. This adds complexity
and raises the exploitation effort for adversaries. This approach
is applicable to hardware architectures utilizing memory-maps
and two-staged memory management. As such, it contributes
to a through defense-in-depth security architecture applied to
the automotive landscape.

REFERENCES

[1] D. Spaar. (2015, Feb.) Beemer, open thyself! - security
vulnerabilities in bmw’s connecteddrive. [Online]. Avail-
able: http://www.heise.de/ct/artikel/Beemer-Open-Thyself-Security-
vulnerabilities-in-BMW-s-ConnectedDrive-2540957.html

[2] A. Greenberg. (2015, Jul.) Hackers remotely kill a jeep on the
highway—with me in it. [Online]. Available: https://www.wired.com/
2015/07/hackers-remotely-kill-jeep-highway

[3] S. International, “Sae j3061, cybersecurity guidebook for cyber-physical
vehicle systems,” SAE International, 2016.

[4] O. Henniger, L. Apvrille, A. Fuchs, Y. Roudier, A. Ruddle, and
B. Weyl, “Security requirements for automotive on-board networks,” in
9th International Conference on ITS Telecommunications (ITST). IEEE,
2009, pp. 641–646.

[5] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2010 16th IEEE, April 2010, pp. 13–
22.

[6] S. Hanford, “Common Vulnerability Scoring System v3.0: Specification
Document,” pp. 1–21, Jul. 2015.

[7] J. Freund and J. Jones, Measuring and Managing Information Risk: A
FAIR Approach. Butterworth-Heinemann, 2014.

[8] J. Edge, “Kernel address space layout randomization,” Linux Security
Summit, Oct. 2013. [Online]. Available: http://lwn.net/Articles/569635/

[9] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address Obfuscation:
An Efficient Approach to Combat a Broad Range of Memory Error
Exploits.” USENIX Security, 2003.

[10] C. Kil, J. Jim, C. Bookholt, J. Xu, and P. Ning, “Address Space Layout
Permutation (ASLP): Towards Fine-Grained Randomization of Com-
modity Software,” 2006 22nd Annual Computer Security Applications
Conference (ACSAC’06), pp. 339–348, Dec. 2006.

[11] H. Y. Tian Shuo and D. Baozeng, “Prevent Kernel Return-Oriented
Programming Attacks Using Hardware Virtualization,” LNCS 7232, pp.
1–12, Mar. 2012.

[12] M. Rushanan and S. Checkoway, “Run-DMA.” 9th USENIX - Workshop
on offensive technologies (WOOT), 2015.

[13] ISO/IEC, “ISO/IEC 25010 - Systems and software engineering - Sys-
tems and software Quality Requirements and Evaluation (SQuaRE) -
System and software quality models,” Tech. Rep., 2010.

[14] Y. Kinebuchi, T. Morita, K. Makijima, M. Sugaya, and T. Nakajima,
“Constructing a Multi-OS Platform with Minimal Engineering Cost.”
IESS, vol. 3, no. Chapter 18, pp. 195–, 2009.

[15] J. Porquet, C. Schwarz, and A. Greiner, “Multi-compartment: a new
architecture for secure co-hosting on SoC,” System-on-Chip, pp. 124–
127, 2009.

[16] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack,
“Uncover security design flaws using the STRIDE approach,”
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx, 2010.

[17] A. Shostack, Threat modeling: Designing for security. John Wiley and
Sons, 2014.

[18] S. Checkoway, D. McCoy, B. Kantor, D. Anderson et al., “Comprehen-
sive experimental analyses of automotive attack surfaces.” in USENIX
Security Symposium. San Francisco, 2011.

[19] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F.
Kaashoek, “Linux kernel vulnerabilities: State-of-the-art defenses and
open problems,” in Proceedings of the Second Asia-Pacific Workshop
on Systems. ACM, 2011, p. 5.

[20] P. Schnarz, J. Wietzke, and I. Stengel, “Towards attacks on restricted
memory areas through co-processors in embedded multi-os environ-
ments via malicious firmware injection,” in Proceedings of the First
Workshop on Cryptography and Security in Computing Systems. ACM,
2014, pp. 25–30.

[21] P. Schnarz, J. Wietzke, and I. Stengel, “Co-processor aided attack on
embedded multi-os environments,” in International Conference on IT
Convergence and Security (ICITCS). IEEE, 2013, pp. 1–4.

[22] J. Danisevskis, M. Piekarska, and J.-P. Seifert, “Dark side of the
shader: Mobile gpu-aided malware delivery,” in Information Security
and Cryptology–ICISC 2013. Springer, 2014, pp. 483–495.

[23] A. Case, L. Marziale, and G. G. Richard, “Dynamic recreation of kernel
data structures for live forensics,” Digital Investigation, vol. 7, pp. S32–
S40, 2010.

[24] R. A. Fisher, F. Yates et al., “Statistical tables for biological, agricultural
and medical research.” Statistical tables for biological, agricultural and
medical research., no. Ed. 3., p. 90pp, 1949.

75Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

Powered by TCPDF (www.tcpdf.org)

 83 / 83

http://www.tcpdf.org

